1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
//! Generic array are commonly used as a return value for hash digests, so
//! it's a good idea to allow to hexlify them easily. This module implements
//! `std::fmt::LowerHex` and `std::fmt::UpperHex` traits.
//!
//! Example:
//!
//! ```rust
//! # #[macro_use]
//! # extern crate generic_array;
//! # extern crate typenum;
//! # fn main() {
//! let array = arr![u8; 10, 20, 30];
//! assert_eq!(format!("{:x}", array), "0a141e");
//! # }
//! ```
//!
use core::{fmt, str, ops::Add, cmp::min};
use typenum::*;
use crate::{ArrayLength, GenericArray};
static LOWER_CHARS: &'static [u8] = b"0123456789abcdef";
static UPPER_CHARS: &'static [u8] = b"0123456789ABCDEF";
impl<T: ArrayLength<u8>> fmt::LowerHex for GenericArray<u8, T>
where
T: Add<T>,
<T as Add<T>>::Output: ArrayLength<u8>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let max_digits = f.precision().unwrap_or_else(|| self.len() * 2);
let max_hex = (max_digits >> 1) + (max_digits & 1);
if T::USIZE < 1024 {
// For small arrays use a stack allocated
// buffer of 2x number of bytes
let mut res = GenericArray::<u8, Sum<T, T>>::default();
self.iter().take(max_hex).enumerate().for_each(|(i, c)| {
res[i * 2] = LOWER_CHARS[(c >> 4) as usize];
res[i * 2 + 1] = LOWER_CHARS[(c & 0xF) as usize];
});
f.write_str(unsafe { str::from_utf8_unchecked(&res[..max_digits]) })?;
} else {
// For large array use chunks of up to 1024 bytes (2048 hex chars)
let mut buf = [0u8; 2048];
let mut digits_left = max_digits;
for chunk in self[..max_hex].chunks(1024) {
chunk.iter().enumerate().for_each(|(i, c)| {
buf[i * 2] = LOWER_CHARS[(c >> 4) as usize];
buf[i * 2 + 1] = LOWER_CHARS[(c & 0xF) as usize];
});
let n = min(chunk.len() * 2, digits_left);
f.write_str(unsafe { str::from_utf8_unchecked(&buf[..n]) })?;
digits_left -= n;
}
}
Ok(())
}
}
impl<T: ArrayLength<u8>> fmt::UpperHex for GenericArray<u8, T>
where
T: Add<T>,
<T as Add<T>>::Output: ArrayLength<u8>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let max_digits = f.precision().unwrap_or_else(|| self.len() * 2);
let max_hex = (max_digits >> 1) + (max_digits & 1);
if T::USIZE < 1024 {
// For small arrays use a stack allocated
// buffer of 2x number of bytes
let mut res = GenericArray::<u8, Sum<T, T>>::default();
self.iter().take(max_hex).enumerate().for_each(|(i, c)| {
res[i * 2] = UPPER_CHARS[(c >> 4) as usize];
res[i * 2 + 1] = UPPER_CHARS[(c & 0xF) as usize];
});
f.write_str(unsafe { str::from_utf8_unchecked(&res[..max_digits]) })?;
} else {
// For large array use chunks of up to 1024 bytes (2048 hex chars)
let mut buf = [0u8; 2048];
let mut digits_left = max_digits;
for chunk in self[..max_hex].chunks(1024) {
chunk.iter().enumerate().for_each(|(i, c)| {
buf[i * 2] = UPPER_CHARS[(c >> 4) as usize];
buf[i * 2 + 1] = UPPER_CHARS[(c & 0xF) as usize];
});
let n = min(chunk.len() * 2, digits_left);
f.write_str(unsafe { str::from_utf8_unchecked(&buf[..n]) })?;
digits_left -= n;
}
}
Ok(())
}
}
|