summaryrefslogtreecommitdiffstats
path: root/third_party/rust/fallible_collections/src/btree/node.rs
blob: bed459dcfe3d27297a7bb518759991036c24478f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
// This is an attempt at an implementation following the ideal
//
// ```
// struct BTreeMap<K, V> {
//     height: usize,
//     root: Option<Box<Node<K, V, height>>>
// }
//
// struct Node<K, V, height: usize> {
//     keys: [K; 2 * B - 1],
//     vals: [V; 2 * B - 1],
//     edges: if height > 0 {
//         [Box<Node<K, V, height - 1>>; 2 * B]
//     } else { () },
//     parent: *const Node<K, V, height + 1>,
//     parent_idx: u16,
//     len: u16,
// }
// ```
//
// Since Rust doesn't actually have dependent types and polymorphic recursion,
// we make do with lots of unsafety.

// A major goal of this module is to avoid complexity by treating the tree as a generic (if
// weirdly shaped) container and avoiding dealing with most of the B-Tree invariants. As such,
// this module doesn't care whether the entries are sorted, which nodes can be underfull, or
// even what underfull means. However, we do rely on a few invariants:
//
// - Trees must have uniform depth/height. This means that every path down to a leaf from a
//   given node has exactly the same length.
// - A node of length `n` has `n` keys, `n` values, and (in an internal node) `n + 1` edges.
//   This implies that even an empty internal node has at least one edge.

use core::marker::PhantomData;
use core::mem::{self, MaybeUninit};
use core::ptr::{self, NonNull, Unique};
use core::slice;

use crate::boxed::FallibleBox;
use crate::TryReserveError;
use alloc::alloc::{Allocator, Global, Layout};
use alloc::boxed::Box;

const B: usize = 6;
pub const MIN_LEN: usize = B - 1;
pub const CAPACITY: usize = 2 * B - 1;

/// The underlying representation of leaf nodes. Note that it is often unsafe to actually store
/// these, since only the first `len` keys and values are assumed to be initialized. As such,
/// these should always be put behind pointers, and specifically behind `BoxedNode` in the owned
/// case.
///
/// We have a separate type for the header and rely on it matching the prefix of `LeafNode`, in
/// order to statically allocate a single dummy node to avoid allocations. This struct is
/// `repr(C)` to prevent them from being reordered. `LeafNode` does not just contain a
/// `NodeHeader` because we do not want unnecessary padding between `len` and the keys.
/// Crucially, `NodeHeader` can be safely transmuted to different K and V. (This is exploited
/// by `as_header`.)
/// See `into_key_slice` for an explanation of K2. K2 cannot be safely transmuted around
/// because the size of `NodeHeader` depends on its alignment!
#[repr(C)]
struct NodeHeader<K, V, K2 = ()> {
    /// We use `*const` as opposed to `*mut` so as to be covariant in `K` and `V`.
    /// This either points to an actual node or is null.
    parent: *const InternalNode<K, V>,

    /// This node's index into the parent node's `edges` array.
    /// `*node.parent.edges[node.parent_idx]` should be the same thing as `node`.
    /// This is only guaranteed to be initialized when `parent` is non-null.
    parent_idx: MaybeUninit<u16>,

    /// The number of keys and values this node stores.
    ///
    /// This next to `parent_idx` to encourage the compiler to join `len` and
    /// `parent_idx` into the same 32-bit word, reducing space overhead.
    len: u16,

    /// See `into_key_slice`.
    keys_start: [K2; 0],
}
#[repr(C)]
struct LeafNode<K, V> {
    /// We use `*const` as opposed to `*mut` so as to be covariant in `K` and `V`.
    /// This either points to an actual node or is null.
    parent: *const InternalNode<K, V>,

    /// This node's index into the parent node's `edges` array.
    /// `*node.parent.edges[node.parent_idx]` should be the same thing as `node`.
    /// This is only guaranteed to be initialized when `parent` is non-null.
    parent_idx: MaybeUninit<u16>,

    /// The number of keys and values this node stores.
    ///
    /// This next to `parent_idx` to encourage the compiler to join `len` and
    /// `parent_idx` into the same 32-bit word, reducing space overhead.
    len: u16,

    /// The arrays storing the actual data of the node. Only the first `len` elements of each
    /// array are initialized and valid.
    keys: [MaybeUninit<K>; CAPACITY],
    vals: [MaybeUninit<V>; CAPACITY],
}

impl<K, V> LeafNode<K, V> {
    /// Creates a new `LeafNode`. Unsafe because all nodes should really be hidden behind
    /// `BoxedNode`, preventing accidental dropping of uninitialized keys and values.
    unsafe fn new() -> Self {
        LeafNode {
            // As a general policy, we leave fields uninitialized if they can be, as this should
            // be both slightly faster and easier to track in Valgrind.
            keys: MaybeUninit::uninit_array::<CAPACITY>(),
            vals: MaybeUninit::uninit_array::<CAPACITY>(),
            parent: ptr::null(),
            parent_idx: MaybeUninit::uninit(),
            len: 0,
        }
    }
}

impl<K, V> NodeHeader<K, V> {
    fn is_shared_root(&self) -> bool {
        ptr::eq(self, &EMPTY_ROOT_NODE as *const _ as *const _)
    }
}

// We need to implement Sync here in order to make a static instance.
unsafe impl Sync for NodeHeader<(), ()> {}

// An empty node used as a placeholder for the root node, to avoid allocations.
// We use just a header in order to save space, since no operation on an empty tree will
// ever take a pointer past the first key.
static EMPTY_ROOT_NODE: NodeHeader<(), ()> = NodeHeader {
    parent: ptr::null(),
    parent_idx: MaybeUninit::uninit(),
    len: 0,
    keys_start: [],
};

/// The underlying representation of internal nodes. As with `LeafNode`s, these should be hidden
/// behind `BoxedNode`s to prevent dropping uninitialized keys and values. Any pointer to an
/// `InternalNode` can be directly casted to a pointer to the underlying `LeafNode` portion of the
/// node, allowing code to act on leaf and internal nodes generically without having to even check
/// which of the two a pointer is pointing at. This property is enabled by the use of `repr(C)`.
#[repr(C)]
struct InternalNode<K, V> {
    data: LeafNode<K, V>,

    /// The pointers to the children of this node. `len + 1` of these are considered
    /// initialized and valid.
    edges: [MaybeUninit<BoxedNode<K, V>>; 2 * B],
}

impl<K, V> InternalNode<K, V> {
    /// Creates a new `InternalNode`.
    ///
    /// This is unsafe for two reasons. First, it returns an `InternalNode` by value, risking
    /// dropping of uninitialized fields. Second, an invariant of internal nodes is that `len + 1`
    /// edges are initialized and valid, meaning that even when the node is empty (having a
    /// `len` of 0), there must be one initialized and valid edge. This function does not set up
    /// such an edge.
    unsafe fn new() -> Self {
        InternalNode {
            data: LeafNode::new(),
            edges: MaybeUninit::uninit_array::<{ 2 * B }>(),
        }
    }
}

/// An owned pointer to a node. This basically is either `Box<LeafNode<K, V>>` or
/// `Box<InternalNode<K, V>>`. However, it contains no information as to which of the two types
/// of nodes is actually behind the box, and, partially due to this lack of information, has no
/// destructor.
struct BoxedNode<K, V> {
    ptr: Unique<LeafNode<K, V>>,
}

impl<K, V> BoxedNode<K, V> {
    fn from_leaf(node: Box<LeafNode<K, V>>) -> Self {
        let (ptr, _g) = Box::into_unique(node);
        BoxedNode { ptr: ptr }
    }

    fn from_internal(node: Box<InternalNode<K, V>>) -> Self {
        unsafe {
            BoxedNode {
                ptr: Unique::new_unchecked(Box::into_raw(node) as *mut LeafNode<K, V>),
            }
        }
    }

    unsafe fn from_ptr(ptr: NonNull<LeafNode<K, V>>) -> Self {
        BoxedNode {
            ptr: Unique::new_unchecked(ptr.as_ptr()),
        }
    }

    fn as_ptr(&self) -> NonNull<LeafNode<K, V>> {
        NonNull::from(self.ptr)
    }
}

/// An owned tree. Note that despite being owned, this does not have a destructor,
/// and must be cleaned up manually.
pub struct Root<K, V> {
    node: BoxedNode<K, V>,
    height: usize,
}

unsafe impl<K: Sync, V: Sync> Sync for Root<K, V> {}
unsafe impl<K: Send, V: Send> Send for Root<K, V> {}

impl<K, V> Root<K, V> {
    pub fn is_shared_root(&self) -> bool {
        self.as_ref().is_shared_root()
    }

    pub fn shared_empty_root() -> Self {
        Root {
            node: unsafe {
                BoxedNode::from_ptr(NonNull::new_unchecked(
                    &EMPTY_ROOT_NODE as *const _ as *const LeafNode<K, V> as *mut _,
                ))
            },
            height: 0,
        }
    }

    pub fn new_leaf() -> Result<Self, TryReserveError> {
        Ok(Root {
            node: BoxedNode::from_leaf(<Box<_> as FallibleBox<_>>::try_new(unsafe {
                LeafNode::new()
            })?),
            height: 0,
        })
    }

    pub fn as_ref(&self) -> NodeRef<marker::Immut<'_>, K, V, marker::LeafOrInternal> {
        NodeRef {
            height: self.height,
            node: self.node.as_ptr(),
            root: self as *const _ as *mut _,
            _marker: PhantomData,
        }
    }

    pub fn as_mut(&mut self) -> NodeRef<marker::Mut<'_>, K, V, marker::LeafOrInternal> {
        NodeRef {
            height: self.height,
            node: self.node.as_ptr(),
            root: self as *mut _,
            _marker: PhantomData,
        }
    }

    pub fn into_ref(self) -> NodeRef<marker::Owned, K, V, marker::LeafOrInternal> {
        NodeRef {
            height: self.height,
            node: self.node.as_ptr(),
            root: ptr::null_mut(), // FIXME: Is there anything better to do here?
            _marker: PhantomData,
        }
    }

    /// Adds a new internal node with a single edge, pointing to the previous root, and make that
    /// new node the root. This increases the height by 1 and is the opposite of `pop_level`.
    pub fn push_level(
        &mut self,
    ) -> Result<NodeRef<marker::Mut<'_>, K, V, marker::Internal>, TryReserveError> {
        debug_assert!(!self.is_shared_root());
        let mut new_node = <Box<_> as FallibleBox<_>>::try_new(unsafe { InternalNode::new() })?;
        new_node.edges[0].write(unsafe { BoxedNode::from_ptr(self.node.as_ptr()) });

        self.node = BoxedNode::from_internal(new_node);
        self.height += 1;

        let mut ret = NodeRef {
            height: self.height,
            node: self.node.as_ptr(),
            root: self as *mut _,
            _marker: PhantomData,
        };

        unsafe {
            ret.reborrow_mut().first_edge().correct_parent_link();
        }

        Ok(ret)
    }

    /// Removes the root node, using its first child as the new root. This cannot be called when
    /// the tree consists only of a leaf node. As it is intended only to be called when the root
    /// has only one edge, no cleanup is done on any of the other children are elements of the root.
    /// This decreases the height by 1 and is the opposite of `push_level`.
    pub fn pop_level(&mut self) {
        debug_assert!(self.height > 0);

        let top = self.node.ptr;

        self.node = unsafe {
            BoxedNode::from_ptr(
                self.as_mut()
                    .cast_unchecked::<marker::Internal>()
                    .first_edge()
                    .descend()
                    .node,
            )
        };
        self.height -= 1;
        unsafe {
            (*self.as_mut().as_leaf_mut()).parent = ptr::null();
        }

        unsafe {
            Global.deallocate(
                NonNull::from(top).cast(),
                Layout::new::<InternalNode<K, V>>(),
            );
        }
    }
}

// N.B. `NodeRef` is always covariant in `K` and `V`, even when the `BorrowType`
// is `Mut`. This is technically wrong, but cannot result in any unsafety due to
// internal use of `NodeRef` because we stay completely generic over `K` and `V`.
// However, whenever a public type wraps `NodeRef`, make sure that it has the
// correct variance.
/// A reference to a node.
///
/// This type has a number of parameters that controls how it acts:
/// - `BorrowType`: This can be `Immut<'a>` or `Mut<'a>` for some `'a` or `Owned`.
///    When this is `Immut<'a>`, the `NodeRef` acts roughly like `&'a Node`,
///    when this is `Mut<'a>`, the `NodeRef` acts roughly like `&'a mut Node`,
///    and when this is `Owned`, the `NodeRef` acts roughly like `Box<Node>`.
/// - `K` and `V`: These control what types of things are stored in the nodes.
/// - `Type`: This can be `Leaf`, `Internal`, or `LeafOrInternal`. When this is
///   `Leaf`, the `NodeRef` points to a leaf node, when this is `Internal` the
///   `NodeRef` points to an internal node, and when this is `LeafOrInternal` the
///   `NodeRef` could be pointing to either type of node.
///   Note that in case of a leaf node, this might still be the shared root!  Only turn
///   this into a `LeafNode` reference if you know it is not a root!  Shared references
///   must be dereferencable *for the entire size of their pointee*, so `&InternalNode`
///   pointing to the shared root is UB.
///   Turning this into a `NodeHeader` is always safe.
pub struct NodeRef<BorrowType, K, V, Type> {
    height: usize,
    node: NonNull<LeafNode<K, V>>,
    // This is null unless the borrow type is `Mut`
    root: *const Root<K, V>,
    _marker: PhantomData<(BorrowType, Type)>,
}

impl<'a, K: 'a, V: 'a, Type> Copy for NodeRef<marker::Immut<'a>, K, V, Type> {}
impl<'a, K: 'a, V: 'a, Type> Clone for NodeRef<marker::Immut<'a>, K, V, Type> {
    fn clone(&self) -> Self {
        *self
    }
}

unsafe impl<BorrowType, K: Sync, V: Sync, Type> Sync for NodeRef<BorrowType, K, V, Type> {}

unsafe impl<'a, K: Sync + 'a, V: Sync + 'a, Type> Send for NodeRef<marker::Immut<'a>, K, V, Type> {}
unsafe impl<'a, K: Send + 'a, V: Send + 'a, Type> Send for NodeRef<marker::Mut<'a>, K, V, Type> {}
unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::Owned, K, V, Type> {}

impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> {
    fn as_internal(&self) -> &InternalNode<K, V> {
        unsafe { &*(self.node.as_ptr() as *mut InternalNode<K, V>) }
    }
}

impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
    fn as_internal_mut(&mut self) -> &mut InternalNode<K, V> {
        unsafe { &mut *(self.node.as_ptr() as *mut InternalNode<K, V>) }
    }
}

impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
    /// Finds the length of the node. This is the number of keys or values. In an
    /// internal node, the number of edges is `len() + 1`.
    pub fn len(&self) -> usize {
        self.as_header().len as usize
    }

    /// Returns the height of this node in the whole tree. Zero height denotes the
    /// leaf level.
    pub fn height(&self) -> usize {
        self.height
    }

    /// Removes any static information about whether this node is a `Leaf` or an
    /// `Internal` node.
    pub fn forget_type(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
        NodeRef {
            height: self.height,
            node: self.node,
            root: self.root,
            _marker: PhantomData,
        }
    }

    /// Temporarily takes out another, immutable reference to the same node.
    fn reborrow<'a>(&'a self) -> NodeRef<marker::Immut<'a>, K, V, Type> {
        NodeRef {
            height: self.height,
            node: self.node,
            root: self.root,
            _marker: PhantomData,
        }
    }

    /// Assert that this is indeed a proper leaf node, and not the shared root.
    unsafe fn as_leaf(&self) -> &LeafNode<K, V> {
        self.node.as_ref()
    }

    fn as_header(&self) -> &NodeHeader<K, V> {
        unsafe { &*(self.node.as_ptr() as *const NodeHeader<K, V>) }
    }

    pub fn is_shared_root(&self) -> bool {
        self.as_header().is_shared_root()
    }

    pub fn keys(&self) -> &[K] {
        self.reborrow().into_key_slice()
    }

    fn vals(&self) -> &[V] {
        self.reborrow().into_val_slice()
    }

    /// Finds the parent of the current node. Returns `Ok(handle)` if the current
    /// node actually has a parent, where `handle` points to the edge of the parent
    /// that points to the current node. Returns `Err(self)` if the current node has
    /// no parent, giving back the original `NodeRef`.
    ///
    /// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should
    /// both, upon success, do nothing.
    pub fn ascend(
        self,
    ) -> Result<Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge>, Self> {
        let parent_as_leaf = self.as_header().parent as *const LeafNode<K, V>;
        if let Some(non_zero) = NonNull::new(parent_as_leaf as *mut _) {
            Ok(Handle {
                node: NodeRef {
                    height: self.height + 1,
                    node: non_zero,
                    root: self.root,
                    _marker: PhantomData,
                },
                idx: unsafe { usize::from(*self.as_header().parent_idx.as_ptr()) },
                _marker: PhantomData,
            })
        } else {
            Err(self)
        }
    }

    pub fn first_edge(self) -> Handle<Self, marker::Edge> {
        Handle::new_edge(self, 0)
    }

    pub fn last_edge(self) -> Handle<Self, marker::Edge> {
        let len = self.len();
        Handle::new_edge(self, len)
    }

    /// Note that `self` must be nonempty.
    pub fn first_kv(self) -> Handle<Self, marker::KV> {
        debug_assert!(self.len() > 0);
        Handle::new_kv(self, 0)
    }

    /// Note that `self` must be nonempty.
    pub fn last_kv(self) -> Handle<Self, marker::KV> {
        let len = self.len();
        debug_assert!(len > 0);
        Handle::new_kv(self, len - 1)
    }
}

impl<K, V> NodeRef<marker::Owned, K, V, marker::Leaf> {
    /// Similar to `ascend`, gets a reference to a node's parent node, but also
    /// deallocate the current node in the process. This is unsafe because the
    /// current node will still be accessible despite being deallocated.
    pub unsafe fn deallocate_and_ascend(
        self,
    ) -> Option<Handle<NodeRef<marker::Owned, K, V, marker::Internal>, marker::Edge>> {
        debug_assert!(!self.is_shared_root());
        let node = self.node;
        let ret = self.ascend().ok();
        Global.deallocate(node.cast(), Layout::new::<LeafNode<K, V>>());
        ret
    }
}

impl<K, V> NodeRef<marker::Owned, K, V, marker::Internal> {
    /// Similar to `ascend`, gets a reference to a node's parent node, but also
    /// deallocate the current node in the process. This is unsafe because the
    /// current node will still be accessible despite being deallocated.
    pub unsafe fn deallocate_and_ascend(
        self,
    ) -> Option<Handle<NodeRef<marker::Owned, K, V, marker::Internal>, marker::Edge>> {
        let node = self.node;
        let ret = self.ascend().ok();
        Global.deallocate(node.cast(), Layout::new::<InternalNode<K, V>>());
        ret
    }
}

impl<'a, K, V, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
    /// Unsafely asserts to the compiler some static information about whether this
    /// node is a `Leaf`.
    unsafe fn cast_unchecked<NewType>(&mut self) -> NodeRef<marker::Mut<'_>, K, V, NewType> {
        NodeRef {
            height: self.height,
            node: self.node,
            root: self.root,
            _marker: PhantomData,
        }
    }

    /// Temporarily takes out another, mutable reference to the same node. Beware, as
    /// this method is very dangerous, doubly so since it may not immediately appear
    /// dangerous.
    ///
    /// Because mutable pointers can roam anywhere around the tree and can even (through
    /// `into_root_mut`) mess with the root of the tree, the result of `reborrow_mut`
    /// can easily be used to make the original mutable pointer dangling, or, in the case
    /// of a reborrowed handle, out of bounds.
    // FIXME(@gereeter) consider adding yet another type parameter to `NodeRef` that restricts
    // the use of `ascend` and `into_root_mut` on reborrowed pointers, preventing this unsafety.
    unsafe fn reborrow_mut(&mut self) -> NodeRef<marker::Mut<'_>, K, V, Type> {
        NodeRef {
            height: self.height,
            node: self.node,
            root: self.root,
            _marker: PhantomData,
        }
    }

    /// Returns a raw ptr to avoid asserting exclusive access to the entire node.
    fn as_leaf_mut(&mut self) -> *mut LeafNode<K, V> {
        // We are mutable, so we cannot be the root, so accessing this as a leaf is okay.
        self.node.as_ptr()
    }

    fn keys_mut(&mut self) -> &mut [K] {
        unsafe { self.reborrow_mut().into_key_slice_mut() }
    }

    fn vals_mut(&mut self) -> &mut [V] {
        unsafe { self.reborrow_mut().into_val_slice_mut() }
    }
}

impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Immut<'a>, K, V, Type> {
    fn into_key_slice(self) -> &'a [K] {
        // We have to be careful here because we might be pointing to the shared root.
        // In that case, we must not create an `&LeafNode`.  We could just return
        // an empty slice whenever the length is 0 (this includes the shared root),
        // but we want to avoid that run-time check.
        // Instead, we create a slice pointing into the node whenever possible.
        // We can sometimes do this even for the shared root, as the slice will be
        // empty.  We cannot *always* do this because if the type is too highly
        // aligned, the offset of `keys` in a "full node" might be outside the bounds
        // of the header!  So we do an alignment check first, that will be
        // evaluated at compile-time, and only do any run-time check in the rare case
        // that the alignment is very big.
        if mem::align_of::<K>() > mem::align_of::<LeafNode<(), ()>>() && self.is_shared_root() {
            &[]
        } else {
            // Thanks to the alignment check above, we know that `keys` will be
            // in-bounds of some allocation even if this is the shared root!
            // (We might be one-past-the-end, but that is allowed by LLVM.)
            // Getting the pointer is tricky though.  `NodeHeader` does not have a `keys`
            // field because we want its size to not depend on the alignment of `K`
            // (needed becuase `as_header` should be safe).  We cannot call `as_leaf`
            // because we might be the shared root.
            // For this reason, `NodeHeader` has this `K2` parameter (that's usually `()`
            // and hence just adds a size-0-align-1 field, not affecting layout).
            // We know that we can transmute `NodeHeader<K, V, ()>` to `NodeHeader<K, V, K>`
            // because we did the alignment check above, and hence `NodeHeader<K, V, K>`
            // is not bigger than `NodeHeader<K, V, ()>`!  Then we can use `NodeHeader<K, V, K>`
            // to compute the pointer where the keys start.
            // This entire hack will become unnecessary once
            // <https://github.com/rust-lang/rfcs/pull/2582> lands, then we can just take a raw
            // pointer to the `keys` field of `*const InternalNode<K, V>`.

            // This is a non-debug-assert because it can be completely compile-time evaluated.
            assert!(mem::size_of::<NodeHeader<K, V>>() == mem::size_of::<NodeHeader<K, V, K>>());
            let header = self.as_header() as *const _ as *const NodeHeader<K, V, K>;
            let keys = unsafe { &(*header).keys_start as *const _ as *const K };
            unsafe { slice::from_raw_parts(keys, self.len()) }
        }
    }

    fn into_val_slice(self) -> &'a [V] {
        debug_assert!(!self.is_shared_root());
        // We cannot be the root, so `as_leaf` is okay
        unsafe {
            slice::from_raw_parts(MaybeUninit::slice_as_ptr(&self.as_leaf().vals), self.len())
        }
    }

    fn into_slices(self) -> (&'a [K], &'a [V]) {
        let k = unsafe { ptr::read(&self) };
        (k.into_key_slice(), self.into_val_slice())
    }
}

impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
    /// Gets a mutable reference to the root itself. This is useful primarily when the
    /// height of the tree needs to be adjusted. Never call this on a reborrowed pointer.
    pub fn into_root_mut(self) -> &'a mut Root<K, V> {
        unsafe { &mut *(self.root as *mut Root<K, V>) }
    }

    fn into_key_slice_mut(mut self) -> &'a mut [K] {
        // Same as for `into_key_slice` above, we try to avoid a run-time check
        // (the alignment comparison will usually be performed at compile-time).
        if mem::align_of::<K>() > mem::align_of::<LeafNode<(), ()>>() && self.is_shared_root() {
            &mut []
        } else {
            unsafe {
                slice::from_raw_parts_mut(
                    MaybeUninit::slice_as_mut_ptr(&mut (*self.as_leaf_mut()).keys),
                    self.len(),
                )
            }
        }
    }

    fn into_val_slice_mut(mut self) -> &'a mut [V] {
        debug_assert!(!self.is_shared_root());
        unsafe {
            slice::from_raw_parts_mut(
                MaybeUninit::slice_as_mut_ptr(&mut (*self.as_leaf_mut()).vals),
                self.len(),
            )
        }
    }

    fn into_slices_mut(mut self) -> (&'a mut [K], &'a mut [V]) {
        debug_assert!(!self.is_shared_root());
        // We cannot use the getters here, because calling the second one
        // invalidates the reference returned by the first.
        // More precisely, it is the call to `len` that is the culprit,
        // because that creates a shared reference to the header, which *can*
        // overlap with the keys (and even the values, for ZST keys).
        unsafe {
            let len = self.len();
            let leaf = self.as_leaf_mut();
            let keys =
                slice::from_raw_parts_mut(MaybeUninit::slice_as_mut_ptr(&mut (*leaf).keys), len);
            let vals =
                slice::from_raw_parts_mut(MaybeUninit::slice_as_mut_ptr(&mut (*leaf).vals), len);
            (keys, vals)
        }
    }
}

impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> {
    /// Adds a key/value pair the end of the node.
    pub fn push(&mut self, key: K, val: V) {
        // Necessary for correctness, but this is an internal module
        debug_assert!(self.len() < CAPACITY);
        debug_assert!(!self.is_shared_root());

        let idx = self.len();

        unsafe {
            ptr::write(self.keys_mut().as_mut_ptr().add(idx), key);
            ptr::write(self.vals_mut().as_mut_ptr().add(idx), val);

            (*self.as_leaf_mut()).len += 1;
        }
    }

    /// Adds a key/value pair to the beginning of the node.
    pub fn push_front(&mut self, key: K, val: V) {
        // Necessary for correctness, but this is an internal module
        debug_assert!(self.len() < CAPACITY);
        debug_assert!(!self.is_shared_root());

        unsafe {
            slice_insert(self.keys_mut(), 0, key);
            slice_insert(self.vals_mut(), 0, val);

            (*self.as_leaf_mut()).len += 1;
        }
    }
}

impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
    /// Adds a key/value pair and an edge to go to the right of that pair to
    /// the end of the node.
    pub fn push(&mut self, key: K, val: V, edge: Root<K, V>) {
        // Necessary for correctness, but this is an internal module
        debug_assert!(edge.height == self.height - 1);
        debug_assert!(self.len() < CAPACITY);

        let idx = self.len();

        unsafe {
            ptr::write(self.keys_mut().as_mut_ptr().add(idx), key);
            ptr::write(self.vals_mut().as_mut_ptr().add(idx), val);
            self.as_internal_mut()
                .edges
                .as_mut_ptr()
                .add(idx + 1)
                .as_mut()
                .unwrap()
                .write(edge.node);

            (*self.as_leaf_mut()).len += 1;

            Handle::new_edge(self.reborrow_mut(), idx + 1).correct_parent_link();
        }
    }

    fn correct_childrens_parent_links(&mut self, first: usize, after_last: usize) {
        for i in first..after_last {
            Handle::new_edge(unsafe { self.reborrow_mut() }, i).correct_parent_link();
        }
    }

    fn correct_all_childrens_parent_links(&mut self) {
        let len = self.len();
        self.correct_childrens_parent_links(0, len + 1);
    }

    /// Adds a key/value pair and an edge to go to the left of that pair to
    /// the beginning of the node.
    pub fn push_front(&mut self, key: K, val: V, edge: Root<K, V>) {
        // Necessary for correctness, but this is an internal module
        debug_assert!(edge.height == self.height - 1);
        debug_assert!(self.len() < CAPACITY);

        unsafe {
            slice_insert(self.keys_mut(), 0, key);
            slice_insert(self.vals_mut(), 0, val);
            slice_insert(
                slice::from_raw_parts_mut(
                    MaybeUninit::slice_as_mut_ptr(&mut self.as_internal_mut().edges),
                    self.len() + 1,
                ),
                0,
                edge.node,
            );

            (*self.as_leaf_mut()).len += 1;

            self.correct_all_childrens_parent_links();
        }
    }
}

impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
    /// Removes a key/value pair from the end of this node. If this is an internal node,
    /// also removes the edge that was to the right of that pair.
    pub fn pop(&mut self) -> (K, V, Option<Root<K, V>>) {
        // Necessary for correctness, but this is an internal module
        debug_assert!(self.len() > 0);

        let idx = self.len() - 1;

        unsafe {
            let key = ptr::read(self.keys().get_unchecked(idx));
            let val = ptr::read(self.vals().get_unchecked(idx));
            let edge = match self.reborrow_mut().force() {
                ForceResult::Leaf(_) => None,
                ForceResult::Internal(internal) => {
                    let edge =
                        ptr::read(internal.as_internal().edges.get_unchecked(idx + 1).as_ptr());
                    let mut new_root = Root {
                        node: edge,
                        height: internal.height - 1,
                    };
                    (*new_root.as_mut().as_leaf_mut()).parent = ptr::null();
                    Some(new_root)
                }
            };

            (*self.as_leaf_mut()).len -= 1;
            (key, val, edge)
        }
    }

    /// Removes a key/value pair from the beginning of this node. If this is an internal node,
    /// also removes the edge that was to the left of that pair.
    pub fn pop_front(&mut self) -> (K, V, Option<Root<K, V>>) {
        // Necessary for correctness, but this is an internal module
        debug_assert!(self.len() > 0);

        let old_len = self.len();

        unsafe {
            let key = slice_remove(self.keys_mut(), 0);
            let val = slice_remove(self.vals_mut(), 0);
            let edge = match self.reborrow_mut().force() {
                ForceResult::Leaf(_) => None,
                ForceResult::Internal(mut internal) => {
                    let edge = slice_remove(
                        slice::from_raw_parts_mut(
                            MaybeUninit::slice_as_mut_ptr(&mut internal.as_internal_mut().edges),
                            old_len + 1,
                        ),
                        0,
                    );

                    let mut new_root = Root {
                        node: edge,
                        height: internal.height - 1,
                    };
                    (*new_root.as_mut().as_leaf_mut()).parent = ptr::null();

                    for i in 0..old_len {
                        Handle::new_edge(internal.reborrow_mut(), i).correct_parent_link();
                    }

                    Some(new_root)
                }
            };

            (*self.as_leaf_mut()).len -= 1;

            (key, val, edge)
        }
    }

    fn into_kv_pointers_mut(mut self) -> (*mut K, *mut V) {
        (self.keys_mut().as_mut_ptr(), self.vals_mut().as_mut_ptr())
    }
}

impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
    /// Checks whether a node is an `Internal` node or a `Leaf` node.
    pub fn force(
        self,
    ) -> ForceResult<
        NodeRef<BorrowType, K, V, marker::Leaf>,
        NodeRef<BorrowType, K, V, marker::Internal>,
    > {
        if self.height == 0 {
            ForceResult::Leaf(NodeRef {
                height: self.height,
                node: self.node,
                root: self.root,
                _marker: PhantomData,
            })
        } else {
            ForceResult::Internal(NodeRef {
                height: self.height,
                node: self.node,
                root: self.root,
                _marker: PhantomData,
            })
        }
    }
}

/// A reference to a specific key/value pair or edge within a node. The `Node` parameter
/// must be a `NodeRef`, while the `Type` can either be `KV` (signifying a handle on a key/value
/// pair) or `Edge` (signifying a handle on an edge).
///
/// Note that even `Leaf` nodes can have `Edge` handles. Instead of representing a pointer to
/// a child node, these represent the spaces where child pointers would go between the key/value
/// pairs. For example, in a node with length 2, there would be 3 possible edge locations - one
/// to the left of the node, one between the two pairs, and one at the right of the node.
pub struct Handle<Node, Type> {
    node: Node,
    idx: usize,
    _marker: PhantomData<Type>,
}

impl<Node: Copy, Type> Copy for Handle<Node, Type> {}
// We don't need the full generality of `#[derive(Clone)]`, as the only time `Node` will be
// `Clone`able is when it is an immutable reference and therefore `Copy`.
impl<Node: Copy, Type> Clone for Handle<Node, Type> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<Node, Type> Handle<Node, Type> {
    /// Retrieves the node that contains the edge of key/value pair this handle points to.
    pub fn into_node(self) -> Node {
        self.node
    }
}

impl<BorrowType, K, V, NodeType> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV> {
    /// Creates a new handle to a key/value pair in `node`. `idx` must be less than `node.len()`.
    pub fn new_kv(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self {
        // Necessary for correctness, but in a private module
        debug_assert!(idx < node.len());

        Handle {
            node,
            idx,
            _marker: PhantomData,
        }
    }

    pub fn left_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
        Handle::new_edge(self.node, self.idx)
    }

    pub fn right_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
        Handle::new_edge(self.node, self.idx + 1)
    }
}

impl<BorrowType, K, V, NodeType, HandleType> PartialEq
    for Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType>
{
    fn eq(&self, other: &Self) -> bool {
        self.node.node == other.node.node && self.idx == other.idx
    }
}

impl<BorrowType, K, V, NodeType, HandleType>
    Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType>
{
    /// Temporarily takes out another, immutable handle on the same location.
    pub fn reborrow(&self) -> Handle<NodeRef<marker::Immut<'_>, K, V, NodeType>, HandleType> {
        // We can't use Handle::new_kv or Handle::new_edge because we don't know our type
        Handle {
            node: self.node.reborrow(),
            idx: self.idx,
            _marker: PhantomData,
        }
    }
}

impl<'a, K, V, NodeType, HandleType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, HandleType> {
    /// Temporarily takes out another, mutable handle on the same location. Beware, as
    /// this method is very dangerous, doubly so since it may not immediately appear
    /// dangerous.
    ///
    /// Because mutable pointers can roam anywhere around the tree and can even (through
    /// `into_root_mut`) mess with the root of the tree, the result of `reborrow_mut`
    /// can easily be used to make the original mutable pointer dangling, or, in the case
    /// of a reborrowed handle, out of bounds.
    // FIXME(@gereeter) consider adding yet another type parameter to `NodeRef` that restricts
    // the use of `ascend` and `into_root_mut` on reborrowed pointers, preventing this unsafety.
    pub unsafe fn reborrow_mut(
        &mut self,
    ) -> Handle<NodeRef<marker::Mut<'_>, K, V, NodeType>, HandleType> {
        // We can't use Handle::new_kv or Handle::new_edge because we don't know our type
        Handle {
            node: self.node.reborrow_mut(),
            idx: self.idx,
            _marker: PhantomData,
        }
    }
}

impl<BorrowType, K, V, NodeType> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
    /// Creates a new handle to an edge in `node`. `idx` must be less than or equal to
    /// `node.len()`.
    pub fn new_edge(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self {
        // Necessary for correctness, but in a private module
        debug_assert!(idx <= node.len());

        Handle {
            node,
            idx,
            _marker: PhantomData,
        }
    }

    pub fn left_kv(self) -> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> {
        if self.idx > 0 {
            Ok(Handle::new_kv(self.node, self.idx - 1))
        } else {
            Err(self)
        }
    }

    pub fn right_kv(self) -> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> {
        if self.idx < self.node.len() {
            Ok(Handle::new_kv(self.node, self.idx))
        } else {
            Err(self)
        }
    }
}

impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> {
    /// Inserts a new key/value pair between the key/value pairs to the right and left of
    /// this edge. This method assumes that there is enough space in the node for the new
    /// pair to fit.
    ///
    /// The returned pointer points to the inserted value.
    fn insert_fit(&mut self, key: K, val: V) -> *mut V {
        // Necessary for correctness, but in a private module
        debug_assert!(self.node.len() < CAPACITY);
        debug_assert!(!self.node.is_shared_root());

        unsafe {
            slice_insert(self.node.keys_mut(), self.idx, key);
            slice_insert(self.node.vals_mut(), self.idx, val);

            (*self.node.as_leaf_mut()).len += 1;

            self.node.vals_mut().as_mut_ptr().add(self.idx)
        }
    }

    /// Inserts a new key/value pair between the key/value pairs to the right and left of
    /// this edge. This method splits the node if there isn't enough room.
    ///
    /// The returned pointer points to the inserted value.
    pub fn insert(
        mut self,
        key: K,
        val: V,
    ) -> Result<(InsertResult<'a, K, V, marker::Leaf>, *mut V), TryReserveError> {
        if self.node.len() < CAPACITY {
            let ptr = self.insert_fit(key, val);
            Ok((InsertResult::Fit(Handle::new_kv(self.node, self.idx)), ptr))
        } else {
            let middle = Handle::new_kv(self.node, B);
            let (mut left, k, v, mut right) = middle.split()?;
            let ptr = if self.idx <= B {
                unsafe { Handle::new_edge(left.reborrow_mut(), self.idx).insert_fit(key, val) }
            } else {
                unsafe {
                    Handle::new_edge(
                        right.as_mut().cast_unchecked::<marker::Leaf>(),
                        self.idx - (B + 1),
                    )
                    .insert_fit(key, val)
                }
            };
            Ok((InsertResult::Split(left, k, v, right), ptr))
        }
    }
}

impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> {
    /// Fixes the parent pointer and index in the child node below this edge. This is useful
    /// when the ordering of edges has been changed, such as in the various `insert` methods.
    fn correct_parent_link(mut self) {
        let idx = self.idx as u16;
        let ptr = self.node.as_internal_mut() as *mut _;
        let mut child = self.descend();
        unsafe {
            (*child.as_leaf_mut()).parent = ptr;
            (*child.as_leaf_mut()).parent_idx.write(idx);
        }
    }

    /// Unsafely asserts to the compiler some static information about whether the underlying
    /// node of this handle is a `Leaf`.
    unsafe fn cast_unchecked<NewType>(
        &mut self,
    ) -> Handle<NodeRef<marker::Mut<'_>, K, V, NewType>, marker::Edge> {
        Handle::new_edge(self.node.cast_unchecked(), self.idx)
    }

    /// Inserts a new key/value pair and an edge that will go to the right of that new pair
    /// between this edge and the key/value pair to the right of this edge. This method assumes
    /// that there is enough space in the node for the new pair to fit.
    fn insert_fit(&mut self, key: K, val: V, edge: Root<K, V>) {
        // Necessary for correctness, but in an internal module
        debug_assert!(self.node.len() < CAPACITY);
        debug_assert!(edge.height == self.node.height - 1);

        unsafe {
            // This cast is a lie, but it allows us to reuse the key/value insertion logic.
            self.cast_unchecked::<marker::Leaf>().insert_fit(key, val);

            slice_insert(
                slice::from_raw_parts_mut(
                    MaybeUninit::slice_as_mut_ptr(&mut self.node.as_internal_mut().edges),
                    self.node.len(),
                ),
                self.idx + 1,
                edge.node,
            );

            for i in (self.idx + 1)..(self.node.len() + 1) {
                Handle::new_edge(self.node.reborrow_mut(), i).correct_parent_link();
            }
        }
    }

    /// Inserts a new key/value pair and an edge that will go to the right of that new pair
    /// between this edge and the key/value pair to the right of this edge. This method splits
    /// the node if there isn't enough room.
    pub fn insert(
        mut self,
        key: K,
        val: V,
        edge: Root<K, V>,
    ) -> Result<InsertResult<'a, K, V, marker::Internal>, TryReserveError> {
        // Necessary for correctness, but this is an internal module
        debug_assert!(edge.height == self.node.height - 1);

        if self.node.len() < CAPACITY {
            self.insert_fit(key, val, edge);
            Ok(InsertResult::Fit(Handle::new_kv(self.node, self.idx)))
        } else {
            let middle = Handle::new_kv(self.node, B);
            let (mut left, k, v, mut right) = middle.split()?;
            if self.idx <= B {
                unsafe {
                    Handle::new_edge(left.reborrow_mut(), self.idx).insert_fit(key, val, edge);
                }
            } else {
                unsafe {
                    Handle::new_edge(
                        right.as_mut().cast_unchecked::<marker::Internal>(),
                        self.idx - (B + 1),
                    )
                    .insert_fit(key, val, edge);
                }
            }
            Ok(InsertResult::Split(left, k, v, right))
        }
    }
}

impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge> {
    /// Finds the node pointed to by this edge.
    ///
    /// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should
    /// both, upon success, do nothing.
    pub fn descend(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
        NodeRef {
            height: self.node.height - 1,
            node: unsafe {
                (&*self
                    .node
                    .as_internal()
                    .edges
                    .get_unchecked(self.idx)
                    .as_ptr())
                    .as_ptr()
            },
            root: self.node.root,
            _marker: PhantomData,
        }
    }
}

impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Immut<'a>, K, V, NodeType>, marker::KV> {
    pub fn into_kv(self) -> (&'a K, &'a V) {
        let (keys, vals) = self.node.into_slices();
        unsafe { (keys.get_unchecked(self.idx), vals.get_unchecked(self.idx)) }
    }
}

impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> {
    pub fn into_kv_mut(self) -> (&'a mut K, &'a mut V) {
        let (keys, vals) = self.node.into_slices_mut();
        unsafe {
            (
                keys.as_mut_ptr().add(self.idx).as_mut().unwrap(),
                vals.as_mut_ptr().add(self.idx).as_mut().unwrap(),
            )
        }
    }
}

impl<'a, K, V, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> {
    pub fn kv_mut(&mut self) -> (&mut K, &mut V) {
        unsafe {
            let (keys, vals) = self.node.reborrow_mut().into_slices_mut();
            (
                keys.as_mut_ptr().add(self.idx).as_mut().unwrap(),
                vals.as_mut_ptr().add(self.idx).as_mut().unwrap(),
            )
        }
    }
}

impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV> {
    /// Splits the underlying node into three parts:
    ///
    /// - The node is truncated to only contain the key/value pairs to the right of
    ///   this handle.
    /// - The key and value pointed to by this handle and extracted.
    /// - All the key/value pairs to the right of this handle are put into a newly
    ///   allocated node.
    pub fn split(
        mut self,
    ) -> Result<
        (
            NodeRef<marker::Mut<'a>, K, V, marker::Leaf>,
            K,
            V,
            Root<K, V>,
        ),
        TryReserveError,
    > {
        debug_assert!(!self.node.is_shared_root());
        unsafe {
            let mut new_node = <Box<_> as FallibleBox<_>>::try_new(LeafNode::new())?;

            let k = ptr::read(self.node.keys().get_unchecked(self.idx));
            let v = ptr::read(self.node.vals().get_unchecked(self.idx));

            let new_len = self.node.len() - self.idx - 1;

            ptr::copy_nonoverlapping(
                self.node.keys().as_ptr().add(self.idx + 1),
                new_node.keys.as_mut_ptr() as *mut K,
                new_len,
            );
            ptr::copy_nonoverlapping(
                self.node.vals().as_ptr().add(self.idx + 1),
                new_node.vals.as_mut_ptr() as *mut V,
                new_len,
            );

            (*self.node.as_leaf_mut()).len = self.idx as u16;
            new_node.len = new_len as u16;

            Ok((
                self.node,
                k,
                v,
                Root {
                    node: BoxedNode::from_leaf(new_node),
                    height: 0,
                },
            ))
        }
    }

    /// Removes the key/value pair pointed to by this handle, returning the edge between the
    /// now adjacent key/value pairs to the left and right of this handle.
    pub fn remove(
        mut self,
    ) -> (
        Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>,
        K,
        V,
    ) {
        debug_assert!(!self.node.is_shared_root());
        unsafe {
            let k = slice_remove(self.node.keys_mut(), self.idx);
            let v = slice_remove(self.node.vals_mut(), self.idx);
            (*self.node.as_leaf_mut()).len -= 1;
            (self.left_edge(), k, v)
        }
    }
}

impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV> {
    /// Splits the underlying node into three parts:
    ///
    /// - The node is truncated to only contain the edges and key/value pairs to the
    ///   right of this handle.
    /// - The key and value pointed to by this handle and extracted.
    /// - All the edges and key/value pairs to the right of this handle are put into
    ///   a newly allocated node.
    pub fn split(
        mut self,
    ) -> Result<
        (
            NodeRef<marker::Mut<'a>, K, V, marker::Internal>,
            K,
            V,
            Root<K, V>,
        ),
        TryReserveError,
    > {
        unsafe {
            let mut new_node = <Box<_> as FallibleBox<_>>::try_new(InternalNode::new())?;

            let k = ptr::read(self.node.keys().get_unchecked(self.idx));
            let v = ptr::read(self.node.vals().get_unchecked(self.idx));

            let height = self.node.height;
            let new_len = self.node.len() - self.idx - 1;

            ptr::copy_nonoverlapping(
                self.node.keys().as_ptr().add(self.idx + 1),
                new_node.data.keys.as_mut_ptr() as *mut K,
                new_len,
            );
            ptr::copy_nonoverlapping(
                self.node.vals().as_ptr().add(self.idx + 1),
                new_node.data.vals.as_mut_ptr() as *mut V,
                new_len,
            );
            ptr::copy_nonoverlapping(
                self.node.as_internal().edges.as_ptr().add(self.idx + 1),
                new_node.edges.as_mut_ptr(),
                new_len + 1,
            );

            (*self.node.as_leaf_mut()).len = self.idx as u16;
            new_node.data.len = new_len as u16;

            let mut new_root = Root {
                node: BoxedNode::from_internal(new_node),
                height,
            };

            for i in 0..(new_len + 1) {
                Handle::new_edge(new_root.as_mut().cast_unchecked(), i).correct_parent_link();
            }

            Ok((self.node, k, v, new_root))
        }
    }

    /// Returns `true` if it is valid to call `.merge()`, i.e., whether there is enough room in
    /// a node to hold the combination of the nodes to the left and right of this handle along
    /// with the key/value pair at this handle.
    pub fn can_merge(&self) -> bool {
        (self.reborrow().left_edge().descend().len()
            + self.reborrow().right_edge().descend().len()
            + 1)
            <= CAPACITY
    }

    /// Combines the node immediately to the left of this handle, the key/value pair pointed
    /// to by this handle, and the node immediately to the right of this handle into one new
    /// child of the underlying node, returning an edge referencing that new child.
    ///
    /// Assumes that this edge `.can_merge()`.
    pub fn merge(
        mut self,
    ) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> {
        let self1 = unsafe { ptr::read(&self) };
        let self2 = unsafe { ptr::read(&self) };
        let mut left_node = self1.left_edge().descend();
        let left_len = left_node.len();
        let mut right_node = self2.right_edge().descend();
        let right_len = right_node.len();

        // necessary for correctness, but in a private module
        debug_assert!(left_len + right_len + 1 <= CAPACITY);

        unsafe {
            ptr::write(
                left_node.keys_mut().as_mut_ptr().add(left_len),
                slice_remove(self.node.keys_mut(), self.idx),
            );
            ptr::copy_nonoverlapping(
                right_node.keys().as_ptr(),
                left_node.keys_mut().as_mut_ptr().add(left_len + 1),
                right_len,
            );
            ptr::write(
                left_node.vals_mut().as_mut_ptr().add(left_len),
                slice_remove(self.node.vals_mut(), self.idx),
            );
            ptr::copy_nonoverlapping(
                right_node.vals().as_ptr(),
                left_node.vals_mut().as_mut_ptr().add(left_len + 1),
                right_len,
            );

            slice_remove(&mut self.node.as_internal_mut().edges, self.idx + 1);
            for i in self.idx + 1..self.node.len() {
                Handle::new_edge(self.node.reborrow_mut(), i).correct_parent_link();
            }
            (*self.node.as_leaf_mut()).len -= 1;

            (*left_node.as_leaf_mut()).len += right_len as u16 + 1;

            if self.node.height > 1 {
                ptr::copy_nonoverlapping(
                    right_node.cast_unchecked().as_internal().edges.as_ptr(),
                    left_node
                        .cast_unchecked()
                        .as_internal_mut()
                        .edges
                        .as_mut_ptr()
                        .add(left_len + 1),
                    right_len + 1,
                );

                for i in left_len + 1..left_len + right_len + 2 {
                    Handle::new_edge(left_node.cast_unchecked().reborrow_mut(), i)
                        .correct_parent_link();
                }

                Global.deallocate(right_node.node.cast(), Layout::new::<InternalNode<K, V>>());
            } else {
                Global.deallocate(right_node.node.cast(), Layout::new::<LeafNode<K, V>>());
            }

            Handle::new_edge(self.node, self.idx)
        }
    }

    /// This removes a key/value pair from the left child and replaces it with the key/value pair
    /// pointed to by this handle while pushing the old key/value pair of this handle into the right
    /// child.
    pub fn steal_left(&mut self) {
        unsafe {
            let (k, v, edge) = self.reborrow_mut().left_edge().descend().pop();

            let k = mem::replace(self.reborrow_mut().into_kv_mut().0, k);
            let v = mem::replace(self.reborrow_mut().into_kv_mut().1, v);

            match self.reborrow_mut().right_edge().descend().force() {
                ForceResult::Leaf(mut leaf) => leaf.push_front(k, v),
                ForceResult::Internal(mut internal) => internal.push_front(k, v, edge.unwrap()),
            }
        }
    }

    /// This removes a key/value pair from the right child and replaces it with the key/value pair
    /// pointed to by this handle while pushing the old key/value pair of this handle into the left
    /// child.
    pub fn steal_right(&mut self) {
        unsafe {
            let (k, v, edge) = self.reborrow_mut().right_edge().descend().pop_front();

            let k = mem::replace(self.reborrow_mut().into_kv_mut().0, k);
            let v = mem::replace(self.reborrow_mut().into_kv_mut().1, v);

            match self.reborrow_mut().left_edge().descend().force() {
                ForceResult::Leaf(mut leaf) => leaf.push(k, v),
                ForceResult::Internal(mut internal) => internal.push(k, v, edge.unwrap()),
            }
        }
    }

    /// This does stealing similar to `steal_left` but steals multiple elements at once.
    pub fn bulk_steal_left(&mut self, count: usize) {
        unsafe {
            let mut left_node = ptr::read(self).left_edge().descend();
            let left_len = left_node.len();
            let mut right_node = ptr::read(self).right_edge().descend();
            let right_len = right_node.len();

            // Make sure that we may steal safely.
            debug_assert!(right_len + count <= CAPACITY);
            debug_assert!(left_len >= count);

            let new_left_len = left_len - count;

            // Move data.
            {
                let left_kv = left_node.reborrow_mut().into_kv_pointers_mut();
                let right_kv = right_node.reborrow_mut().into_kv_pointers_mut();
                let parent_kv = {
                    let kv = self.reborrow_mut().into_kv_mut();
                    (kv.0 as *mut K, kv.1 as *mut V)
                };

                // Make room for stolen elements in the right child.
                ptr::copy(right_kv.0, right_kv.0.add(count), right_len);
                ptr::copy(right_kv.1, right_kv.1.add(count), right_len);

                // Move elements from the left child to the right one.
                move_kv(left_kv, new_left_len + 1, right_kv, 0, count - 1);

                // Move parent's key/value pair to the right child.
                move_kv(parent_kv, 0, right_kv, count - 1, 1);

                // Move the left-most stolen pair to the parent.
                move_kv(left_kv, new_left_len, parent_kv, 0, 1);
            }

            (*left_node.reborrow_mut().as_leaf_mut()).len -= count as u16;
            (*right_node.reborrow_mut().as_leaf_mut()).len += count as u16;

            match (left_node.force(), right_node.force()) {
                (ForceResult::Internal(left), ForceResult::Internal(mut right)) => {
                    // Make room for stolen edges.
                    let right_edges = right.reborrow_mut().as_internal_mut().edges.as_mut_ptr();
                    ptr::copy(right_edges, right_edges.add(count), right_len + 1);
                    right.correct_childrens_parent_links(count, count + right_len + 1);

                    move_edges(left, new_left_len + 1, right, 0, count);
                }
                (ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
                _ => {
                    unreachable!();
                }
            }
        }
    }

    /// The symmetric clone of `bulk_steal_left`.
    pub fn bulk_steal_right(&mut self, count: usize) {
        unsafe {
            let mut left_node = ptr::read(self).left_edge().descend();
            let left_len = left_node.len();
            let mut right_node = ptr::read(self).right_edge().descend();
            let right_len = right_node.len();

            // Make sure that we may steal safely.
            debug_assert!(left_len + count <= CAPACITY);
            debug_assert!(right_len >= count);

            let new_right_len = right_len - count;

            // Move data.
            {
                let left_kv = left_node.reborrow_mut().into_kv_pointers_mut();
                let right_kv = right_node.reborrow_mut().into_kv_pointers_mut();
                let parent_kv = {
                    let kv = self.reborrow_mut().into_kv_mut();
                    (kv.0 as *mut K, kv.1 as *mut V)
                };

                // Move parent's key/value pair to the left child.
                move_kv(parent_kv, 0, left_kv, left_len, 1);

                // Move elements from the right child to the left one.
                move_kv(right_kv, 0, left_kv, left_len + 1, count - 1);

                // Move the right-most stolen pair to the parent.
                move_kv(right_kv, count - 1, parent_kv, 0, 1);

                // Fix right indexing
                ptr::copy(right_kv.0.add(count), right_kv.0, new_right_len);
                ptr::copy(right_kv.1.add(count), right_kv.1, new_right_len);
            }

            (*left_node.reborrow_mut().as_leaf_mut()).len += count as u16;
            (*right_node.reborrow_mut().as_leaf_mut()).len -= count as u16;

            match (left_node.force(), right_node.force()) {
                (ForceResult::Internal(left), ForceResult::Internal(mut right)) => {
                    move_edges(right.reborrow_mut(), 0, left, left_len + 1, count);

                    // Fix right indexing.
                    let right_edges = right.reborrow_mut().as_internal_mut().edges.as_mut_ptr();
                    ptr::copy(right_edges.add(count), right_edges, new_right_len + 1);
                    right.correct_childrens_parent_links(0, new_right_len + 1);
                }
                (ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
                _ => {
                    unreachable!();
                }
            }
        }
    }
}

unsafe fn move_kv<K, V>(
    source: (*mut K, *mut V),
    source_offset: usize,
    dest: (*mut K, *mut V),
    dest_offset: usize,
    count: usize,
) {
    ptr::copy_nonoverlapping(source.0.add(source_offset), dest.0.add(dest_offset), count);
    ptr::copy_nonoverlapping(source.1.add(source_offset), dest.1.add(dest_offset), count);
}

// Source and destination must have the same height.
unsafe fn move_edges<K, V>(
    mut source: NodeRef<marker::Mut<'_>, K, V, marker::Internal>,
    source_offset: usize,
    mut dest: NodeRef<marker::Mut<'_>, K, V, marker::Internal>,
    dest_offset: usize,
    count: usize,
) {
    let source_ptr = source.as_internal_mut().edges.as_mut_ptr();
    let dest_ptr = dest.as_internal_mut().edges.as_mut_ptr();
    ptr::copy_nonoverlapping(
        source_ptr.add(source_offset),
        dest_ptr.add(dest_offset),
        count,
    );
    dest.correct_childrens_parent_links(dest_offset, dest_offset + count);
}

impl<BorrowType, K, V, HandleType>
    Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, HandleType>
{
    /// Checks whether the underlying node is an `Internal` node or a `Leaf` node.
    pub fn force(
        self,
    ) -> ForceResult<
        Handle<NodeRef<BorrowType, K, V, marker::Leaf>, HandleType>,
        Handle<NodeRef<BorrowType, K, V, marker::Internal>, HandleType>,
    > {
        match self.node.force() {
            ForceResult::Leaf(node) => ForceResult::Leaf(Handle {
                node,
                idx: self.idx,
                _marker: PhantomData,
            }),
            ForceResult::Internal(node) => ForceResult::Internal(Handle {
                node,
                idx: self.idx,
                _marker: PhantomData,
            }),
        }
    }
}

impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> {
    /// Move the suffix after `self` from one node to another one. `right` must be empty.
    /// The first edge of `right` remains unchanged.
    pub fn move_suffix(
        &mut self,
        right: &mut NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
    ) {
        unsafe {
            let left_new_len = self.idx;
            let mut left_node = self.reborrow_mut().into_node();

            let right_new_len = left_node.len() - left_new_len;
            let mut right_node = right.reborrow_mut();

            debug_assert!(right_node.len() == 0);
            debug_assert!(left_node.height == right_node.height);

            let left_kv = left_node.reborrow_mut().into_kv_pointers_mut();
            let right_kv = right_node.reborrow_mut().into_kv_pointers_mut();

            move_kv(left_kv, left_new_len, right_kv, 0, right_new_len);

            (*left_node.reborrow_mut().as_leaf_mut()).len = left_new_len as u16;
            (*right_node.reborrow_mut().as_leaf_mut()).len = right_new_len as u16;

            match (left_node.force(), right_node.force()) {
                (ForceResult::Internal(left), ForceResult::Internal(right)) => {
                    move_edges(left, left_new_len + 1, right, 1, right_new_len);
                }
                (ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
                _ => {
                    unreachable!();
                }
            }
        }
    }
}

pub enum ForceResult<Leaf, Internal> {
    Leaf(Leaf),
    Internal(Internal),
}

pub enum InsertResult<'a, K, V, Type> {
    Fit(Handle<NodeRef<marker::Mut<'a>, K, V, Type>, marker::KV>),
    Split(NodeRef<marker::Mut<'a>, K, V, Type>, K, V, Root<K, V>),
}

pub mod marker {
    use core::marker::PhantomData;

    pub enum Leaf {}
    pub enum Internal {}
    pub enum LeafOrInternal {}

    pub enum Owned {}
    pub struct Immut<'a>(PhantomData<&'a ()>);
    pub struct Mut<'a>(PhantomData<&'a mut ()>);

    pub enum KV {}
    pub enum Edge {}
}

unsafe fn slice_insert<T>(slice: &mut [T], idx: usize, val: T) {
    ptr::copy(
        slice.as_ptr().add(idx),
        slice.as_mut_ptr().add(idx + 1),
        slice.len() - idx,
    );
    ptr::write(slice.as_mut_ptr().add(idx), val);
}

unsafe fn slice_remove<T>(slice: &mut [T], idx: usize) -> T {
    let ret = ptr::read(slice.get_unchecked(idx));
    ptr::copy(
        slice.as_ptr().add(idx + 1),
        slice.as_mut_ptr().add(idx),
        slice.len() - idx - 1,
    );
    ret
}