1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
//! Fix-point analyses on the IR using the "monotone framework".
//!
//! A lattice is a set with a partial ordering between elements, where there is
//! a single least upper bound and a single greatest least bound for every
//! subset. We are dealing with finite lattices, which means that it has a
//! finite number of elements, and it follows that there exists a single top and
//! a single bottom member of the lattice. For example, the power set of a
//! finite set forms a finite lattice where partial ordering is defined by set
//! inclusion, that is `a <= b` if `a` is a subset of `b`. Here is the finite
//! lattice constructed from the set {0,1,2}:
//!
//! ```text
//! .----- Top = {0,1,2} -----.
//! / | \
//! / | \
//! / | \
//! {0,1} -------. {0,2} .--------- {1,2}
//! | \ / \ / |
//! | / \ |
//! | / \ / \ |
//! {0} --------' {1} `---------- {2}
//! \ | /
//! \ | /
//! \ | /
//! `------ Bottom = {} ------'
//! ```
//!
//! A monotone function `f` is a function where if `x <= y`, then it holds that
//! `f(x) <= f(y)`. It should be clear that running a monotone function to a
//! fix-point on a finite lattice will always terminate: `f` can only "move"
//! along the lattice in a single direction, and therefore can only either find
//! a fix-point in the middle of the lattice or continue to the top or bottom
//! depending if it is ascending or descending the lattice respectively.
//!
//! For a deeper introduction to the general form of this kind of analysis, see
//! [Static Program Analysis by Anders Møller and Michael I. Schwartzbach][spa].
//!
//! [spa]: https://cs.au.dk/~amoeller/spa/spa.pdf
// Re-export individual analyses.
mod template_params;
pub(crate) use self::template_params::UsedTemplateParameters;
mod derive;
pub use self::derive::DeriveTrait;
pub(crate) use self::derive::{as_cannot_derive_set, CannotDerive};
mod has_vtable;
pub(crate) use self::has_vtable::{
HasVtable, HasVtableAnalysis, HasVtableResult,
};
mod has_destructor;
pub(crate) use self::has_destructor::HasDestructorAnalysis;
mod has_type_param_in_array;
pub(crate) use self::has_type_param_in_array::HasTypeParameterInArray;
mod has_float;
pub(crate) use self::has_float::HasFloat;
mod sizedness;
pub(crate) use self::sizedness::{
Sizedness, SizednessAnalysis, SizednessResult,
};
use crate::ir::context::{BindgenContext, ItemId};
use crate::ir::traversal::{EdgeKind, Trace};
use crate::HashMap;
use std::fmt;
use std::ops;
/// An analysis in the monotone framework.
///
/// Implementors of this trait must maintain the following two invariants:
///
/// 1. The concrete data must be a member of a finite-height lattice.
/// 2. The concrete `constrain` method must be monotone: that is,
/// if `x <= y`, then `constrain(x) <= constrain(y)`.
///
/// If these invariants do not hold, iteration to a fix-point might never
/// complete.
///
/// For a simple example analysis, see the `ReachableFrom` type in the `tests`
/// module below.
pub(crate) trait MonotoneFramework: Sized + fmt::Debug {
/// The type of node in our dependency graph.
///
/// This is just generic (and not `ItemId`) so that we can easily unit test
/// without constructing real `Item`s and their `ItemId`s.
type Node: Copy;
/// Any extra data that is needed during computation.
///
/// Again, this is just generic (and not `&BindgenContext`) so that we can
/// easily unit test without constructing real `BindgenContext`s full of
/// real `Item`s and real `ItemId`s.
type Extra: Sized;
/// The final output of this analysis. Once we have reached a fix-point, we
/// convert `self` into this type, and return it as the final result of the
/// analysis.
type Output: From<Self> + fmt::Debug;
/// Construct a new instance of this analysis.
fn new(extra: Self::Extra) -> Self;
/// Get the initial set of nodes from which to start the analysis. Unless
/// you are sure of some domain-specific knowledge, this should be the
/// complete set of nodes.
fn initial_worklist(&self) -> Vec<Self::Node>;
/// Update the analysis for the given node.
///
/// If this results in changing our internal state (ie, we discovered that
/// we have not reached a fix-point and iteration should continue), return
/// `ConstrainResult::Changed`. Otherwise, return `ConstrainResult::Same`.
/// When `constrain` returns `ConstrainResult::Same` for all nodes in the
/// set, we have reached a fix-point and the analysis is complete.
fn constrain(&mut self, node: Self::Node) -> ConstrainResult;
/// For each node `d` that depends on the given `node`'s current answer when
/// running `constrain(d)`, call `f(d)`. This informs us which new nodes to
/// queue up in the worklist when `constrain(node)` reports updated
/// information.
fn each_depending_on<F>(&self, node: Self::Node, f: F)
where
F: FnMut(Self::Node);
}
/// Whether an analysis's `constrain` function modified the incremental results
/// or not.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) enum ConstrainResult {
/// The incremental results were updated, and the fix-point computation
/// should continue.
Changed,
/// The incremental results were not updated.
Same,
}
impl Default for ConstrainResult {
fn default() -> Self {
ConstrainResult::Same
}
}
impl ops::BitOr for ConstrainResult {
type Output = Self;
fn bitor(self, rhs: ConstrainResult) -> Self::Output {
if self == ConstrainResult::Changed || rhs == ConstrainResult::Changed {
ConstrainResult::Changed
} else {
ConstrainResult::Same
}
}
}
impl ops::BitOrAssign for ConstrainResult {
fn bitor_assign(&mut self, rhs: ConstrainResult) {
*self = *self | rhs;
}
}
/// Run an analysis in the monotone framework.
pub(crate) fn analyze<Analysis>(extra: Analysis::Extra) -> Analysis::Output
where
Analysis: MonotoneFramework,
{
let mut analysis = Analysis::new(extra);
let mut worklist = analysis.initial_worklist();
while let Some(node) = worklist.pop() {
if let ConstrainResult::Changed = analysis.constrain(node) {
analysis.each_depending_on(node, |needs_work| {
worklist.push(needs_work);
});
}
}
analysis.into()
}
/// Generate the dependency map for analysis
pub(crate) fn generate_dependencies<F>(
ctx: &BindgenContext,
consider_edge: F,
) -> HashMap<ItemId, Vec<ItemId>>
where
F: Fn(EdgeKind) -> bool,
{
let mut dependencies = HashMap::default();
for &item in ctx.allowlisted_items() {
dependencies.entry(item).or_insert_with(Vec::new);
{
// We reverse our natural IR graph edges to find dependencies
// between nodes.
item.trace(
ctx,
&mut |sub_item: ItemId, edge_kind| {
if ctx.allowlisted_items().contains(&sub_item) &&
consider_edge(edge_kind)
{
dependencies
.entry(sub_item)
.or_insert_with(Vec::new)
.push(item);
}
},
&(),
);
}
}
dependencies
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{HashMap, HashSet};
// Here we find the set of nodes that are reachable from any given
// node. This is a lattice mapping nodes to subsets of all nodes. Our join
// function is set union.
//
// This is our test graph:
//
// +---+ +---+
// | | | |
// | 1 | .----| 2 |
// | | | | |
// +---+ | +---+
// | | ^
// | | |
// | +---+ '------'
// '----->| |
// | 3 |
// .------| |------.
// | +---+ |
// | ^ |
// v | v
// +---+ | +---+ +---+
// | | | | | | |
// | 4 | | | 5 |--->| 6 |
// | | | | | | |
// +---+ | +---+ +---+
// | | | |
// | | | v
// | +---+ | +---+
// | | | | | |
// '----->| 7 |<-----' | 8 |
// | | | |
// +---+ +---+
//
// And here is the mapping from a node to the set of nodes that are
// reachable from it within the test graph:
//
// 1: {3,4,5,6,7,8}
// 2: {2}
// 3: {3,4,5,6,7,8}
// 4: {3,4,5,6,7,8}
// 5: {3,4,5,6,7,8}
// 6: {8}
// 7: {3,4,5,6,7,8}
// 8: {}
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
struct Node(usize);
#[derive(Clone, Debug, Default, PartialEq, Eq)]
struct Graph(HashMap<Node, Vec<Node>>);
impl Graph {
fn make_test_graph() -> Graph {
let mut g = Graph::default();
g.0.insert(Node(1), vec![Node(3)]);
g.0.insert(Node(2), vec![Node(2)]);
g.0.insert(Node(3), vec![Node(4), Node(5)]);
g.0.insert(Node(4), vec![Node(7)]);
g.0.insert(Node(5), vec![Node(6), Node(7)]);
g.0.insert(Node(6), vec![Node(8)]);
g.0.insert(Node(7), vec![Node(3)]);
g.0.insert(Node(8), vec![]);
g
}
fn reverse(&self) -> Graph {
let mut reversed = Graph::default();
for (node, edges) in self.0.iter() {
reversed.0.entry(*node).or_insert_with(Vec::new);
for referent in edges.iter() {
reversed
.0
.entry(*referent)
.or_insert_with(Vec::new)
.push(*node);
}
}
reversed
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
struct ReachableFrom<'a> {
reachable: HashMap<Node, HashSet<Node>>,
graph: &'a Graph,
reversed: Graph,
}
impl<'a> MonotoneFramework for ReachableFrom<'a> {
type Node = Node;
type Extra = &'a Graph;
type Output = HashMap<Node, HashSet<Node>>;
fn new(graph: &'a Graph) -> ReachableFrom {
let reversed = graph.reverse();
ReachableFrom {
reachable: Default::default(),
graph,
reversed,
}
}
fn initial_worklist(&self) -> Vec<Node> {
self.graph.0.keys().cloned().collect()
}
fn constrain(&mut self, node: Node) -> ConstrainResult {
// The set of nodes reachable from a node `x` is
//
// reachable(x) = s_0 U s_1 U ... U reachable(s_0) U reachable(s_1) U ...
//
// where there exist edges from `x` to each of `s_0, s_1, ...`.
//
// Yes, what follows is a **terribly** inefficient set union
// implementation. Don't copy this code outside of this test!
let original_size = self.reachable.entry(node).or_default().len();
for sub_node in self.graph.0[&node].iter() {
self.reachable.get_mut(&node).unwrap().insert(*sub_node);
let sub_reachable =
self.reachable.entry(*sub_node).or_default().clone();
for transitive in sub_reachable {
self.reachable.get_mut(&node).unwrap().insert(transitive);
}
}
let new_size = self.reachable[&node].len();
if original_size != new_size {
ConstrainResult::Changed
} else {
ConstrainResult::Same
}
}
fn each_depending_on<F>(&self, node: Node, mut f: F)
where
F: FnMut(Node),
{
for dep in self.reversed.0[&node].iter() {
f(*dep);
}
}
}
impl<'a> From<ReachableFrom<'a>> for HashMap<Node, HashSet<Node>> {
fn from(reachable: ReachableFrom<'a>) -> Self {
reachable.reachable
}
}
#[test]
fn monotone() {
let g = Graph::make_test_graph();
let reachable = analyze::<ReachableFrom>(&g);
println!("reachable = {:#?}", reachable);
fn nodes<A>(nodes: A) -> HashSet<Node>
where
A: AsRef<[usize]>,
{
nodes.as_ref().iter().cloned().map(Node).collect()
}
let mut expected = HashMap::default();
expected.insert(Node(1), nodes([3, 4, 5, 6, 7, 8]));
expected.insert(Node(2), nodes([2]));
expected.insert(Node(3), nodes([3, 4, 5, 6, 7, 8]));
expected.insert(Node(4), nodes([3, 4, 5, 6, 7, 8]));
expected.insert(Node(5), nodes([3, 4, 5, 6, 7, 8]));
expected.insert(Node(6), nodes([8]));
expected.insert(Node(7), nodes([3, 4, 5, 6, 7, 8]));
expected.insert(Node(8), nodes([]));
println!("expected = {:#?}", expected);
assert_eq!(reachable, expected);
}
}
|