1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
|
//! Common context that is passed around during parsing and codegen.
use super::super::time::Timer;
use super::analysis::{
analyze, as_cannot_derive_set, CannotDerive, DeriveTrait,
HasDestructorAnalysis, HasFloat, HasTypeParameterInArray,
HasVtableAnalysis, HasVtableResult, SizednessAnalysis, SizednessResult,
UsedTemplateParameters,
};
use super::derive::{
CanDerive, CanDeriveCopy, CanDeriveDebug, CanDeriveDefault, CanDeriveEq,
CanDeriveHash, CanDeriveOrd, CanDerivePartialEq, CanDerivePartialOrd,
};
use super::function::Function;
use super::int::IntKind;
use super::item::{IsOpaque, Item, ItemAncestors, ItemSet};
use super::item_kind::ItemKind;
use super::module::{Module, ModuleKind};
use super::template::{TemplateInstantiation, TemplateParameters};
use super::traversal::{self, Edge, ItemTraversal};
use super::ty::{FloatKind, Type, TypeKind};
use crate::clang::{self, ABIKind, Cursor};
use crate::codegen::CodegenError;
use crate::BindgenOptions;
use crate::{Entry, HashMap, HashSet};
use proc_macro2::{Ident, Span, TokenStream};
use quote::ToTokens;
use std::borrow::Cow;
use std::cell::{Cell, RefCell};
use std::collections::{BTreeSet, HashMap as StdHashMap};
use std::iter::IntoIterator;
use std::mem;
/// An identifier for some kind of IR item.
#[derive(Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)]
pub(crate) struct ItemId(usize);
/// Declare a newtype around `ItemId` with convesion methods.
macro_rules! item_id_newtype {
(
$( #[$attr:meta] )*
pub(crate) struct $name:ident(ItemId)
where
$( #[$checked_attr:meta] )*
checked = $checked:ident with $check_method:ident,
$( #[$expected_attr:meta] )*
expected = $expected:ident,
$( #[$unchecked_attr:meta] )*
unchecked = $unchecked:ident;
) => {
$( #[$attr] )*
#[derive(Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)]
pub(crate) struct $name(ItemId);
impl $name {
/// Create an `ItemResolver` from this ID.
#[allow(dead_code)]
pub(crate) fn into_resolver(self) -> ItemResolver {
let id: ItemId = self.into();
id.into()
}
}
impl<T> ::std::cmp::PartialEq<T> for $name
where
T: Copy + Into<ItemId>
{
fn eq(&self, rhs: &T) -> bool {
let rhs: ItemId = (*rhs).into();
self.0 == rhs
}
}
impl From<$name> for ItemId {
fn from(id: $name) -> ItemId {
id.0
}
}
impl<'a> From<&'a $name> for ItemId {
fn from(id: &'a $name) -> ItemId {
id.0
}
}
#[allow(dead_code)]
impl ItemId {
$( #[$checked_attr] )*
pub(crate) fn $checked(&self, ctx: &BindgenContext) -> Option<$name> {
if ctx.resolve_item(*self).kind().$check_method() {
Some($name(*self))
} else {
None
}
}
$( #[$expected_attr] )*
pub(crate) fn $expected(&self, ctx: &BindgenContext) -> $name {
self.$checked(ctx)
.expect(concat!(
stringify!($expected),
" called with ItemId that points to the wrong ItemKind"
))
}
$( #[$unchecked_attr] )*
pub(crate) fn $unchecked(&self) -> $name {
$name(*self)
}
}
}
}
item_id_newtype! {
/// An identifier for an `Item` whose `ItemKind` is known to be
/// `ItemKind::Type`.
pub(crate) struct TypeId(ItemId)
where
/// Convert this `ItemId` into a `TypeId` if its associated item is a type,
/// otherwise return `None`.
checked = as_type_id with is_type,
/// Convert this `ItemId` into a `TypeId`.
///
/// If this `ItemId` does not point to a type, then panic.
expected = expect_type_id,
/// Convert this `ItemId` into a `TypeId` without actually checking whether
/// this ID actually points to a `Type`.
unchecked = as_type_id_unchecked;
}
item_id_newtype! {
/// An identifier for an `Item` whose `ItemKind` is known to be
/// `ItemKind::Module`.
pub(crate) struct ModuleId(ItemId)
where
/// Convert this `ItemId` into a `ModuleId` if its associated item is a
/// module, otherwise return `None`.
checked = as_module_id with is_module,
/// Convert this `ItemId` into a `ModuleId`.
///
/// If this `ItemId` does not point to a module, then panic.
expected = expect_module_id,
/// Convert this `ItemId` into a `ModuleId` without actually checking
/// whether this ID actually points to a `Module`.
unchecked = as_module_id_unchecked;
}
item_id_newtype! {
/// An identifier for an `Item` whose `ItemKind` is known to be
/// `ItemKind::Var`.
pub(crate) struct VarId(ItemId)
where
/// Convert this `ItemId` into a `VarId` if its associated item is a var,
/// otherwise return `None`.
checked = as_var_id with is_var,
/// Convert this `ItemId` into a `VarId`.
///
/// If this `ItemId` does not point to a var, then panic.
expected = expect_var_id,
/// Convert this `ItemId` into a `VarId` without actually checking whether
/// this ID actually points to a `Var`.
unchecked = as_var_id_unchecked;
}
item_id_newtype! {
/// An identifier for an `Item` whose `ItemKind` is known to be
/// `ItemKind::Function`.
pub(crate) struct FunctionId(ItemId)
where
/// Convert this `ItemId` into a `FunctionId` if its associated item is a function,
/// otherwise return `None`.
checked = as_function_id with is_function,
/// Convert this `ItemId` into a `FunctionId`.
///
/// If this `ItemId` does not point to a function, then panic.
expected = expect_function_id,
/// Convert this `ItemId` into a `FunctionId` without actually checking whether
/// this ID actually points to a `Function`.
unchecked = as_function_id_unchecked;
}
impl From<ItemId> for usize {
fn from(id: ItemId) -> usize {
id.0
}
}
impl ItemId {
/// Get a numeric representation of this ID.
pub(crate) fn as_usize(&self) -> usize {
(*self).into()
}
}
impl<T> ::std::cmp::PartialEq<T> for ItemId
where
T: Copy + Into<ItemId>,
{
fn eq(&self, rhs: &T) -> bool {
let rhs: ItemId = (*rhs).into();
self.0 == rhs.0
}
}
impl<T> CanDeriveDebug for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_debug(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_debug && ctx.lookup_can_derive_debug(*self)
}
}
impl<T> CanDeriveDefault for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_default(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_default && ctx.lookup_can_derive_default(*self)
}
}
impl<T> CanDeriveCopy for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_copy(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_copy && ctx.lookup_can_derive_copy(*self)
}
}
impl<T> CanDeriveHash for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_hash(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_hash && ctx.lookup_can_derive_hash(*self)
}
}
impl<T> CanDerivePartialOrd for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_partialord(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_partialord &&
ctx.lookup_can_derive_partialeq_or_partialord(*self) ==
CanDerive::Yes
}
}
impl<T> CanDerivePartialEq for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_partialeq(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_partialeq &&
ctx.lookup_can_derive_partialeq_or_partialord(*self) ==
CanDerive::Yes
}
}
impl<T> CanDeriveEq for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_eq(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_eq &&
ctx.lookup_can_derive_partialeq_or_partialord(*self) ==
CanDerive::Yes &&
!ctx.lookup_has_float(*self)
}
}
impl<T> CanDeriveOrd for T
where
T: Copy + Into<ItemId>,
{
fn can_derive_ord(&self, ctx: &BindgenContext) -> bool {
ctx.options().derive_ord &&
ctx.lookup_can_derive_partialeq_or_partialord(*self) ==
CanDerive::Yes &&
!ctx.lookup_has_float(*self)
}
}
/// A key used to index a resolved type, so we only process it once.
///
/// This is almost always a USR string (an unique identifier generated by
/// clang), but it can also be the canonical declaration if the type is unnamed,
/// in which case clang may generate the same USR for multiple nested unnamed
/// types.
#[derive(Eq, PartialEq, Hash, Debug)]
enum TypeKey {
Usr(String),
Declaration(Cursor),
}
/// A context used during parsing and generation of structs.
#[derive(Debug)]
pub(crate) struct BindgenContext {
/// The map of all the items parsed so far, keyed off ItemId.
items: Vec<Option<Item>>,
/// Clang USR to type map. This is needed to be able to associate types with
/// item ids during parsing.
types: HashMap<TypeKey, TypeId>,
/// Maps from a cursor to the item ID of the named template type parameter
/// for that cursor.
type_params: HashMap<clang::Cursor, TypeId>,
/// A cursor to module map. Similar reason than above.
modules: HashMap<Cursor, ModuleId>,
/// The root module, this is guaranteed to be an item of kind Module.
root_module: ModuleId,
/// Current module being traversed.
current_module: ModuleId,
/// A HashMap keyed on a type definition, and whose value is the parent ID
/// of the declaration.
///
/// This is used to handle the cases where the semantic and the lexical
/// parents of the cursor differ, like when a nested class is defined
/// outside of the parent class.
semantic_parents: HashMap<clang::Cursor, ItemId>,
/// A stack with the current type declarations and types we're parsing. This
/// is needed to avoid infinite recursion when parsing a type like:
///
/// struct c { struct c* next; };
///
/// This means effectively, that a type has a potential ID before knowing if
/// it's a correct type. But that's not important in practice.
///
/// We could also use the `types` HashMap, but my intention with it is that
/// only valid types and declarations end up there, and this could
/// potentially break that assumption.
currently_parsed_types: Vec<PartialType>,
/// A map with all the already parsed macro names. This is done to avoid
/// hard errors while parsing duplicated macros, as well to allow macro
/// expression parsing.
///
/// This needs to be an std::HashMap because the cexpr API requires it.
parsed_macros: StdHashMap<Vec<u8>, cexpr::expr::EvalResult>,
/// A map with all include locations.
///
/// This is needed so that items are created in the order they are defined in.
///
/// The key is the included file, the value is a pair of the source file and
/// the position of the `#include` directive in the source file.
includes: StdHashMap<String, (String, usize)>,
/// A set of all the included filenames.
deps: BTreeSet<Box<str>>,
/// The active replacements collected from replaces="xxx" annotations.
replacements: HashMap<Vec<String>, ItemId>,
collected_typerefs: bool,
in_codegen: bool,
/// The translation unit for parsing.
translation_unit: clang::TranslationUnit,
/// Target information that can be useful for some stuff.
target_info: clang::TargetInfo,
/// The options given by the user via cli or other medium.
options: BindgenOptions,
/// Whether a bindgen complex was generated
generated_bindgen_complex: Cell<bool>,
/// Whether a bindgen float16 was generated
generated_bindgen_float16: Cell<bool>,
/// The set of `ItemId`s that are allowlisted. This the very first thing
/// computed after parsing our IR, and before running any of our analyses.
allowlisted: Option<ItemSet>,
/// Cache for calls to `ParseCallbacks::blocklisted_type_implements_trait`
blocklisted_types_implement_traits:
RefCell<HashMap<DeriveTrait, HashMap<ItemId, CanDerive>>>,
/// The set of `ItemId`s that are allowlisted for code generation _and_ that
/// we should generate accounting for the codegen options.
///
/// It's computed right after computing the allowlisted items.
codegen_items: Option<ItemSet>,
/// Map from an item's ID to the set of template parameter items that it
/// uses. See `ir::named` for more details. Always `Some` during the codegen
/// phase.
used_template_parameters: Option<HashMap<ItemId, ItemSet>>,
/// The set of `TypeKind::Comp` items found during parsing that need their
/// bitfield allocation units computed. Drained in `compute_bitfield_units`.
need_bitfield_allocation: Vec<ItemId>,
/// The set of enums that are defined by a pair of `enum` and `typedef`,
/// which is legal in C (but not C++).
///
/// ```c++
/// // in either order
/// enum Enum { Variants... };
/// typedef int16_t Enum;
/// ```
///
/// The stored `ItemId` is that of the `TypeKind::Enum`, not of the
/// `TypeKind::Alias`.
///
/// This is populated when we enter codegen by `compute_enum_typedef_combos`
/// and is always `None` before that and `Some` after.
enum_typedef_combos: Option<HashSet<ItemId>>,
/// The set of (`ItemId`s of) types that can't derive debug.
///
/// This is populated when we enter codegen by `compute_cannot_derive_debug`
/// and is always `None` before that and `Some` after.
cannot_derive_debug: Option<HashSet<ItemId>>,
/// The set of (`ItemId`s of) types that can't derive default.
///
/// This is populated when we enter codegen by `compute_cannot_derive_default`
/// and is always `None` before that and `Some` after.
cannot_derive_default: Option<HashSet<ItemId>>,
/// The set of (`ItemId`s of) types that can't derive copy.
///
/// This is populated when we enter codegen by `compute_cannot_derive_copy`
/// and is always `None` before that and `Some` after.
cannot_derive_copy: Option<HashSet<ItemId>>,
/// The set of (`ItemId`s of) types that can't derive hash.
///
/// This is populated when we enter codegen by `compute_can_derive_hash`
/// and is always `None` before that and `Some` after.
cannot_derive_hash: Option<HashSet<ItemId>>,
/// The map why specified `ItemId`s of) types that can't derive hash.
///
/// This is populated when we enter codegen by
/// `compute_cannot_derive_partialord_partialeq_or_eq` and is always `None`
/// before that and `Some` after.
cannot_derive_partialeq_or_partialord: Option<HashMap<ItemId, CanDerive>>,
/// The sizedness of types.
///
/// This is populated by `compute_sizedness` and is always `None` before
/// that function is invoked and `Some` afterwards.
sizedness: Option<HashMap<TypeId, SizednessResult>>,
/// The set of (`ItemId's of`) types that has vtable.
///
/// Populated when we enter codegen by `compute_has_vtable`; always `None`
/// before that and `Some` after.
have_vtable: Option<HashMap<ItemId, HasVtableResult>>,
/// The set of (`ItemId's of`) types that has destructor.
///
/// Populated when we enter codegen by `compute_has_destructor`; always `None`
/// before that and `Some` after.
have_destructor: Option<HashSet<ItemId>>,
/// The set of (`ItemId's of`) types that has array.
///
/// Populated when we enter codegen by `compute_has_type_param_in_array`; always `None`
/// before that and `Some` after.
has_type_param_in_array: Option<HashSet<ItemId>>,
/// The set of (`ItemId's of`) types that has float.
///
/// Populated when we enter codegen by `compute_has_float`; always `None`
/// before that and `Some` after.
has_float: Option<HashSet<ItemId>>,
}
/// A traversal of allowlisted items.
struct AllowlistedItemsTraversal<'ctx> {
ctx: &'ctx BindgenContext,
traversal: ItemTraversal<'ctx, ItemSet, Vec<ItemId>>,
}
impl<'ctx> Iterator for AllowlistedItemsTraversal<'ctx> {
type Item = ItemId;
fn next(&mut self) -> Option<ItemId> {
loop {
let id = self.traversal.next()?;
if self.ctx.resolve_item(id).is_blocklisted(self.ctx) {
continue;
}
return Some(id);
}
}
}
impl<'ctx> AllowlistedItemsTraversal<'ctx> {
/// Construct a new allowlisted items traversal.
pub(crate) fn new<R>(
ctx: &'ctx BindgenContext,
roots: R,
predicate: for<'a> fn(&'a BindgenContext, Edge) -> bool,
) -> Self
where
R: IntoIterator<Item = ItemId>,
{
AllowlistedItemsTraversal {
ctx,
traversal: ItemTraversal::new(ctx, roots, predicate),
}
}
}
impl BindgenContext {
/// Construct the context for the given `options`.
pub(crate) fn new(
options: BindgenOptions,
input_unsaved_files: &[clang::UnsavedFile],
) -> Self {
// TODO(emilio): Use the CXTargetInfo here when available.
//
// see: https://reviews.llvm.org/D32389
let index = clang::Index::new(false, true);
let parse_options =
clang_sys::CXTranslationUnit_DetailedPreprocessingRecord;
let translation_unit = {
let _t =
Timer::new("translation_unit").with_output(options.time_phases);
clang::TranslationUnit::parse(
&index,
"",
&options.clang_args,
input_unsaved_files,
parse_options,
).expect("libclang error; possible causes include:
- Invalid flag syntax
- Unrecognized flags
- Invalid flag arguments
- File I/O errors
- Host vs. target architecture mismatch
If you encounter an error missing from this list, please file an issue or a PR!")
};
let target_info = clang::TargetInfo::new(&translation_unit);
let root_module = Self::build_root_module(ItemId(0));
let root_module_id = root_module.id().as_module_id_unchecked();
// depfiles need to include the explicitly listed headers too
let deps = options.input_headers.iter().cloned().collect();
BindgenContext {
items: vec![Some(root_module)],
includes: Default::default(),
deps,
types: Default::default(),
type_params: Default::default(),
modules: Default::default(),
root_module: root_module_id,
current_module: root_module_id,
semantic_parents: Default::default(),
currently_parsed_types: vec![],
parsed_macros: Default::default(),
replacements: Default::default(),
collected_typerefs: false,
in_codegen: false,
translation_unit,
target_info,
options,
generated_bindgen_complex: Cell::new(false),
generated_bindgen_float16: Cell::new(false),
allowlisted: None,
blocklisted_types_implement_traits: Default::default(),
codegen_items: None,
used_template_parameters: None,
need_bitfield_allocation: Default::default(),
enum_typedef_combos: None,
cannot_derive_debug: None,
cannot_derive_default: None,
cannot_derive_copy: None,
cannot_derive_hash: None,
cannot_derive_partialeq_or_partialord: None,
sizedness: None,
have_vtable: None,
have_destructor: None,
has_type_param_in_array: None,
has_float: None,
}
}
/// Returns `true` if the target architecture is wasm32
pub(crate) fn is_target_wasm32(&self) -> bool {
self.target_info.triple.starts_with("wasm32-")
}
/// Creates a timer for the current bindgen phase. If time_phases is `true`,
/// the timer will print to stderr when it is dropped, otherwise it will do
/// nothing.
pub(crate) fn timer<'a>(&self, name: &'a str) -> Timer<'a> {
Timer::new(name).with_output(self.options.time_phases)
}
/// Returns the pointer width to use for the target for the current
/// translation.
pub(crate) fn target_pointer_size(&self) -> usize {
self.target_info.pointer_width / 8
}
/// Returns the ABI, which is mostly useful for determining the mangling kind.
pub(crate) fn abi_kind(&self) -> ABIKind {
self.target_info.abi
}
/// Get the stack of partially parsed types that we are in the middle of
/// parsing.
pub(crate) fn currently_parsed_types(&self) -> &[PartialType] {
&self.currently_parsed_types[..]
}
/// Begin parsing the given partial type, and push it onto the
/// `currently_parsed_types` stack so that we won't infinite recurse if we
/// run into a reference to it while parsing it.
pub(crate) fn begin_parsing(&mut self, partial_ty: PartialType) {
self.currently_parsed_types.push(partial_ty);
}
/// Finish parsing the current partial type, pop it off the
/// `currently_parsed_types` stack, and return it.
pub(crate) fn finish_parsing(&mut self) -> PartialType {
self.currently_parsed_types.pop().expect(
"should have been parsing a type, if we finished parsing a type",
)
}
/// Add the location of the `#include` directive for the `included_file`.
pub(crate) fn add_include(
&mut self,
source_file: String,
included_file: String,
offset: usize,
) {
self.includes
.entry(included_file)
.or_insert((source_file, offset));
}
/// Get the location of the first `#include` directive for the `included_file`.
pub(crate) fn included_file_location(
&self,
included_file: &str,
) -> Option<(String, usize)> {
self.includes.get(included_file).cloned()
}
/// Add an included file.
pub(crate) fn add_dep(&mut self, dep: Box<str>) {
self.deps.insert(dep);
}
/// Get any included files.
pub(crate) fn deps(&self) -> &BTreeSet<Box<str>> {
&self.deps
}
/// Define a new item.
///
/// This inserts it into the internal items set, and its type into the
/// internal types set.
pub(crate) fn add_item(
&mut self,
item: Item,
declaration: Option<Cursor>,
location: Option<Cursor>,
) {
debug!(
"BindgenContext::add_item({:?}, declaration: {:?}, loc: {:?}",
item, declaration, location
);
debug_assert!(
declaration.is_some() ||
!item.kind().is_type() ||
item.kind().expect_type().is_builtin_or_type_param() ||
item.kind().expect_type().is_opaque(self, &item) ||
item.kind().expect_type().is_unresolved_ref(),
"Adding a type without declaration?"
);
let id = item.id();
let is_type = item.kind().is_type();
let is_unnamed = is_type && item.expect_type().name().is_none();
let is_template_instantiation =
is_type && item.expect_type().is_template_instantiation();
if item.id() != self.root_module {
self.add_item_to_module(&item);
}
if is_type && item.expect_type().is_comp() {
self.need_bitfield_allocation.push(id);
}
let old_item = mem::replace(&mut self.items[id.0], Some(item));
assert!(
old_item.is_none(),
"should not have already associated an item with the given id"
);
// Unnamed items can have an USR, but they can't be referenced from
// other sites explicitly and the USR can match if the unnamed items are
// nested, so don't bother tracking them.
if !is_type || is_template_instantiation {
return;
}
if let Some(mut declaration) = declaration {
if !declaration.is_valid() {
if let Some(location) = location {
if location.is_template_like() {
declaration = location;
}
}
}
declaration = declaration.canonical();
if !declaration.is_valid() {
// This could happen, for example, with types like `int*` or
// similar.
//
// Fortunately, we don't care about those types being
// duplicated, so we can just ignore them.
debug!(
"Invalid declaration {:?} found for type {:?}",
declaration,
self.resolve_item_fallible(id)
.unwrap()
.kind()
.expect_type()
);
return;
}
let key = if is_unnamed {
TypeKey::Declaration(declaration)
} else if let Some(usr) = declaration.usr() {
TypeKey::Usr(usr)
} else {
warn!(
"Valid declaration with no USR: {:?}, {:?}",
declaration, location
);
TypeKey::Declaration(declaration)
};
let old = self.types.insert(key, id.as_type_id_unchecked());
debug_assert_eq!(old, None);
}
}
/// Ensure that every item (other than the root module) is in a module's
/// children list. This is to make sure that every allowlisted item get's
/// codegen'd, even if its parent is not allowlisted. See issue #769 for
/// details.
fn add_item_to_module(&mut self, item: &Item) {
assert!(item.id() != self.root_module);
assert!(self.resolve_item_fallible(item.id()).is_none());
if let Some(ref mut parent) = self.items[item.parent_id().0] {
if let Some(module) = parent.as_module_mut() {
debug!(
"add_item_to_module: adding {:?} as child of parent module {:?}",
item.id(),
item.parent_id()
);
module.children_mut().insert(item.id());
return;
}
}
debug!(
"add_item_to_module: adding {:?} as child of current module {:?}",
item.id(),
self.current_module
);
self.items[(self.current_module.0).0]
.as_mut()
.expect("Should always have an item for self.current_module")
.as_module_mut()
.expect("self.current_module should always be a module")
.children_mut()
.insert(item.id());
}
/// Add a new named template type parameter to this context's item set.
pub(crate) fn add_type_param(
&mut self,
item: Item,
definition: clang::Cursor,
) {
debug!(
"BindgenContext::add_type_param: item = {:?}; definition = {:?}",
item, definition
);
assert!(
item.expect_type().is_type_param(),
"Should directly be a named type, not a resolved reference or anything"
);
assert_eq!(
definition.kind(),
clang_sys::CXCursor_TemplateTypeParameter
);
self.add_item_to_module(&item);
let id = item.id();
let old_item = mem::replace(&mut self.items[id.0], Some(item));
assert!(
old_item.is_none(),
"should not have already associated an item with the given id"
);
let old_named_ty = self
.type_params
.insert(definition, id.as_type_id_unchecked());
assert!(
old_named_ty.is_none(),
"should not have already associated a named type with this id"
);
}
/// Get the named type defined at the given cursor location, if we've
/// already added one.
pub(crate) fn get_type_param(
&self,
definition: &clang::Cursor,
) -> Option<TypeId> {
assert_eq!(
definition.kind(),
clang_sys::CXCursor_TemplateTypeParameter
);
self.type_params.get(definition).cloned()
}
// TODO: Move all this syntax crap to other part of the code.
/// Mangles a name so it doesn't conflict with any keyword.
#[rustfmt::skip]
pub(crate) fn rust_mangle<'a>(&self, name: &'a str) -> Cow<'a, str> {
if name.contains('@') ||
name.contains('?') ||
name.contains('$') ||
matches!(
name,
"abstract" | "alignof" | "as" | "async" | "await" | "become" |
"box" | "break" | "const" | "continue" | "crate" | "do" |
"dyn" | "else" | "enum" | "extern" | "false" | "final" |
"fn" | "for" | "if" | "impl" | "in" | "let" | "loop" |
"macro" | "match" | "mod" | "move" | "mut" | "offsetof" |
"override" | "priv" | "proc" | "pub" | "pure" | "ref" |
"return" | "Self" | "self" | "sizeof" | "static" |
"struct" | "super" | "trait" | "true" | "try" | "type" | "typeof" |
"unsafe" | "unsized" | "use" | "virtual" | "where" |
"while" | "yield" | "str" | "bool" | "f32" | "f64" |
"usize" | "isize" | "u128" | "i128" | "u64" | "i64" |
"u32" | "i32" | "u16" | "i16" | "u8" | "i8" | "_"
)
{
let mut s = name.to_owned();
s = s.replace('@', "_");
s = s.replace('?', "_");
s = s.replace('$', "_");
s.push('_');
return Cow::Owned(s);
}
Cow::Borrowed(name)
}
/// Returns a mangled name as a rust identifier.
pub(crate) fn rust_ident<S>(&self, name: S) -> Ident
where
S: AsRef<str>,
{
self.rust_ident_raw(self.rust_mangle(name.as_ref()))
}
/// Returns a mangled name as a rust identifier.
pub(crate) fn rust_ident_raw<T>(&self, name: T) -> Ident
where
T: AsRef<str>,
{
Ident::new(name.as_ref(), Span::call_site())
}
/// Iterate over all items that have been defined.
pub(crate) fn items(&self) -> impl Iterator<Item = (ItemId, &Item)> {
self.items.iter().enumerate().filter_map(|(index, item)| {
let item = item.as_ref()?;
Some((ItemId(index), item))
})
}
/// Have we collected all unresolved type references yet?
pub(crate) fn collected_typerefs(&self) -> bool {
self.collected_typerefs
}
/// Gather all the unresolved type references.
fn collect_typerefs(
&mut self,
) -> Vec<(ItemId, clang::Type, clang::Cursor, Option<ItemId>)> {
debug_assert!(!self.collected_typerefs);
self.collected_typerefs = true;
let mut typerefs = vec![];
for (id, item) in self.items() {
let kind = item.kind();
let ty = match kind.as_type() {
Some(ty) => ty,
None => continue,
};
if let TypeKind::UnresolvedTypeRef(ref ty, loc, parent_id) =
*ty.kind()
{
typerefs.push((id, *ty, loc, parent_id));
};
}
typerefs
}
/// Collect all of our unresolved type references and resolve them.
fn resolve_typerefs(&mut self) {
let _t = self.timer("resolve_typerefs");
let typerefs = self.collect_typerefs();
for (id, ty, loc, parent_id) in typerefs {
let _resolved =
{
let resolved = Item::from_ty(&ty, loc, parent_id, self)
.unwrap_or_else(|_| {
warn!("Could not resolve type reference, falling back \
to opaque blob");
Item::new_opaque_type(self.next_item_id(), &ty, self)
});
let item = self.items[id.0].as_mut().unwrap();
*item.kind_mut().as_type_mut().unwrap().kind_mut() =
TypeKind::ResolvedTypeRef(resolved);
resolved
};
// Something in the STL is trolling me. I don't need this assertion
// right now, but worth investigating properly once this lands.
//
// debug_assert!(self.items.get(&resolved).is_some(), "How?");
//
// if let Some(parent_id) = parent_id {
// assert_eq!(self.items[&resolved].parent_id(), parent_id);
// }
}
}
/// Temporarily loan `Item` with the given `ItemId`. This provides means to
/// mutably borrow `Item` while having a reference to `BindgenContext`.
///
/// `Item` with the given `ItemId` is removed from the context, given
/// closure is executed and then `Item` is placed back.
///
/// # Panics
///
/// Panics if attempt to resolve given `ItemId` inside the given
/// closure is made.
fn with_loaned_item<F, T>(&mut self, id: ItemId, f: F) -> T
where
F: (FnOnce(&BindgenContext, &mut Item) -> T),
{
let mut item = self.items[id.0].take().unwrap();
let result = f(self, &mut item);
let existing = mem::replace(&mut self.items[id.0], Some(item));
assert!(existing.is_none());
result
}
/// Compute the bitfield allocation units for all `TypeKind::Comp` items we
/// parsed.
fn compute_bitfield_units(&mut self) {
let _t = self.timer("compute_bitfield_units");
assert!(self.collected_typerefs());
let need_bitfield_allocation =
mem::take(&mut self.need_bitfield_allocation);
for id in need_bitfield_allocation {
self.with_loaned_item(id, |ctx, item| {
let ty = item.kind_mut().as_type_mut().unwrap();
let layout = ty.layout(ctx);
ty.as_comp_mut()
.unwrap()
.compute_bitfield_units(ctx, layout.as_ref());
});
}
}
/// Assign a new generated name for each anonymous field.
fn deanonymize_fields(&mut self) {
let _t = self.timer("deanonymize_fields");
let comp_item_ids: Vec<ItemId> = self
.items()
.filter_map(|(id, item)| {
if item.kind().as_type()?.is_comp() {
return Some(id);
}
None
})
.collect();
for id in comp_item_ids {
self.with_loaned_item(id, |ctx, item| {
item.kind_mut()
.as_type_mut()
.unwrap()
.as_comp_mut()
.unwrap()
.deanonymize_fields(ctx);
});
}
}
/// Iterate over all items and replace any item that has been named in a
/// `replaces="SomeType"` annotation with the replacement type.
fn process_replacements(&mut self) {
let _t = self.timer("process_replacements");
if self.replacements.is_empty() {
debug!("No replacements to process");
return;
}
// FIXME: This is linear, but the replaces="xxx" annotation was already
// there, and for better or worse it's useful, sigh...
//
// We leverage the ResolvedTypeRef thing, though, which is cool :P.
let mut replacements = vec![];
for (id, item) in self.items() {
if item.annotations().use_instead_of().is_some() {
continue;
}
// Calls to `canonical_name` are expensive, so eagerly filter out
// items that cannot be replaced.
let ty = match item.kind().as_type() {
Some(ty) => ty,
None => continue,
};
match *ty.kind() {
TypeKind::Comp(..) |
TypeKind::TemplateAlias(..) |
TypeKind::Enum(..) |
TypeKind::Alias(..) => {}
_ => continue,
}
let path = item.path_for_allowlisting(self);
let replacement = self.replacements.get(&path[1..]);
if let Some(replacement) = replacement {
if *replacement != id {
// We set this just after parsing the annotation. It's
// very unlikely, but this can happen.
if self.resolve_item_fallible(*replacement).is_some() {
replacements.push((
id.expect_type_id(self),
replacement.expect_type_id(self),
));
}
}
}
}
for (id, replacement_id) in replacements {
debug!("Replacing {:?} with {:?}", id, replacement_id);
let new_parent = {
let item_id: ItemId = id.into();
let item = self.items[item_id.0].as_mut().unwrap();
*item.kind_mut().as_type_mut().unwrap().kind_mut() =
TypeKind::ResolvedTypeRef(replacement_id);
item.parent_id()
};
// Relocate the replacement item from where it was declared, to
// where the thing it is replacing was declared.
//
// First, we'll make sure that its parent ID is correct.
let old_parent = self.resolve_item(replacement_id).parent_id();
if new_parent == old_parent {
// Same parent and therefore also same containing
// module. Nothing to do here.
continue;
}
let replacement_item_id: ItemId = replacement_id.into();
self.items[replacement_item_id.0]
.as_mut()
.unwrap()
.set_parent_for_replacement(new_parent);
// Second, make sure that it is in the correct module's children
// set.
let old_module = {
let immut_self = &*self;
old_parent
.ancestors(immut_self)
.chain(Some(immut_self.root_module.into()))
.find(|id| {
let item = immut_self.resolve_item(*id);
item.as_module().map_or(false, |m| {
m.children().contains(&replacement_id.into())
})
})
};
let old_module = old_module
.expect("Every replacement item should be in a module");
let new_module = {
let immut_self = &*self;
new_parent
.ancestors(immut_self)
.find(|id| immut_self.resolve_item(*id).is_module())
};
let new_module =
new_module.unwrap_or_else(|| self.root_module.into());
if new_module == old_module {
// Already in the correct module.
continue;
}
self.items[old_module.0]
.as_mut()
.unwrap()
.as_module_mut()
.unwrap()
.children_mut()
.remove(&replacement_id.into());
self.items[new_module.0]
.as_mut()
.unwrap()
.as_module_mut()
.unwrap()
.children_mut()
.insert(replacement_id.into());
}
}
/// Enter the code generation phase, invoke the given callback `cb`, and
/// leave the code generation phase.
pub(crate) fn gen<F, Out>(
mut self,
cb: F,
) -> Result<(Out, BindgenOptions), CodegenError>
where
F: FnOnce(&Self) -> Result<Out, CodegenError>,
{
self.in_codegen = true;
self.resolve_typerefs();
self.compute_bitfield_units();
self.process_replacements();
self.deanonymize_fields();
self.assert_no_dangling_references();
// Compute the allowlisted set after processing replacements and
// resolving type refs, as those are the final mutations of the IR
// graph, and their completion means that the IR graph is now frozen.
self.compute_allowlisted_and_codegen_items();
// Make sure to do this after processing replacements, since that messes
// with the parentage and module children, and we want to assert that it
// messes with them correctly.
self.assert_every_item_in_a_module();
self.compute_has_vtable();
self.compute_sizedness();
self.compute_has_destructor();
self.find_used_template_parameters();
self.compute_enum_typedef_combos();
self.compute_cannot_derive_debug();
self.compute_cannot_derive_default();
self.compute_cannot_derive_copy();
self.compute_has_type_param_in_array();
self.compute_has_float();
self.compute_cannot_derive_hash();
self.compute_cannot_derive_partialord_partialeq_or_eq();
let ret = cb(&self)?;
Ok((ret, self.options))
}
/// When the `__testing_only_extra_assertions` feature is enabled, this
/// function walks the IR graph and asserts that we do not have any edges
/// referencing an ItemId for which we do not have an associated IR item.
fn assert_no_dangling_references(&self) {
if cfg!(feature = "__testing_only_extra_assertions") {
for _ in self.assert_no_dangling_item_traversal() {
// The iterator's next method does the asserting for us.
}
}
}
fn assert_no_dangling_item_traversal(
&self,
) -> traversal::AssertNoDanglingItemsTraversal {
assert!(self.in_codegen_phase());
assert!(self.current_module == self.root_module);
let roots = self.items().map(|(id, _)| id);
traversal::AssertNoDanglingItemsTraversal::new(
self,
roots,
traversal::all_edges,
)
}
/// When the `__testing_only_extra_assertions` feature is enabled, walk over
/// every item and ensure that it is in the children set of one of its
/// module ancestors.
fn assert_every_item_in_a_module(&self) {
if cfg!(feature = "__testing_only_extra_assertions") {
assert!(self.in_codegen_phase());
assert!(self.current_module == self.root_module);
for (id, _item) in self.items() {
if id == self.root_module {
continue;
}
assert!(
{
let id = id
.into_resolver()
.through_type_refs()
.through_type_aliases()
.resolve(self)
.id();
id.ancestors(self)
.chain(Some(self.root_module.into()))
.any(|ancestor| {
debug!(
"Checking if {:?} is a child of {:?}",
id, ancestor
);
self.resolve_item(ancestor)
.as_module()
.map_or(false, |m| {
m.children().contains(&id)
})
})
},
"{:?} should be in some ancestor module's children set",
id
);
}
}
}
/// Compute for every type whether it is sized or not, and whether it is
/// sized or not as a base class.
fn compute_sizedness(&mut self) {
let _t = self.timer("compute_sizedness");
assert!(self.sizedness.is_none());
self.sizedness = Some(analyze::<SizednessAnalysis>(self));
}
/// Look up whether the type with the given ID is sized or not.
pub(crate) fn lookup_sizedness(&self, id: TypeId) -> SizednessResult {
assert!(
self.in_codegen_phase(),
"We only compute sizedness after we've entered codegen"
);
self.sizedness
.as_ref()
.unwrap()
.get(&id)
.cloned()
.unwrap_or(SizednessResult::ZeroSized)
}
/// Compute whether the type has vtable.
fn compute_has_vtable(&mut self) {
let _t = self.timer("compute_has_vtable");
assert!(self.have_vtable.is_none());
self.have_vtable = Some(analyze::<HasVtableAnalysis>(self));
}
/// Look up whether the item with `id` has vtable or not.
pub(crate) fn lookup_has_vtable(&self, id: TypeId) -> HasVtableResult {
assert!(
self.in_codegen_phase(),
"We only compute vtables when we enter codegen"
);
// Look up the computed value for whether the item with `id` has a
// vtable or not.
self.have_vtable
.as_ref()
.unwrap()
.get(&id.into())
.cloned()
.unwrap_or(HasVtableResult::No)
}
/// Compute whether the type has a destructor.
fn compute_has_destructor(&mut self) {
let _t = self.timer("compute_has_destructor");
assert!(self.have_destructor.is_none());
self.have_destructor = Some(analyze::<HasDestructorAnalysis>(self));
}
/// Look up whether the item with `id` has a destructor.
pub(crate) fn lookup_has_destructor(&self, id: TypeId) -> bool {
assert!(
self.in_codegen_phase(),
"We only compute destructors when we enter codegen"
);
self.have_destructor.as_ref().unwrap().contains(&id.into())
}
fn find_used_template_parameters(&mut self) {
let _t = self.timer("find_used_template_parameters");
if self.options.allowlist_recursively {
let used_params = analyze::<UsedTemplateParameters>(self);
self.used_template_parameters = Some(used_params);
} else {
// If you aren't recursively allowlisting, then we can't really make
// any sense of template parameter usage, and you're on your own.
let mut used_params = HashMap::default();
for &id in self.allowlisted_items() {
used_params.entry(id).or_insert_with(|| {
id.self_template_params(self)
.into_iter()
.map(|p| p.into())
.collect()
});
}
self.used_template_parameters = Some(used_params);
}
}
/// Return `true` if `item` uses the given `template_param`, `false`
/// otherwise.
///
/// This method may only be called during the codegen phase, because the
/// template usage information is only computed as we enter the codegen
/// phase.
///
/// If the item is blocklisted, then we say that it always uses the template
/// parameter. This is a little subtle. The template parameter usage
/// analysis only considers allowlisted items, and if any blocklisted item
/// shows up in the generated bindings, it is the user's responsibility to
/// manually provide a definition for them. To give them the most
/// flexibility when doing that, we assume that they use every template
/// parameter and always pass template arguments through in instantiations.
pub(crate) fn uses_template_parameter(
&self,
item: ItemId,
template_param: TypeId,
) -> bool {
assert!(
self.in_codegen_phase(),
"We only compute template parameter usage as we enter codegen"
);
if self.resolve_item(item).is_blocklisted(self) {
return true;
}
let template_param = template_param
.into_resolver()
.through_type_refs()
.through_type_aliases()
.resolve(self)
.id();
self.used_template_parameters
.as_ref()
.expect("should have found template parameter usage if we're in codegen")
.get(&item)
.map_or(false, |items_used_params| items_used_params.contains(&template_param))
}
/// Return `true` if `item` uses any unbound, generic template parameters,
/// `false` otherwise.
///
/// Has the same restrictions that `uses_template_parameter` has.
pub(crate) fn uses_any_template_parameters(&self, item: ItemId) -> bool {
assert!(
self.in_codegen_phase(),
"We only compute template parameter usage as we enter codegen"
);
self.used_template_parameters
.as_ref()
.expect(
"should have template parameter usage info in codegen phase",
)
.get(&item)
.map_or(false, |used| !used.is_empty())
}
// This deserves a comment. Builtin types don't get a valid declaration, so
// we can't add it to the cursor->type map.
//
// That being said, they're not generated anyway, and are few, so the
// duplication and special-casing is fine.
//
// If at some point we care about the memory here, probably a map TypeKind
// -> builtin type ItemId would be the best to improve that.
fn add_builtin_item(&mut self, item: Item) {
debug!("add_builtin_item: item = {:?}", item);
debug_assert!(item.kind().is_type());
self.add_item_to_module(&item);
let id = item.id();
let old_item = mem::replace(&mut self.items[id.0], Some(item));
assert!(old_item.is_none(), "Inserted type twice?");
}
fn build_root_module(id: ItemId) -> Item {
let module = Module::new(Some("root".into()), ModuleKind::Normal);
Item::new(id, None, None, id, ItemKind::Module(module), None)
}
/// Get the root module.
pub(crate) fn root_module(&self) -> ModuleId {
self.root_module
}
/// Resolve a type with the given ID.
///
/// Panics if there is no item for the given `TypeId` or if the resolved
/// item is not a `Type`.
pub(crate) fn resolve_type(&self, type_id: TypeId) -> &Type {
self.resolve_item(type_id).kind().expect_type()
}
/// Resolve a function with the given ID.
///
/// Panics if there is no item for the given `FunctionId` or if the resolved
/// item is not a `Function`.
pub(crate) fn resolve_func(&self, func_id: FunctionId) -> &Function {
self.resolve_item(func_id).kind().expect_function()
}
/// Resolve the given `ItemId` as a type, or `None` if there is no item with
/// the given ID.
///
/// Panics if the ID resolves to an item that is not a type.
pub(crate) fn safe_resolve_type(&self, type_id: TypeId) -> Option<&Type> {
self.resolve_item_fallible(type_id)
.map(|t| t.kind().expect_type())
}
/// Resolve the given `ItemId` into an `Item`, or `None` if no such item
/// exists.
pub(crate) fn resolve_item_fallible<Id: Into<ItemId>>(
&self,
id: Id,
) -> Option<&Item> {
self.items.get(id.into().0)?.as_ref()
}
/// Resolve the given `ItemId` into an `Item`.
///
/// Panics if the given ID does not resolve to any item.
pub(crate) fn resolve_item<Id: Into<ItemId>>(&self, item_id: Id) -> &Item {
let item_id = item_id.into();
match self.resolve_item_fallible(item_id) {
Some(item) => item,
None => panic!("Not an item: {:?}", item_id),
}
}
/// Get the current module.
pub(crate) fn current_module(&self) -> ModuleId {
self.current_module
}
/// Add a semantic parent for a given type definition.
///
/// We do this from the type declaration, in order to be able to find the
/// correct type definition afterwards.
///
/// TODO(emilio): We could consider doing this only when
/// declaration.lexical_parent() != definition.lexical_parent(), but it's
/// not sure it's worth it.
pub(crate) fn add_semantic_parent(
&mut self,
definition: clang::Cursor,
parent_id: ItemId,
) {
self.semantic_parents.insert(definition, parent_id);
}
/// Returns a known semantic parent for a given definition.
pub(crate) fn known_semantic_parent(
&self,
definition: clang::Cursor,
) -> Option<ItemId> {
self.semantic_parents.get(&definition).cloned()
}
/// Given a cursor pointing to the location of a template instantiation,
/// return a tuple of the form `(declaration_cursor, declaration_id,
/// num_expected_template_args)`.
///
/// Note that `declaration_id` is not guaranteed to be in the context's item
/// set! It is possible that it is a partial type that we are still in the
/// middle of parsing.
fn get_declaration_info_for_template_instantiation(
&self,
instantiation: &Cursor,
) -> Option<(Cursor, ItemId, usize)> {
instantiation
.cur_type()
.canonical_declaration(Some(instantiation))
.and_then(|canon_decl| {
self.get_resolved_type(&canon_decl).and_then(
|template_decl_id| {
let num_params =
template_decl_id.num_self_template_params(self);
if num_params == 0 {
None
} else {
Some((
*canon_decl.cursor(),
template_decl_id.into(),
num_params,
))
}
},
)
})
.or_else(|| {
// If we haven't already parsed the declaration of
// the template being instantiated, then it *must*
// be on the stack of types we are currently
// parsing. If it wasn't then clang would have
// already errored out before we started
// constructing our IR because you can't instantiate
// a template until it is fully defined.
instantiation
.referenced()
.and_then(|referenced| {
self.currently_parsed_types()
.iter()
.find(|partial_ty| *partial_ty.decl() == referenced)
.cloned()
})
.and_then(|template_decl| {
let num_template_params =
template_decl.num_self_template_params(self);
if num_template_params == 0 {
None
} else {
Some((
*template_decl.decl(),
template_decl.id(),
num_template_params,
))
}
})
})
}
/// Parse a template instantiation, eg `Foo<int>`.
///
/// This is surprisingly difficult to do with libclang, due to the fact that
/// it doesn't provide explicit template argument information, except for
/// function template declarations(!?!??!).
///
/// The only way to do this is manually inspecting the AST and looking for
/// TypeRefs and TemplateRefs inside. This, unfortunately, doesn't work for
/// more complex cases, see the comment on the assertion below.
///
/// To add insult to injury, the AST itself has structure that doesn't make
/// sense. Sometimes `Foo<Bar<int>>` has an AST with nesting like you might
/// expect: `(Foo (Bar (int)))`. Other times, the AST we get is completely
/// flat: `(Foo Bar int)`.
///
/// To see an example of what this method handles:
///
/// ```c++
/// template<typename T>
/// class Incomplete {
/// T p;
/// };
///
/// template<typename U>
/// class Foo {
/// Incomplete<U> bar;
/// };
/// ```
///
/// Finally, template instantiations are always children of the current
/// module. They use their template's definition for their name, so the
/// parent is only useful for ensuring that their layout tests get
/// codegen'd.
fn instantiate_template(
&mut self,
with_id: ItemId,
template: TypeId,
ty: &clang::Type,
location: clang::Cursor,
) -> Option<TypeId> {
let num_expected_args =
self.resolve_type(template).num_self_template_params(self);
if num_expected_args == 0 {
warn!(
"Tried to instantiate a template for which we could not \
determine any template parameters"
);
return None;
}
let mut args = vec![];
let mut found_const_arg = false;
let mut children = location.collect_children();
if children.iter().all(|c| !c.has_children()) {
// This is insanity... If clang isn't giving us a properly nested
// AST for which template arguments belong to which template we are
// instantiating, we'll need to construct it ourselves. However,
// there is an extra `NamespaceRef, NamespaceRef, ..., TemplateRef`
// representing a reference to the outermost template declaration
// that we need to filter out of the children. We need to do this
// filtering because we already know which template declaration is
// being specialized via the `location`'s type, and if we do not
// filter it out, we'll add an extra layer of template instantiation
// on accident.
let idx = children
.iter()
.position(|c| c.kind() == clang_sys::CXCursor_TemplateRef);
if let Some(idx) = idx {
if children
.iter()
.take(idx)
.all(|c| c.kind() == clang_sys::CXCursor_NamespaceRef)
{
children = children.into_iter().skip(idx + 1).collect();
}
}
}
for child in children.iter().rev() {
match child.kind() {
clang_sys::CXCursor_TypeRef |
clang_sys::CXCursor_TypedefDecl |
clang_sys::CXCursor_TypeAliasDecl => {
// The `with_id` ID will potentially end up unused if we give up
// on this type (for example, because it has const value
// template args), so if we pass `with_id` as the parent, it is
// potentially a dangling reference. Instead, use the canonical
// template declaration as the parent. It is already parsed and
// has a known-resolvable `ItemId`.
let ty = Item::from_ty_or_ref(
child.cur_type(),
*child,
Some(template.into()),
self,
);
args.push(ty);
}
clang_sys::CXCursor_TemplateRef => {
let (
template_decl_cursor,
template_decl_id,
num_expected_template_args,
) = self.get_declaration_info_for_template_instantiation(
child,
)?;
if num_expected_template_args == 0 ||
child.has_at_least_num_children(
num_expected_template_args,
)
{
// Do a happy little parse. See comment in the TypeRef
// match arm about parent IDs.
let ty = Item::from_ty_or_ref(
child.cur_type(),
*child,
Some(template.into()),
self,
);
args.push(ty);
} else {
// This is the case mentioned in the doc comment where
// clang gives us a flattened AST and we have to
// reconstruct which template arguments go to which
// instantiation :(
let args_len = args.len();
if args_len < num_expected_template_args {
warn!(
"Found a template instantiation without \
enough template arguments"
);
return None;
}
let mut sub_args: Vec<_> = args
.drain(args_len - num_expected_template_args..)
.collect();
sub_args.reverse();
let sub_name = Some(template_decl_cursor.spelling());
let sub_inst = TemplateInstantiation::new(
// This isn't guaranteed to be a type that we've
// already finished parsing yet.
template_decl_id.as_type_id_unchecked(),
sub_args,
);
let sub_kind =
TypeKind::TemplateInstantiation(sub_inst);
let sub_ty = Type::new(
sub_name,
template_decl_cursor
.cur_type()
.fallible_layout(self)
.ok(),
sub_kind,
false,
);
let sub_id = self.next_item_id();
let sub_item = Item::new(
sub_id,
None,
None,
self.current_module.into(),
ItemKind::Type(sub_ty),
Some(child.location()),
);
// Bypass all the validations in add_item explicitly.
debug!(
"instantiate_template: inserting nested \
instantiation item: {:?}",
sub_item
);
self.add_item_to_module(&sub_item);
debug_assert_eq!(sub_id, sub_item.id());
self.items[sub_id.0] = Some(sub_item);
args.push(sub_id.as_type_id_unchecked());
}
}
_ => {
warn!(
"Found template arg cursor we can't handle: {:?}",
child
);
found_const_arg = true;
}
}
}
if found_const_arg {
// This is a dependently typed template instantiation. That is, an
// instantiation of a template with one or more const values as
// template arguments, rather than only types as template
// arguments. For example, `Foo<true, 5>` versus `Bar<bool, int>`.
// We can't handle these instantiations, so just punt in this
// situation...
warn!(
"Found template instantiated with a const value; \
bindgen can't handle this kind of template instantiation!"
);
return None;
}
if args.len() != num_expected_args {
warn!(
"Found a template with an unexpected number of template \
arguments"
);
return None;
}
args.reverse();
let type_kind = TypeKind::TemplateInstantiation(
TemplateInstantiation::new(template, args),
);
let name = ty.spelling();
let name = if name.is_empty() { None } else { Some(name) };
let ty = Type::new(
name,
ty.fallible_layout(self).ok(),
type_kind,
ty.is_const(),
);
let item = Item::new(
with_id,
None,
None,
self.current_module.into(),
ItemKind::Type(ty),
Some(location.location()),
);
// Bypass all the validations in add_item explicitly.
debug!("instantiate_template: inserting item: {:?}", item);
self.add_item_to_module(&item);
debug_assert_eq!(with_id, item.id());
self.items[with_id.0] = Some(item);
Some(with_id.as_type_id_unchecked())
}
/// If we have already resolved the type for the given type declaration,
/// return its `ItemId`. Otherwise, return `None`.
pub(crate) fn get_resolved_type(
&self,
decl: &clang::CanonicalTypeDeclaration,
) -> Option<TypeId> {
self.types
.get(&TypeKey::Declaration(*decl.cursor()))
.or_else(|| {
decl.cursor()
.usr()
.and_then(|usr| self.types.get(&TypeKey::Usr(usr)))
})
.cloned()
}
/// Looks up for an already resolved type, either because it's builtin, or
/// because we already have it in the map.
pub(crate) fn builtin_or_resolved_ty(
&mut self,
with_id: ItemId,
parent_id: Option<ItemId>,
ty: &clang::Type,
location: Option<clang::Cursor>,
) -> Option<TypeId> {
use clang_sys::{CXCursor_TypeAliasTemplateDecl, CXCursor_TypeRef};
debug!(
"builtin_or_resolved_ty: {:?}, {:?}, {:?}, {:?}",
ty, location, with_id, parent_id
);
if let Some(decl) = ty.canonical_declaration(location.as_ref()) {
if let Some(id) = self.get_resolved_type(&decl) {
debug!(
"Already resolved ty {:?}, {:?}, {:?} {:?}",
id, decl, ty, location
);
// If the declaration already exists, then either:
//
// * the declaration is a template declaration of some sort,
// and we are looking at an instantiation or specialization
// of it, or
// * we have already parsed and resolved this type, and
// there's nothing left to do.
if let Some(location) = location {
if decl.cursor().is_template_like() &&
*ty != decl.cursor().cur_type()
{
// For specialized type aliases, there's no way to get the
// template parameters as of this writing (for a struct
// specialization we wouldn't be in this branch anyway).
//
// Explicitly return `None` if there aren't any
// unspecialized parameters (contains any `TypeRef`) so we
// resolve the canonical type if there is one and it's
// exposed.
//
// This is _tricky_, I know :(
if decl.cursor().kind() ==
CXCursor_TypeAliasTemplateDecl &&
!location.contains_cursor(CXCursor_TypeRef) &&
ty.canonical_type().is_valid_and_exposed()
{
return None;
}
return self
.instantiate_template(with_id, id, ty, location)
.or(Some(id));
}
}
return Some(self.build_ty_wrapper(with_id, id, parent_id, ty));
}
}
debug!("Not resolved, maybe builtin?");
self.build_builtin_ty(ty)
}
/// Make a new item that is a resolved type reference to the `wrapped_id`.
///
/// This is unfortunately a lot of bloat, but is needed to properly track
/// constness et al.
///
/// We should probably make the constness tracking separate, so it doesn't
/// bloat that much, but hey, we already bloat the heck out of builtin
/// types.
pub(crate) fn build_ty_wrapper(
&mut self,
with_id: ItemId,
wrapped_id: TypeId,
parent_id: Option<ItemId>,
ty: &clang::Type,
) -> TypeId {
self.build_wrapper(with_id, wrapped_id, parent_id, ty, ty.is_const())
}
/// A wrapper over a type that adds a const qualifier explicitly.
///
/// Needed to handle const methods in C++, wrapping the type .
pub(crate) fn build_const_wrapper(
&mut self,
with_id: ItemId,
wrapped_id: TypeId,
parent_id: Option<ItemId>,
ty: &clang::Type,
) -> TypeId {
self.build_wrapper(
with_id, wrapped_id, parent_id, ty, /* is_const = */ true,
)
}
fn build_wrapper(
&mut self,
with_id: ItemId,
wrapped_id: TypeId,
parent_id: Option<ItemId>,
ty: &clang::Type,
is_const: bool,
) -> TypeId {
let spelling = ty.spelling();
let layout = ty.fallible_layout(self).ok();
let location = ty.declaration().location();
let type_kind = TypeKind::ResolvedTypeRef(wrapped_id);
let ty = Type::new(Some(spelling), layout, type_kind, is_const);
let item = Item::new(
with_id,
None,
None,
parent_id.unwrap_or_else(|| self.current_module.into()),
ItemKind::Type(ty),
Some(location),
);
self.add_builtin_item(item);
with_id.as_type_id_unchecked()
}
/// Returns the next item ID to be used for an item.
pub(crate) fn next_item_id(&mut self) -> ItemId {
let ret = ItemId(self.items.len());
self.items.push(None);
ret
}
fn build_builtin_ty(&mut self, ty: &clang::Type) -> Option<TypeId> {
use clang_sys::*;
let type_kind = match ty.kind() {
CXType_NullPtr => TypeKind::NullPtr,
CXType_Void => TypeKind::Void,
CXType_Bool => TypeKind::Int(IntKind::Bool),
CXType_Int => TypeKind::Int(IntKind::Int),
CXType_UInt => TypeKind::Int(IntKind::UInt),
CXType_Char_S => TypeKind::Int(IntKind::Char { is_signed: true }),
CXType_Char_U => TypeKind::Int(IntKind::Char { is_signed: false }),
CXType_SChar => TypeKind::Int(IntKind::SChar),
CXType_UChar => TypeKind::Int(IntKind::UChar),
CXType_Short => TypeKind::Int(IntKind::Short),
CXType_UShort => TypeKind::Int(IntKind::UShort),
CXType_WChar => TypeKind::Int(IntKind::WChar),
CXType_Char16 => TypeKind::Int(IntKind::U16),
CXType_Char32 => TypeKind::Int(IntKind::U32),
CXType_Long => TypeKind::Int(IntKind::Long),
CXType_ULong => TypeKind::Int(IntKind::ULong),
CXType_LongLong => TypeKind::Int(IntKind::LongLong),
CXType_ULongLong => TypeKind::Int(IntKind::ULongLong),
CXType_Int128 => TypeKind::Int(IntKind::I128),
CXType_UInt128 => TypeKind::Int(IntKind::U128),
CXType_Float16 | CXType_Half => TypeKind::Float(FloatKind::Float16),
CXType_Float => TypeKind::Float(FloatKind::Float),
CXType_Double => TypeKind::Float(FloatKind::Double),
CXType_LongDouble => TypeKind::Float(FloatKind::LongDouble),
CXType_Float128 => TypeKind::Float(FloatKind::Float128),
CXType_Complex => {
let float_type =
ty.elem_type().expect("Not able to resolve complex type?");
let float_kind = match float_type.kind() {
CXType_Float16 | CXType_Half => FloatKind::Float16,
CXType_Float => FloatKind::Float,
CXType_Double => FloatKind::Double,
CXType_LongDouble => FloatKind::LongDouble,
CXType_Float128 => FloatKind::Float128,
_ => panic!(
"Non floating-type complex? {:?}, {:?}",
ty, float_type,
),
};
TypeKind::Complex(float_kind)
}
_ => return None,
};
let spelling = ty.spelling();
let is_const = ty.is_const();
let layout = ty.fallible_layout(self).ok();
let location = ty.declaration().location();
let ty = Type::new(Some(spelling), layout, type_kind, is_const);
let id = self.next_item_id();
let item = Item::new(
id,
None,
None,
self.root_module.into(),
ItemKind::Type(ty),
Some(location),
);
self.add_builtin_item(item);
Some(id.as_type_id_unchecked())
}
/// Get the current Clang translation unit that is being processed.
pub(crate) fn translation_unit(&self) -> &clang::TranslationUnit {
&self.translation_unit
}
/// Have we parsed the macro named `macro_name` already?
pub(crate) fn parsed_macro(&self, macro_name: &[u8]) -> bool {
self.parsed_macros.contains_key(macro_name)
}
/// Get the currently parsed macros.
pub(crate) fn parsed_macros(
&self,
) -> &StdHashMap<Vec<u8>, cexpr::expr::EvalResult> {
debug_assert!(!self.in_codegen_phase());
&self.parsed_macros
}
/// Mark the macro named `macro_name` as parsed.
pub(crate) fn note_parsed_macro(
&mut self,
id: Vec<u8>,
value: cexpr::expr::EvalResult,
) {
self.parsed_macros.insert(id, value);
}
/// Are we in the codegen phase?
pub(crate) fn in_codegen_phase(&self) -> bool {
self.in_codegen
}
/// Mark the type with the given `name` as replaced by the type with ID
/// `potential_ty`.
///
/// Replacement types are declared using the `replaces="xxx"` annotation,
/// and implies that the original type is hidden.
pub(crate) fn replace(&mut self, name: &[String], potential_ty: ItemId) {
match self.replacements.entry(name.into()) {
Entry::Vacant(entry) => {
debug!(
"Defining replacement for {:?} as {:?}",
name, potential_ty
);
entry.insert(potential_ty);
}
Entry::Occupied(occupied) => {
warn!(
"Replacement for {:?} already defined as {:?}; \
ignoring duplicate replacement definition as {:?}",
name,
occupied.get(),
potential_ty
);
}
}
}
/// Has the item with the given `name` and `id` been replaced by another
/// type?
pub(crate) fn is_replaced_type<Id: Into<ItemId>>(
&self,
path: &[String],
id: Id,
) -> bool {
let id = id.into();
matches!(self.replacements.get(path), Some(replaced_by) if *replaced_by != id)
}
/// Is the type with the given `name` marked as opaque?
pub(crate) fn opaque_by_name(&self, path: &[String]) -> bool {
debug_assert!(
self.in_codegen_phase(),
"You're not supposed to call this yet"
);
self.options.opaque_types.matches(path[1..].join("::"))
}
/// Get the options used to configure this bindgen context.
pub(crate) fn options(&self) -> &BindgenOptions {
&self.options
}
/// Tokenizes a namespace cursor in order to get the name and kind of the
/// namespace.
fn tokenize_namespace(
&self,
cursor: &clang::Cursor,
) -> (Option<String>, ModuleKind) {
assert_eq!(
cursor.kind(),
::clang_sys::CXCursor_Namespace,
"Be a nice person"
);
let mut module_name = None;
let spelling = cursor.spelling();
if !spelling.is_empty() {
module_name = Some(spelling)
}
let mut kind = ModuleKind::Normal;
let mut looking_for_name = false;
for token in cursor.tokens().iter() {
match token.spelling() {
b"inline" => {
debug_assert!(
kind != ModuleKind::Inline,
"Multiple inline keywords?"
);
kind = ModuleKind::Inline;
// When hitting a nested inline namespace we get a spelling
// that looks like ["inline", "foo"]. Deal with it properly.
looking_for_name = true;
}
// The double colon allows us to handle nested namespaces like
// namespace foo::bar { }
//
// libclang still gives us two namespace cursors, which is cool,
// but the tokenization of the second begins with the double
// colon. That's ok, so we only need to handle the weird
// tokenization here.
b"namespace" | b"::" => {
looking_for_name = true;
}
b"{" => {
// This should be an anonymous namespace.
assert!(looking_for_name);
break;
}
name => {
if looking_for_name {
if module_name.is_none() {
module_name = Some(
String::from_utf8_lossy(name).into_owned(),
);
}
break;
} else {
// This is _likely_, but not certainly, a macro that's
// been placed just before the namespace keyword.
// Unfortunately, clang tokens don't let us easily see
// through the ifdef tokens, so we don't know what this
// token should really be. Instead of panicking though,
// we warn the user that we assumed the token was blank,
// and then move on.
//
// See also https://github.com/rust-lang/rust-bindgen/issues/1676.
warn!(
"Ignored unknown namespace prefix '{}' at {:?} in {:?}",
String::from_utf8_lossy(name),
token,
cursor
);
}
}
}
}
(module_name, kind)
}
/// Given a CXCursor_Namespace cursor, return the item ID of the
/// corresponding module, or create one on the fly.
pub(crate) fn module(&mut self, cursor: clang::Cursor) -> ModuleId {
use clang_sys::*;
assert_eq!(cursor.kind(), CXCursor_Namespace, "Be a nice person");
let cursor = cursor.canonical();
if let Some(id) = self.modules.get(&cursor) {
return *id;
}
let (module_name, kind) = self.tokenize_namespace(&cursor);
let module_id = self.next_item_id();
let module = Module::new(module_name, kind);
let module = Item::new(
module_id,
None,
None,
self.current_module.into(),
ItemKind::Module(module),
Some(cursor.location()),
);
let module_id = module.id().as_module_id_unchecked();
self.modules.insert(cursor, module_id);
self.add_item(module, None, None);
module_id
}
/// Start traversing the module with the given `module_id`, invoke the
/// callback `cb`, and then return to traversing the original module.
pub(crate) fn with_module<F>(&mut self, module_id: ModuleId, cb: F)
where
F: FnOnce(&mut Self),
{
debug_assert!(self.resolve_item(module_id).kind().is_module(), "Wat");
let previous_id = self.current_module;
self.current_module = module_id;
cb(self);
self.current_module = previous_id;
}
/// Iterate over all (explicitly or transitively) allowlisted items.
///
/// If no items are explicitly allowlisted, then all items are considered
/// allowlisted.
pub(crate) fn allowlisted_items(&self) -> &ItemSet {
assert!(self.in_codegen_phase());
assert!(self.current_module == self.root_module);
self.allowlisted.as_ref().unwrap()
}
/// Check whether a particular blocklisted type implements a trait or not.
/// Results may be cached.
pub(crate) fn blocklisted_type_implements_trait(
&self,
item: &Item,
derive_trait: DeriveTrait,
) -> CanDerive {
assert!(self.in_codegen_phase());
assert!(self.current_module == self.root_module);
*self
.blocklisted_types_implement_traits
.borrow_mut()
.entry(derive_trait)
.or_default()
.entry(item.id())
.or_insert_with(|| {
item.expect_type()
.name()
.and_then(|name| {
if self.options.parse_callbacks.is_empty() {
// Sized integer types from <stdint.h> get mapped to Rust primitive
// types regardless of whether they are blocklisted, so ensure that
// standard traits are considered derivable for them too.
if self.is_stdint_type(name) {
Some(CanDerive::Yes)
} else {
Some(CanDerive::No)
}
} else {
self.options.last_callback(|cb| {
cb.blocklisted_type_implements_trait(
name,
derive_trait,
)
})
}
})
.unwrap_or(CanDerive::No)
})
}
/// Is the given type a type from <stdint.h> that corresponds to a Rust primitive type?
pub(crate) fn is_stdint_type(&self, name: &str) -> bool {
match name {
"int8_t" | "uint8_t" | "int16_t" | "uint16_t" | "int32_t" |
"uint32_t" | "int64_t" | "uint64_t" | "uintptr_t" |
"intptr_t" | "ptrdiff_t" => true,
"size_t" | "ssize_t" => self.options.size_t_is_usize,
_ => false,
}
}
/// Get a reference to the set of items we should generate.
pub(crate) fn codegen_items(&self) -> &ItemSet {
assert!(self.in_codegen_phase());
assert!(self.current_module == self.root_module);
self.codegen_items.as_ref().unwrap()
}
/// Compute the allowlisted items set and populate `self.allowlisted`.
fn compute_allowlisted_and_codegen_items(&mut self) {
assert!(self.in_codegen_phase());
assert!(self.current_module == self.root_module);
assert!(self.allowlisted.is_none());
let _t = self.timer("compute_allowlisted_and_codegen_items");
let roots = {
let mut roots = self
.items()
// Only consider roots that are enabled for codegen.
.filter(|&(_, item)| item.is_enabled_for_codegen(self))
.filter(|&(_, item)| {
// If nothing is explicitly allowlisted, then everything is fair
// game.
if self.options().allowlisted_types.is_empty() &&
self.options().allowlisted_functions.is_empty() &&
self.options().allowlisted_vars.is_empty() &&
self.options().allowlisted_files.is_empty() &&
self.options().allowlisted_items.is_empty()
{
return true;
}
// If this is a type that explicitly replaces another, we assume
// you know what you're doing.
if item.annotations().use_instead_of().is_some() {
return true;
}
// Items with a source location in an explicitly allowlisted file
// are always included.
if !self.options().allowlisted_files.is_empty() {
if let Some(location) = item.location() {
let (file, _, _, _) = location.location();
if let Some(filename) = file.name() {
if self
.options()
.allowlisted_files
.matches(filename)
{
return true;
}
}
}
}
let name = item.path_for_allowlisting(self)[1..].join("::");
debug!("allowlisted_items: testing {:?}", name);
if self.options().allowlisted_items.matches(&name) {
return true;
}
match *item.kind() {
ItemKind::Module(..) => true,
ItemKind::Function(_) => {
self.options().allowlisted_functions.matches(&name)
}
ItemKind::Var(_) => {
self.options().allowlisted_vars.matches(&name)
}
ItemKind::Type(ref ty) => {
if self.options().allowlisted_types.matches(&name) {
return true;
}
// Auto-allowlist types that don't need code
// generation if not allowlisting recursively, to
// make the #[derive] analysis not be lame.
if !self.options().allowlist_recursively {
match *ty.kind() {
TypeKind::Void |
TypeKind::NullPtr |
TypeKind::Int(..) |
TypeKind::Float(..) |
TypeKind::Complex(..) |
TypeKind::Array(..) |
TypeKind::Vector(..) |
TypeKind::Pointer(..) |
TypeKind::Reference(..) |
TypeKind::Function(..) |
TypeKind::ResolvedTypeRef(..) |
TypeKind::Opaque |
TypeKind::TypeParam => return true,
_ => {}
}
if self.is_stdint_type(&name) {
return true;
}
}
// Unnamed top-level enums are special and we
// allowlist them via the `allowlisted_vars` filter,
// since they're effectively top-level constants,
// and there's no way for them to be referenced
// consistently.
let parent = self.resolve_item(item.parent_id());
if !parent.is_module() {
return false;
}
let enum_ = match *ty.kind() {
TypeKind::Enum(ref e) => e,
_ => return false,
};
if ty.name().is_some() {
return false;
}
let mut prefix_path =
parent.path_for_allowlisting(self).clone();
enum_.variants().iter().any(|variant| {
prefix_path.push(
variant.name_for_allowlisting().into(),
);
let name = prefix_path[1..].join("::");
prefix_path.pop().unwrap();
self.options().allowlisted_vars.matches(name)
})
}
}
})
.map(|(id, _)| id)
.collect::<Vec<_>>();
// The reversal preserves the expected ordering of traversal,
// resulting in more stable-ish bindgen-generated names for
// anonymous types (like unions).
roots.reverse();
roots
};
let allowlisted_items_predicate =
if self.options().allowlist_recursively {
traversal::all_edges
} else {
// Only follow InnerType edges from the allowlisted roots.
// Such inner types (e.g. anonymous structs/unions) are
// always emitted by codegen, and they need to be allowlisted
// to make sure they are processed by e.g. the derive analysis.
traversal::only_inner_type_edges
};
let allowlisted = AllowlistedItemsTraversal::new(
self,
roots.clone(),
allowlisted_items_predicate,
)
.collect::<ItemSet>();
let codegen_items = if self.options().allowlist_recursively {
AllowlistedItemsTraversal::new(
self,
roots,
traversal::codegen_edges,
)
.collect::<ItemSet>()
} else {
allowlisted.clone()
};
self.allowlisted = Some(allowlisted);
self.codegen_items = Some(codegen_items);
for item in self.options().allowlisted_functions.unmatched_items() {
unused_regex_diagnostic(item, "--allowlist-function", self);
}
for item in self.options().allowlisted_vars.unmatched_items() {
unused_regex_diagnostic(item, "--allowlist-var", self);
}
for item in self.options().allowlisted_types.unmatched_items() {
unused_regex_diagnostic(item, "--allowlist-type", self);
}
for item in self.options().allowlisted_items.unmatched_items() {
unused_regex_diagnostic(item, "--allowlist-items", self);
}
}
/// Convenient method for getting the prefix to use for most traits in
/// codegen depending on the `use_core` option.
pub(crate) fn trait_prefix(&self) -> Ident {
if self.options().use_core {
self.rust_ident_raw("core")
} else {
self.rust_ident_raw("std")
}
}
/// Call if a bindgen complex is generated
pub(crate) fn generated_bindgen_complex(&self) {
self.generated_bindgen_complex.set(true)
}
/// Whether we need to generate the bindgen complex type
pub(crate) fn need_bindgen_complex_type(&self) -> bool {
self.generated_bindgen_complex.get()
}
/// Call if a bindgen float16 is generated
pub(crate) fn generated_bindgen_float16(&self) {
self.generated_bindgen_float16.set(true)
}
/// Whether we need to generate the bindgen float16 type
pub(crate) fn need_bindgen_float16_type(&self) -> bool {
self.generated_bindgen_float16.get()
}
/// Compute which `enum`s have an associated `typedef` definition.
fn compute_enum_typedef_combos(&mut self) {
let _t = self.timer("compute_enum_typedef_combos");
assert!(self.enum_typedef_combos.is_none());
let mut enum_typedef_combos = HashSet::default();
for item in &self.items {
if let Some(ItemKind::Module(module)) =
item.as_ref().map(Item::kind)
{
// Find typedefs in this module, and build set of their names.
let mut names_of_typedefs = HashSet::default();
for child_id in module.children() {
if let Some(ItemKind::Type(ty)) =
self.items[child_id.0].as_ref().map(Item::kind)
{
if let (Some(name), TypeKind::Alias(type_id)) =
(ty.name(), ty.kind())
{
// We disregard aliases that refer to the enum
// itself, such as in `typedef enum { ... } Enum;`.
if type_id
.into_resolver()
.through_type_refs()
.through_type_aliases()
.resolve(self)
.expect_type()
.is_int()
{
names_of_typedefs.insert(name);
}
}
}
}
// Find enums in this module, and record the ID of each one that
// has a typedef.
for child_id in module.children() {
if let Some(ItemKind::Type(ty)) =
self.items[child_id.0].as_ref().map(Item::kind)
{
if let (Some(name), true) = (ty.name(), ty.is_enum()) {
if names_of_typedefs.contains(name) {
enum_typedef_combos.insert(*child_id);
}
}
}
}
}
}
self.enum_typedef_combos = Some(enum_typedef_combos);
}
/// Look up whether `id` refers to an `enum` whose underlying type is
/// defined by a `typedef`.
pub(crate) fn is_enum_typedef_combo(&self, id: ItemId) -> bool {
assert!(
self.in_codegen_phase(),
"We only compute enum_typedef_combos when we enter codegen",
);
self.enum_typedef_combos.as_ref().unwrap().contains(&id)
}
/// Compute whether we can derive debug.
fn compute_cannot_derive_debug(&mut self) {
let _t = self.timer("compute_cannot_derive_debug");
assert!(self.cannot_derive_debug.is_none());
if self.options.derive_debug {
self.cannot_derive_debug =
Some(as_cannot_derive_set(analyze::<CannotDerive>((
self,
DeriveTrait::Debug,
))));
}
}
/// Look up whether the item with `id` can
/// derive debug or not.
pub(crate) fn lookup_can_derive_debug<Id: Into<ItemId>>(
&self,
id: Id,
) -> bool {
let id = id.into();
assert!(
self.in_codegen_phase(),
"We only compute can_derive_debug when we enter codegen"
);
// Look up the computed value for whether the item with `id` can
// derive debug or not.
!self.cannot_derive_debug.as_ref().unwrap().contains(&id)
}
/// Compute whether we can derive default.
fn compute_cannot_derive_default(&mut self) {
let _t = self.timer("compute_cannot_derive_default");
assert!(self.cannot_derive_default.is_none());
if self.options.derive_default {
self.cannot_derive_default =
Some(as_cannot_derive_set(analyze::<CannotDerive>((
self,
DeriveTrait::Default,
))));
}
}
/// Look up whether the item with `id` can
/// derive default or not.
pub(crate) fn lookup_can_derive_default<Id: Into<ItemId>>(
&self,
id: Id,
) -> bool {
let id = id.into();
assert!(
self.in_codegen_phase(),
"We only compute can_derive_default when we enter codegen"
);
// Look up the computed value for whether the item with `id` can
// derive default or not.
!self.cannot_derive_default.as_ref().unwrap().contains(&id)
}
/// Compute whether we can derive copy.
fn compute_cannot_derive_copy(&mut self) {
let _t = self.timer("compute_cannot_derive_copy");
assert!(self.cannot_derive_copy.is_none());
self.cannot_derive_copy =
Some(as_cannot_derive_set(analyze::<CannotDerive>((
self,
DeriveTrait::Copy,
))));
}
/// Compute whether we can derive hash.
fn compute_cannot_derive_hash(&mut self) {
let _t = self.timer("compute_cannot_derive_hash");
assert!(self.cannot_derive_hash.is_none());
if self.options.derive_hash {
self.cannot_derive_hash =
Some(as_cannot_derive_set(analyze::<CannotDerive>((
self,
DeriveTrait::Hash,
))));
}
}
/// Look up whether the item with `id` can
/// derive hash or not.
pub(crate) fn lookup_can_derive_hash<Id: Into<ItemId>>(
&self,
id: Id,
) -> bool {
let id = id.into();
assert!(
self.in_codegen_phase(),
"We only compute can_derive_debug when we enter codegen"
);
// Look up the computed value for whether the item with `id` can
// derive hash or not.
!self.cannot_derive_hash.as_ref().unwrap().contains(&id)
}
/// Compute whether we can derive PartialOrd, PartialEq or Eq.
fn compute_cannot_derive_partialord_partialeq_or_eq(&mut self) {
let _t = self.timer("compute_cannot_derive_partialord_partialeq_or_eq");
assert!(self.cannot_derive_partialeq_or_partialord.is_none());
if self.options.derive_partialord ||
self.options.derive_partialeq ||
self.options.derive_eq
{
self.cannot_derive_partialeq_or_partialord =
Some(analyze::<CannotDerive>((
self,
DeriveTrait::PartialEqOrPartialOrd,
)));
}
}
/// Look up whether the item with `id` can derive `Partial{Eq,Ord}`.
pub(crate) fn lookup_can_derive_partialeq_or_partialord<
Id: Into<ItemId>,
>(
&self,
id: Id,
) -> CanDerive {
let id = id.into();
assert!(
self.in_codegen_phase(),
"We only compute can_derive_partialeq_or_partialord when we enter codegen"
);
// Look up the computed value for whether the item with `id` can
// derive partialeq or not.
self.cannot_derive_partialeq_or_partialord
.as_ref()
.unwrap()
.get(&id)
.cloned()
.unwrap_or(CanDerive::Yes)
}
/// Look up whether the item with `id` can derive `Copy` or not.
pub(crate) fn lookup_can_derive_copy<Id: Into<ItemId>>(
&self,
id: Id,
) -> bool {
assert!(
self.in_codegen_phase(),
"We only compute can_derive_debug when we enter codegen"
);
// Look up the computed value for whether the item with `id` can
// derive `Copy` or not.
let id = id.into();
!self.lookup_has_type_param_in_array(id) &&
!self.cannot_derive_copy.as_ref().unwrap().contains(&id)
}
/// Compute whether the type has type parameter in array.
fn compute_has_type_param_in_array(&mut self) {
let _t = self.timer("compute_has_type_param_in_array");
assert!(self.has_type_param_in_array.is_none());
self.has_type_param_in_array =
Some(analyze::<HasTypeParameterInArray>(self));
}
/// Look up whether the item with `id` has type parameter in array or not.
pub(crate) fn lookup_has_type_param_in_array<Id: Into<ItemId>>(
&self,
id: Id,
) -> bool {
assert!(
self.in_codegen_phase(),
"We only compute has array when we enter codegen"
);
// Look up the computed value for whether the item with `id` has
// type parameter in array or not.
self.has_type_param_in_array
.as_ref()
.unwrap()
.contains(&id.into())
}
/// Compute whether the type has float.
fn compute_has_float(&mut self) {
let _t = self.timer("compute_has_float");
assert!(self.has_float.is_none());
if self.options.derive_eq || self.options.derive_ord {
self.has_float = Some(analyze::<HasFloat>(self));
}
}
/// Look up whether the item with `id` has array or not.
pub(crate) fn lookup_has_float<Id: Into<ItemId>>(&self, id: Id) -> bool {
assert!(
self.in_codegen_phase(),
"We only compute has float when we enter codegen"
);
// Look up the computed value for whether the item with `id` has
// float or not.
self.has_float.as_ref().unwrap().contains(&id.into())
}
/// Check if `--no-partialeq` flag is enabled for this item.
pub(crate) fn no_partialeq_by_name(&self, item: &Item) -> bool {
let name = item.path_for_allowlisting(self)[1..].join("::");
self.options().no_partialeq_types.matches(name)
}
/// Check if `--no-copy` flag is enabled for this item.
pub(crate) fn no_copy_by_name(&self, item: &Item) -> bool {
let name = item.path_for_allowlisting(self)[1..].join("::");
self.options().no_copy_types.matches(name)
}
/// Check if `--no-debug` flag is enabled for this item.
pub(crate) fn no_debug_by_name(&self, item: &Item) -> bool {
let name = item.path_for_allowlisting(self)[1..].join("::");
self.options().no_debug_types.matches(name)
}
/// Check if `--no-default` flag is enabled for this item.
pub(crate) fn no_default_by_name(&self, item: &Item) -> bool {
let name = item.path_for_allowlisting(self)[1..].join("::");
self.options().no_default_types.matches(name)
}
/// Check if `--no-hash` flag is enabled for this item.
pub(crate) fn no_hash_by_name(&self, item: &Item) -> bool {
let name = item.path_for_allowlisting(self)[1..].join("::");
self.options().no_hash_types.matches(name)
}
/// Check if `--must-use-type` flag is enabled for this item.
pub(crate) fn must_use_type_by_name(&self, item: &Item) -> bool {
let name = item.path_for_allowlisting(self)[1..].join("::");
self.options().must_use_types.matches(name)
}
/// Wrap some tokens in an `unsafe` block if the `--wrap-unsafe-ops` option is enabled.
pub(crate) fn wrap_unsafe_ops(&self, tokens: impl ToTokens) -> TokenStream {
if self.options.wrap_unsafe_ops {
quote!(unsafe { #tokens })
} else {
tokens.into_token_stream()
}
}
/// Get the suffix to be added to `static` functions if the `--wrap-static-fns` option is
/// enabled.
pub(crate) fn wrap_static_fns_suffix(&self) -> &str {
self.options()
.wrap_static_fns_suffix
.as_deref()
.unwrap_or(crate::DEFAULT_NON_EXTERN_FNS_SUFFIX)
}
}
/// A builder struct for configuring item resolution options.
#[derive(Debug, Copy, Clone)]
pub(crate) struct ItemResolver {
id: ItemId,
through_type_refs: bool,
through_type_aliases: bool,
}
impl ItemId {
/// Create an `ItemResolver` from this item ID.
pub(crate) fn into_resolver(self) -> ItemResolver {
self.into()
}
}
impl<T> From<T> for ItemResolver
where
T: Into<ItemId>,
{
fn from(id: T) -> ItemResolver {
ItemResolver::new(id)
}
}
impl ItemResolver {
/// Construct a new `ItemResolver` from the given ID.
pub(crate) fn new<Id: Into<ItemId>>(id: Id) -> ItemResolver {
let id = id.into();
ItemResolver {
id,
through_type_refs: false,
through_type_aliases: false,
}
}
/// Keep resolving through `Type::TypeRef` items.
pub(crate) fn through_type_refs(mut self) -> ItemResolver {
self.through_type_refs = true;
self
}
/// Keep resolving through `Type::Alias` items.
pub(crate) fn through_type_aliases(mut self) -> ItemResolver {
self.through_type_aliases = true;
self
}
/// Finish configuring and perform the actual item resolution.
pub(crate) fn resolve(self, ctx: &BindgenContext) -> &Item {
assert!(ctx.collected_typerefs());
let mut id = self.id;
let mut seen_ids = HashSet::default();
loop {
let item = ctx.resolve_item(id);
// Detect cycles and bail out. These can happen in certain cases
// involving incomplete qualified dependent types (#2085).
if !seen_ids.insert(id) {
return item;
}
let ty_kind = item.as_type().map(|t| t.kind());
match ty_kind {
Some(&TypeKind::ResolvedTypeRef(next_id))
if self.through_type_refs =>
{
id = next_id.into();
}
// We intentionally ignore template aliases here, as they are
// more complicated, and don't represent a simple renaming of
// some type.
Some(&TypeKind::Alias(next_id))
if self.through_type_aliases =>
{
id = next_id.into();
}
_ => return item,
}
}
}
}
/// A type that we are in the middle of parsing.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub(crate) struct PartialType {
decl: Cursor,
// Just an ItemId, and not a TypeId, because we haven't finished this type
// yet, so there's still time for things to go wrong.
id: ItemId,
}
impl PartialType {
/// Construct a new `PartialType`.
pub(crate) fn new(decl: Cursor, id: ItemId) -> PartialType {
// assert!(decl == decl.canonical());
PartialType { decl, id }
}
/// The cursor pointing to this partial type's declaration location.
pub(crate) fn decl(&self) -> &Cursor {
&self.decl
}
/// The item ID allocated for this type. This is *NOT* a key for an entry in
/// the context's item set yet!
pub(crate) fn id(&self) -> ItemId {
self.id
}
}
impl TemplateParameters for PartialType {
fn self_template_params(&self, _ctx: &BindgenContext) -> Vec<TypeId> {
// Maybe at some point we will eagerly parse named types, but for now we
// don't and this information is unavailable.
vec![]
}
fn num_self_template_params(&self, _ctx: &BindgenContext) -> usize {
// Wouldn't it be nice if libclang would reliably give us this
// information‽
match self.decl().kind() {
clang_sys::CXCursor_ClassTemplate |
clang_sys::CXCursor_FunctionTemplate |
clang_sys::CXCursor_TypeAliasTemplateDecl => {
let mut num_params = 0;
self.decl().visit(|c| {
match c.kind() {
clang_sys::CXCursor_TemplateTypeParameter |
clang_sys::CXCursor_TemplateTemplateParameter |
clang_sys::CXCursor_NonTypeTemplateParameter => {
num_params += 1;
}
_ => {}
};
clang_sys::CXChildVisit_Continue
});
num_params
}
_ => 0,
}
}
}
fn unused_regex_diagnostic(item: &str, name: &str, _ctx: &BindgenContext) {
warn!("unused option: {} {}", name, item);
#[cfg(feature = "experimental")]
if _ctx.options().emit_diagnostics {
use crate::diagnostics::{Diagnostic, Level};
Diagnostic::default()
.with_title(
format!("Unused regular expression: `{}`.", item),
Level::Warn,
)
.add_annotation(
format!("This regular expression was passed to `{}`.", name),
Level::Note,
)
.display();
}
}
|