1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
|
//! GLSL abstract syntax tree and grammar.
//!
//! This module exports all the grammar syntax that defines GLSL. You’ll be handling ASTs
//! representing your GLSL source.
//!
//! The most external form of a GLSL parsed AST is [`TranslationUnit`] (a shader). Some parts of the
//! tree are *boxed*. This is due to two facts:
//!
//! - Recursion is used, hence we need a way to give our types a static size.
//! - Because of some very deep variants, runtime size would explode if no indirection weren’t
//! in place.
//!
//! The types are commented so feel free to inspect each of theme. As a starter, you should read
//! the documentation of [`Expr`], [`FunctionDefinition`], [`Statement`] and [`TranslationUnit`].
//!
//! [`Statement`]: crate::syntax::Statement
//! [`TranslationUnit`]: crate::syntax::TranslationUnit
//! [`Expr`]: crate::syntax::Expr
//! [`FunctionDefinition`]: crate::syntax::FunctionDefinition
use std::fmt;
use std::iter::{once, FromIterator};
use std::ops::{Deref, DerefMut};
/// A non-empty [`Vec`]. It has at least one element.
#[derive(Clone, Debug, PartialEq)]
pub struct NonEmpty<T>(pub Vec<T>);
impl<T> NonEmpty<T> {
/// Construct a non-empty from an iterator.
///
/// # Errors
///
/// `None` if the iterator yields no value.
pub fn from_non_empty_iter<I>(iter: I) -> Option<Self>
where
I: IntoIterator<Item = T>,
{
let vec: Vec<_> = iter.into_iter().collect();
if vec.is_empty() {
None
} else {
Some(NonEmpty(vec))
}
}
/// Move a new item at the end of the non-empty.
pub fn push(&mut self, item: T) {
self.0.push(item);
}
/// Move out the last element of the non-empty.
///
/// # Errors
///
/// This function returns `None` if called on a non-empty that contains a single element.
pub fn pop(&mut self) -> Option<T> {
if self.0.len() == 1 {
None
} else {
self.0.pop()
}
}
}
impl<T> IntoIterator for NonEmpty<T> {
type IntoIter = <Vec<T> as IntoIterator>::IntoIter;
type Item = T;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl<'a, T> IntoIterator for &'a NonEmpty<T> {
type IntoIter = <&'a Vec<T> as IntoIterator>::IntoIter;
type Item = &'a T;
fn into_iter(self) -> Self::IntoIter {
self.0.iter()
}
}
impl<'a, T> IntoIterator for &'a mut NonEmpty<T> {
type IntoIter = <&'a mut Vec<T> as IntoIterator>::IntoIter;
type Item = &'a mut T;
fn into_iter(self) -> Self::IntoIter {
self.0.iter_mut()
}
}
impl<T> Extend<T> for NonEmpty<T> {
fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = T>,
{
self.0.extend(iter);
}
}
/// A path literal.
#[derive(Clone, Debug, PartialEq)]
pub enum Path {
/// Specified with angle brackets.
Absolute(String),
/// Specified with double quotes.
Relative(String),
}
/// Error that might occur when creating a new [`Identifier`].
#[derive(Debug)]
pub enum IdentifierError {
StartsWithDigit,
ContainsNonASCIIAlphaNum,
}
impl std::error::Error for IdentifierError {}
impl fmt::Display for IdentifierError {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
match *self {
IdentifierError::StartsWithDigit => f.write_str("starts starts with a digit"),
IdentifierError::ContainsNonASCIIAlphaNum => {
f.write_str("contains at least one non-alphanumeric ASCII character")
}
}
}
}
/// A generic identifier.
#[derive(Clone, Debug, PartialEq)]
pub struct Identifier(pub String);
impl Identifier {
/// Create a new [`Identifier`].
///
/// # Errors
///
/// This function will fail if the identifier starts with a digit or contains non-alphanumeric
/// ASCII characters.
pub fn new<N>(name: N) -> Result<Self, IdentifierError>
where
N: Into<String>,
{
let name = name.into();
if name
.chars()
.next()
.map(|c| c.is_ascii_alphabetic() || c == '_')
== Some(false)
{
// check the first letter is not a digit
Err(IdentifierError::StartsWithDigit)
} else if name.contains(|c: char| !(c.is_ascii_alphanumeric() || c == '_')) {
// check we only have ASCII alphanumeric characters
Err(IdentifierError::ContainsNonASCIIAlphaNum)
} else {
Ok(Identifier(name))
}
}
/// Get the string representation of the identifier.
pub fn as_str(&self) -> &str {
&self.0
}
}
impl<'a> From<&'a str> for Identifier {
fn from(s: &str) -> Self {
Identifier(s.to_owned())
}
}
impl From<String> for Identifier {
fn from(s: String) -> Self {
Identifier(s)
}
}
impl fmt::Display for Identifier {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
self.0.fmt(f)
}
}
/// Any type name.
#[derive(Clone, Debug, PartialEq)]
pub struct TypeName(pub String);
impl TypeName {
/// Create a new [`TypeName`].
///
/// # Errors
///
/// This function will fail if the type name starts with a digit or contains non-alphanumeric
/// ASCII characters.
pub fn new<N>(name: N) -> Result<Self, IdentifierError>
where
N: Into<String>,
{
// build as identifier and unwrap into type name
let Identifier(tn) = Identifier::new(name)?;
Ok(TypeName(tn))
}
/// Get the string representation of the type name.
pub fn as_str(&self) -> &str {
&self.0
}
}
impl<'a> From<&'a str> for TypeName {
fn from(s: &str) -> Self {
TypeName(s.to_owned())
}
}
impl From<String> for TypeName {
fn from(s: String) -> Self {
TypeName(s)
}
}
impl fmt::Display for TypeName {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
self.0.fmt(f)
}
}
/// Type specifier (non-array).
#[derive(Clone, Debug, PartialEq)]
pub enum TypeSpecifierNonArray {
// transparent types
Void,
Bool,
Int,
UInt,
Float,
Double,
Vec2,
Vec3,
Vec4,
DVec2,
DVec3,
DVec4,
BVec2,
BVec3,
BVec4,
IVec2,
IVec3,
IVec4,
UVec2,
UVec3,
UVec4,
Mat2,
Mat3,
Mat4,
Mat23,
Mat24,
Mat32,
Mat34,
Mat42,
Mat43,
DMat2,
DMat3,
DMat4,
DMat23,
DMat24,
DMat32,
DMat34,
DMat42,
DMat43,
// floating point opaque types
Sampler1D,
Image1D,
Sampler2D,
Image2D,
Sampler3D,
Image3D,
SamplerCube,
ImageCube,
Sampler2DRect,
Image2DRect,
Sampler1DArray,
Image1DArray,
Sampler2DArray,
Image2DArray,
SamplerBuffer,
ImageBuffer,
Sampler2DMS,
Image2DMS,
Sampler2DMSArray,
Image2DMSArray,
SamplerCubeArray,
ImageCubeArray,
Sampler1DShadow,
Sampler2DShadow,
Sampler2DRectShadow,
Sampler1DArrayShadow,
Sampler2DArrayShadow,
SamplerCubeShadow,
SamplerCubeArrayShadow,
// signed integer opaque types
ISampler1D,
IImage1D,
ISampler2D,
IImage2D,
ISampler3D,
IImage3D,
ISamplerCube,
IImageCube,
ISampler2DRect,
IImage2DRect,
ISampler1DArray,
IImage1DArray,
ISampler2DArray,
IImage2DArray,
ISamplerBuffer,
IImageBuffer,
ISampler2DMS,
IImage2DMS,
ISampler2DMSArray,
IImage2DMSArray,
ISamplerCubeArray,
IImageCubeArray,
// unsigned integer opaque types
AtomicUInt,
USampler1D,
UImage1D,
USampler2D,
UImage2D,
USampler3D,
UImage3D,
USamplerCube,
UImageCube,
USampler2DRect,
UImage2DRect,
USampler1DArray,
UImage1DArray,
USampler2DArray,
UImage2DArray,
USamplerBuffer,
UImageBuffer,
USampler2DMS,
UImage2DMS,
USampler2DMSArray,
UImage2DMSArray,
USamplerCubeArray,
UImageCubeArray,
Struct(StructSpecifier),
TypeName(TypeName),
}
/// Type specifier.
#[derive(Clone, Debug, PartialEq)]
pub struct TypeSpecifier {
pub ty: TypeSpecifierNonArray,
pub array_specifier: Option<ArraySpecifier>,
}
impl TypeSpecifier {
pub fn new(ty: TypeSpecifierNonArray) -> Self {
TypeSpecifier {
ty,
array_specifier: None,
}
}
}
impl From<TypeSpecifierNonArray> for TypeSpecifier {
fn from(ty: TypeSpecifierNonArray) -> Self {
TypeSpecifier::new(ty)
}
}
/// Struct specifier. Used to create new, user-defined types.
#[derive(Clone, Debug, PartialEq)]
pub struct StructSpecifier {
pub name: Option<TypeName>,
pub fields: NonEmpty<StructFieldSpecifier>,
}
/// Struct field specifier. Used to add fields to struct specifiers.
#[derive(Clone, Debug, PartialEq)]
pub struct StructFieldSpecifier {
pub qualifier: Option<TypeQualifier>,
pub ty: TypeSpecifier,
pub identifiers: NonEmpty<ArrayedIdentifier>, // several identifiers of the same type
}
impl StructFieldSpecifier {
/// Create a struct field.
pub fn new<A, T>(identifier: A, ty: T) -> Self
where
A: Into<ArrayedIdentifier>,
T: Into<TypeSpecifier>,
{
StructFieldSpecifier {
qualifier: None,
ty: ty.into(),
identifiers: NonEmpty(vec![identifier.into()]),
}
}
/// Create a list of struct fields that all have the same type.
pub fn new_many<I>(identifiers: I, ty: TypeSpecifier) -> Self
where
I: IntoIterator<Item = ArrayedIdentifier>,
{
StructFieldSpecifier {
qualifier: None,
ty,
identifiers: NonEmpty(identifiers.into_iter().collect()),
}
}
}
/// An identifier with an optional array specifier.
#[derive(Clone, Debug, PartialEq)]
pub struct ArrayedIdentifier {
pub ident: Identifier,
pub array_spec: Option<ArraySpecifier>,
}
impl ArrayedIdentifier {
pub fn new<I, AS>(ident: I, array_spec: AS) -> Self
where
I: Into<Identifier>,
AS: Into<Option<ArraySpecifier>>,
{
ArrayedIdentifier {
ident: ident.into(),
array_spec: array_spec.into(),
}
}
}
impl<'a> From<&'a str> for ArrayedIdentifier {
fn from(ident: &str) -> Self {
ArrayedIdentifier {
ident: Identifier(ident.to_owned()),
array_spec: None,
}
}
}
impl From<Identifier> for ArrayedIdentifier {
fn from(ident: Identifier) -> Self {
ArrayedIdentifier {
ident,
array_spec: None,
}
}
}
/// Type qualifier.
#[derive(Clone, Debug, PartialEq)]
pub struct TypeQualifier {
pub qualifiers: NonEmpty<TypeQualifierSpec>,
}
/// Type qualifier spec.
#[derive(Clone, Debug, PartialEq)]
pub enum TypeQualifierSpec {
Storage(StorageQualifier),
Layout(LayoutQualifier),
Precision(PrecisionQualifier),
Interpolation(InterpolationQualifier),
Invariant,
Precise,
}
/// Storage qualifier.
#[derive(Clone, Debug, PartialEq)]
pub enum StorageQualifier {
Const,
InOut,
In,
Out,
Centroid,
Patch,
Sample,
Uniform,
Attribute,
Varying,
Buffer,
Shared,
Coherent,
Volatile,
Restrict,
ReadOnly,
WriteOnly,
Subroutine(Vec<TypeName>),
}
/// Layout qualifier.
#[derive(Clone, Debug, PartialEq)]
pub struct LayoutQualifier {
pub ids: NonEmpty<LayoutQualifierSpec>,
}
/// Layout qualifier spec.
#[derive(Clone, Debug, PartialEq)]
pub enum LayoutQualifierSpec {
Identifier(Identifier, Option<Box<Expr>>),
Shared,
}
/// Precision qualifier.
#[derive(Clone, Debug, PartialEq)]
pub enum PrecisionQualifier {
High,
Medium,
Low,
}
/// Interpolation qualifier.
#[derive(Clone, Debug, PartialEq)]
pub enum InterpolationQualifier {
Smooth,
Flat,
NoPerspective,
}
/// Fully specified type.
#[derive(Clone, Debug, PartialEq)]
pub struct FullySpecifiedType {
pub qualifier: Option<TypeQualifier>,
pub ty: TypeSpecifier,
}
impl FullySpecifiedType {
pub fn new(ty: TypeSpecifierNonArray) -> Self {
FullySpecifiedType {
qualifier: None,
ty: TypeSpecifier {
ty,
array_specifier: None,
},
}
}
}
impl From<TypeSpecifierNonArray> for FullySpecifiedType {
fn from(ty: TypeSpecifierNonArray) -> Self {
FullySpecifiedType::new(ty)
}
}
/// Dimensionality of an array.
#[derive(Clone, Debug, PartialEq)]
pub struct ArraySpecifier {
/// List of all the dimensions – possibly unsized or explicitly-sized.
pub dimensions: NonEmpty<ArraySpecifierDimension>,
}
/// One array specifier dimension.
#[derive(Clone, Debug, PartialEq)]
pub enum ArraySpecifierDimension {
Unsized,
ExplicitlySized(Box<Expr>),
}
/// A declaration.
#[derive(Clone, Debug, PartialEq)]
pub enum Declaration {
FunctionPrototype(FunctionPrototype),
InitDeclaratorList(InitDeclaratorList),
Precision(PrecisionQualifier, TypeSpecifier),
Block(Block),
Global(TypeQualifier, Vec<Identifier>),
}
/// A general purpose block, containing fields and possibly a list of declared identifiers. Semantic
/// is given with the storage qualifier.
#[derive(Clone, Debug, PartialEq)]
pub struct Block {
pub qualifier: TypeQualifier,
pub name: Identifier,
pub fields: Vec<StructFieldSpecifier>,
pub identifier: Option<ArrayedIdentifier>,
}
/// Function identifier.
#[derive(Clone, Debug, PartialEq)]
pub enum FunIdentifier {
Identifier(Identifier),
Expr(Box<Expr>),
}
impl FunIdentifier {
pub(crate) fn into_expr(self) -> Option<Expr> {
match self {
FunIdentifier::Identifier(..) => None,
FunIdentifier::Expr(expr) => Some(*expr),
}
}
}
/// Function prototype.
#[derive(Clone, Debug, PartialEq)]
pub struct FunctionPrototype {
pub ty: FullySpecifiedType,
pub name: Identifier,
pub parameters: Vec<FunctionParameterDeclaration>,
}
/// Function parameter declaration.
#[derive(Clone, Debug, PartialEq)]
pub enum FunctionParameterDeclaration {
Named(Option<TypeQualifier>, FunctionParameterDeclarator),
Unnamed(Option<TypeQualifier>, TypeSpecifier),
}
impl FunctionParameterDeclaration {
/// Create a named function argument.
pub fn new_named<I, T>(ident: I, ty: T) -> Self
where
I: Into<ArrayedIdentifier>,
T: Into<TypeSpecifier>,
{
let declator = FunctionParameterDeclarator {
ty: ty.into(),
ident: ident.into(),
};
FunctionParameterDeclaration::Named(None, declator)
}
/// Create an unnamed function argument (mostly useful for interfaces / function prototypes).
pub fn new_unnamed<T>(ty: T) -> Self
where
T: Into<TypeSpecifier>,
{
FunctionParameterDeclaration::Unnamed(None, ty.into())
}
}
/// Function parameter declarator.
#[derive(Clone, Debug, PartialEq)]
pub struct FunctionParameterDeclarator {
pub ty: TypeSpecifier,
pub ident: ArrayedIdentifier,
}
/// Init declarator list.
#[derive(Clone, Debug, PartialEq)]
pub struct InitDeclaratorList {
pub head: SingleDeclaration,
pub tail: Vec<SingleDeclarationNoType>,
}
/// Single declaration.
#[derive(Clone, Debug, PartialEq)]
pub struct SingleDeclaration {
pub ty: FullySpecifiedType,
pub name: Option<Identifier>,
pub array_specifier: Option<ArraySpecifier>,
pub initializer: Option<Initializer>,
}
/// A single declaration with implicit, already-defined type.
#[derive(Clone, Debug, PartialEq)]
pub struct SingleDeclarationNoType {
pub ident: ArrayedIdentifier,
pub initializer: Option<Initializer>,
}
/// Initializer.
#[derive(Clone, Debug, PartialEq)]
pub enum Initializer {
Simple(Box<Expr>),
List(NonEmpty<Initializer>),
}
impl From<Expr> for Initializer {
fn from(e: Expr) -> Self {
Initializer::Simple(Box::new(e))
}
}
/// The most general form of an expression. As you can see if you read the variant list, in GLSL, an
/// assignment is an expression. This is a bit silly but think of an assignment as a statement first
/// then an expression which evaluates to what the statement “returns”.
///
/// An expression is either an assignment or a list (comma) of assignments.
#[derive(Clone, Debug, PartialEq)]
pub enum Expr {
/// A variable expression, using an identifier.
Variable(Identifier),
/// Integral constant expression.
IntConst(i32),
/// Unsigned integral constant expression.
UIntConst(u32),
/// Boolean constant expression.
BoolConst(bool),
/// Single precision floating expression.
FloatConst(f32),
/// Double precision floating expression.
DoubleConst(f64),
/// A unary expression, gathering a single expression and a unary operator.
Unary(UnaryOp, Box<Expr>),
/// A binary expression, gathering two expressions and a binary operator.
Binary(BinaryOp, Box<Expr>, Box<Expr>),
/// A ternary conditional expression, gathering three expressions.
Ternary(Box<Expr>, Box<Expr>, Box<Expr>),
/// An assignment is also an expression. Gathers an expression that defines what to assign to, an
/// assignment operator and the value to associate with.
Assignment(Box<Expr>, AssignmentOp, Box<Expr>),
/// Add an array specifier to an expression.
Bracket(Box<Expr>, ArraySpecifier),
/// A functional call. It has a function identifier and a list of expressions (arguments).
FunCall(FunIdentifier, Vec<Expr>),
/// An expression associated with a field selection (struct).
Dot(Box<Expr>, Identifier),
/// Post-incrementation of an expression.
PostInc(Box<Expr>),
/// Post-decrementation of an expression.
PostDec(Box<Expr>),
/// An expression that contains several, separated with comma.
Comma(Box<Expr>, Box<Expr>),
}
impl From<i32> for Expr {
fn from(x: i32) -> Expr {
Expr::IntConst(x)
}
}
impl From<u32> for Expr {
fn from(x: u32) -> Expr {
Expr::UIntConst(x)
}
}
impl From<bool> for Expr {
fn from(x: bool) -> Expr {
Expr::BoolConst(x)
}
}
impl From<f32> for Expr {
fn from(x: f32) -> Expr {
Expr::FloatConst(x)
}
}
impl From<f64> for Expr {
fn from(x: f64) -> Expr {
Expr::DoubleConst(x)
}
}
/// All unary operators that exist in GLSL.
#[derive(Clone, Debug, PartialEq)]
pub enum UnaryOp {
Inc,
Dec,
Add,
Minus,
Not,
Complement,
}
/// All binary operators that exist in GLSL.
#[derive(Clone, Debug, PartialEq)]
pub enum BinaryOp {
Or,
Xor,
And,
BitOr,
BitXor,
BitAnd,
Equal,
NonEqual,
LT,
GT,
LTE,
GTE,
LShift,
RShift,
Add,
Sub,
Mult,
Div,
Mod,
}
/// All possible operators for assigning expressions.
#[derive(Clone, Debug, PartialEq)]
pub enum AssignmentOp {
Equal,
Mult,
Div,
Mod,
Add,
Sub,
LShift,
RShift,
And,
Xor,
Or,
}
/// Starting rule.
#[derive(Clone, Debug, PartialEq)]
pub struct TranslationUnit(pub NonEmpty<ExternalDeclaration>);
/// A shader stage.
pub type ShaderStage = TranslationUnit;
impl TranslationUnit {
/// Construct a translation unit from an iterator representing a _non-empty_ sequence of
/// [`ExternalDeclaration`].
///
/// # Errors
///
/// `None` if the iterator yields no value.
pub fn from_non_empty_iter<I>(iter: I) -> Option<Self>
where
I: IntoIterator<Item = ExternalDeclaration>,
{
NonEmpty::from_non_empty_iter(iter).map(TranslationUnit)
}
}
impl Deref for TranslationUnit {
type Target = NonEmpty<ExternalDeclaration>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for TranslationUnit {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl IntoIterator for TranslationUnit {
type IntoIter = <NonEmpty<ExternalDeclaration> as IntoIterator>::IntoIter;
type Item = ExternalDeclaration;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl<'a> IntoIterator for &'a TranslationUnit {
type IntoIter = <&'a NonEmpty<ExternalDeclaration> as IntoIterator>::IntoIter;
type Item = &'a ExternalDeclaration;
fn into_iter(self) -> Self::IntoIter {
(&self.0).into_iter()
}
}
impl<'a> IntoIterator for &'a mut TranslationUnit {
type IntoIter = <&'a mut NonEmpty<ExternalDeclaration> as IntoIterator>::IntoIter;
type Item = &'a mut ExternalDeclaration;
fn into_iter(self) -> Self::IntoIter {
(&mut self.0).into_iter()
}
}
/// External declaration.
#[derive(Clone, Debug, PartialEq)]
pub enum ExternalDeclaration {
Preprocessor(Preprocessor),
FunctionDefinition(FunctionDefinition),
Declaration(Declaration),
}
impl ExternalDeclaration {
/// Create a new function.
pub fn new_fn<T, N, A, S>(ret_ty: T, name: N, args: A, body: S) -> Self
where
T: Into<FullySpecifiedType>,
N: Into<Identifier>,
A: IntoIterator<Item = FunctionParameterDeclaration>,
S: IntoIterator<Item = Statement>,
{
ExternalDeclaration::FunctionDefinition(FunctionDefinition {
prototype: FunctionPrototype {
ty: ret_ty.into(),
name: name.into(),
parameters: args.into_iter().collect(),
},
statement: CompoundStatement {
statement_list: body.into_iter().collect(),
},
})
}
/// Create a new structure.
///
/// # Errors
///
/// - [`None`] if no fields are provided. GLSL forbids having empty structs.
pub fn new_struct<N, F>(name: N, fields: F) -> Option<Self>
where
N: Into<TypeName>,
F: IntoIterator<Item = StructFieldSpecifier>,
{
let fields: Vec<_> = fields.into_iter().collect();
if fields.is_empty() {
None
} else {
Some(ExternalDeclaration::Declaration(
Declaration::InitDeclaratorList(InitDeclaratorList {
head: SingleDeclaration {
ty: FullySpecifiedType {
qualifier: None,
ty: TypeSpecifier {
ty: TypeSpecifierNonArray::Struct(StructSpecifier {
name: Some(name.into()),
fields: NonEmpty(fields.into_iter().collect()),
}),
array_specifier: None,
},
},
name: None,
array_specifier: None,
initializer: None,
},
tail: vec![],
}),
))
}
}
}
/// Function definition.
#[derive(Clone, Debug, PartialEq)]
pub struct FunctionDefinition {
pub prototype: FunctionPrototype,
pub statement: CompoundStatement,
}
/// Compound statement (with no new scope).
#[derive(Clone, Debug, PartialEq)]
pub struct CompoundStatement {
pub statement_list: Vec<Statement>,
}
impl FromIterator<Statement> for CompoundStatement {
fn from_iter<T>(iter: T) -> Self
where
T: IntoIterator<Item = Statement>,
{
CompoundStatement {
statement_list: iter.into_iter().collect(),
}
}
}
/// Statement.
#[derive(Clone, Debug, PartialEq)]
pub enum Statement {
Compound(Box<CompoundStatement>),
Simple(Box<SimpleStatement>),
}
impl Statement {
/// Create a case-label sequence of nested statements.
pub fn new_case<C, S>(case: C, statements: S) -> Self
where
C: Into<CaseLabel>,
S: IntoIterator<Item = Statement>,
{
let case_stmt = Statement::Simple(Box::new(SimpleStatement::CaseLabel(case.into())));
Statement::Compound(Box::new(CompoundStatement {
statement_list: once(case_stmt).chain(statements.into_iter()).collect(),
}))
}
/// Declare a new variable.
///
/// `ty` is the type of the variable, `name` the name of the binding to create,
/// `array_specifier` an optional argument to make your binding an array and
/// `initializer`
pub fn declare_var<T, N, A, I>(ty: T, name: N, array_specifier: A, initializer: I) -> Self
where
T: Into<FullySpecifiedType>,
N: Into<Identifier>,
A: Into<Option<ArraySpecifier>>,
I: Into<Option<Initializer>>,
{
Statement::Simple(Box::new(SimpleStatement::Declaration(
Declaration::InitDeclaratorList(InitDeclaratorList {
head: SingleDeclaration {
ty: ty.into(),
name: Some(name.into()),
array_specifier: array_specifier.into(),
initializer: initializer.into(),
},
tail: Vec::new(),
}),
)))
}
}
/// Simple statement.
#[derive(Clone, Debug, PartialEq)]
pub enum SimpleStatement {
Declaration(Declaration),
Expression(ExprStatement),
Selection(SelectionStatement),
Switch(SwitchStatement),
CaseLabel(CaseLabel),
Iteration(IterationStatement),
Jump(JumpStatement),
}
impl SimpleStatement {
/// Create a new expression statement.
pub fn new_expr<E>(expr: E) -> Self
where
E: Into<Expr>,
{
SimpleStatement::Expression(Some(expr.into()))
}
/// Create a new selection statement (if / else).
pub fn new_if_else<If, True, False>(ife: If, truee: True, falsee: False) -> Self
where
If: Into<Expr>,
True: Into<Statement>,
False: Into<Statement>,
{
SimpleStatement::Selection(SelectionStatement {
cond: Box::new(ife.into()),
rest: SelectionRestStatement::Else(Box::new(truee.into()), Box::new(falsee.into())),
})
}
/// Create a new switch statement.
///
/// A switch statement is always composed of a [`SimpleStatement::Switch`] block, that contains it
/// all, and has as body a compound list of case statements.
pub fn new_switch<H, B>(head: H, body: B) -> Self
where
H: Into<Expr>,
B: IntoIterator<Item = Statement>,
{
SimpleStatement::Switch(SwitchStatement {
head: Box::new(head.into()),
body: body.into_iter().collect(),
})
}
/// Create a new while statement.
pub fn new_while<C, S>(cond: C, body: S) -> Self
where
C: Into<Condition>,
S: Into<Statement>,
{
SimpleStatement::Iteration(IterationStatement::While(
cond.into(),
Box::new(body.into()),
))
}
/// Create a new do-while statement.
pub fn new_do_while<C, S>(body: S, cond: C) -> Self
where
S: Into<Statement>,
C: Into<Expr>,
{
SimpleStatement::Iteration(IterationStatement::DoWhile(
Box::new(body.into()),
Box::new(cond.into()),
))
}
}
/// Expression statement.
pub type ExprStatement = Option<Expr>;
/// Selection statement.
#[derive(Clone, Debug, PartialEq)]
pub struct SelectionStatement {
pub cond: Box<Expr>,
pub rest: SelectionRestStatement,
}
/// Condition.
#[derive(Clone, Debug, PartialEq)]
pub enum Condition {
Expr(Box<Expr>),
Assignment(FullySpecifiedType, Identifier, Initializer),
}
impl From<Expr> for Condition {
fn from(expr: Expr) -> Self {
Condition::Expr(Box::new(expr))
}
}
/// Selection rest statement.
#[derive(Clone, Debug, PartialEq)]
pub enum SelectionRestStatement {
/// Body of the if.
Statement(Box<Statement>),
/// The first argument is the body of the if, the rest is the next statement.
Else(Box<Statement>, Box<Statement>),
}
/// Switch statement.
#[derive(Clone, Debug, PartialEq)]
pub struct SwitchStatement {
pub head: Box<Expr>,
pub body: Vec<Statement>,
}
/// Case label statement.
#[derive(Clone, Debug, PartialEq)]
pub enum CaseLabel {
Case(Box<Expr>),
Def,
}
/// Iteration statement.
#[derive(Clone, Debug, PartialEq)]
pub enum IterationStatement {
While(Condition, Box<Statement>),
DoWhile(Box<Statement>, Box<Expr>),
For(ForInitStatement, ForRestStatement, Box<Statement>),
}
/// For init statement.
#[derive(Clone, Debug, PartialEq)]
pub enum ForInitStatement {
Expression(Option<Expr>),
Declaration(Box<Declaration>),
}
/// For init statement.
#[derive(Clone, Debug, PartialEq)]
pub struct ForRestStatement {
pub condition: Option<Condition>,
pub post_expr: Option<Box<Expr>>,
}
/// Jump statement.
#[derive(Clone, Debug, PartialEq)]
pub enum JumpStatement {
Continue,
Break,
Return(Option<Box<Expr>>),
Discard,
}
/// Some basic preprocessor directives.
///
/// As it’s important to carry them around the AST because they cannot be substituted in a normal
/// preprocessor (they’re used by GPU’s compilers), those preprocessor directives are available for
/// inspection.
#[derive(Clone, Debug, PartialEq)]
pub enum Preprocessor {
Define(PreprocessorDefine),
Else,
ElseIf(PreprocessorElseIf),
EndIf,
Error(PreprocessorError),
If(PreprocessorIf),
IfDef(PreprocessorIfDef),
IfNDef(PreprocessorIfNDef),
Include(PreprocessorInclude),
Line(PreprocessorLine),
Pragma(PreprocessorPragma),
Undef(PreprocessorUndef),
Version(PreprocessorVersion),
Extension(PreprocessorExtension),
}
/// A #define preprocessor directive.
///
/// Allows any expression but only Integer and Float literals make sense
#[derive(Clone, Debug, PartialEq)]
pub enum PreprocessorDefine {
ObjectLike {
ident: Identifier,
value: String,
},
FunctionLike {
ident: Identifier,
args: Vec<Identifier>,
value: String,
},
}
/// An #else preprocessor directive.
#[derive(Clone, Debug, PartialEq)]
pub struct PreprocessorElseIf {
pub condition: String,
}
/// An #error preprocessor directive.
#[derive(Clone, Debug, PartialEq)]
pub struct PreprocessorError {
pub message: String,
}
/// An #if preprocessor directive.
#[derive(Clone, Debug, PartialEq)]
pub struct PreprocessorIf {
pub condition: String,
}
/// An #ifdef preprocessor directive.
#[derive(Clone, Debug, PartialEq)]
pub struct PreprocessorIfDef {
pub ident: Identifier,
}
/// A #ifndef preprocessor directive.
#[derive(Clone, Debug, PartialEq)]
pub struct PreprocessorIfNDef {
pub ident: Identifier,
}
/// An #include name annotation.
#[derive(Clone, Debug, PartialEq)]
pub struct PreprocessorInclude {
pub path: Path,
}
/// A #line preprocessor directive.
#[derive(Clone, Debug, PartialEq)]
pub struct PreprocessorLine {
pub line: u32,
pub source_string_number: Option<u32>,
}
/// A #pragma preprocessor directive.
/// Holds compiler-specific command.
#[derive(Clone, Debug, PartialEq)]
pub struct PreprocessorPragma {
pub command: String,
}
/// A #undef preprocessor directive.
#[derive(Clone, Debug, PartialEq)]
pub struct PreprocessorUndef {
pub name: Identifier,
}
/// A #version preprocessor directive.
#[derive(Clone, Debug, PartialEq)]
pub struct PreprocessorVersion {
pub version: u16,
pub profile: Option<PreprocessorVersionProfile>,
}
/// A #version profile annotation.
#[derive(Clone, Debug, PartialEq)]
pub enum PreprocessorVersionProfile {
Core,
Compatibility,
ES,
}
/// An #extension preprocessor directive.
#[derive(Clone, Debug, PartialEq)]
pub struct PreprocessorExtension {
pub name: PreprocessorExtensionName,
pub behavior: Option<PreprocessorExtensionBehavior>,
}
/// An #extension name annotation.
#[derive(Clone, Debug, PartialEq)]
pub enum PreprocessorExtensionName {
/// All extensions you could ever imagine in your whole lifetime (how crazy is that!).
All,
/// A specific extension.
Specific(String),
}
/// An #extension behavior annotation.
#[derive(Clone, Debug, PartialEq)]
pub enum PreprocessorExtensionBehavior {
Require,
Enable,
Warn,
Disable,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn create_new_identifier() {
assert!(Identifier::new("foo_bar").is_ok());
assert!(Identifier::new("3foo_bar").is_err());
assert!(Identifier::new("FooBar").is_ok());
assert!(Identifier::new("_FooBar").is_ok());
assert!(Identifier::new("foo3").is_ok());
assert!(Identifier::new("foo3_").is_ok());
assert!(Identifier::new("fδo3_").is_err());
}
#[test]
fn create_new_type_name() {
assert!(TypeName::new("foo_bar").is_ok());
assert!(TypeName::new("FooBar").is_ok());
assert!(TypeName::new("foo3").is_ok());
assert!(TypeName::new("foo3_").is_ok());
assert!(TypeName::new("_FooBar").is_ok());
assert!(TypeName::new("3foo_bar").is_err());
assert!(TypeName::new("fδo3_").is_err());
}
// bool predicate(float x) {
// }
#[test]
fn declare_new_fn() {
let _ = ExternalDeclaration::new_fn(
TypeSpecifierNonArray::Bool,
"predicate",
vec![FunctionParameterDeclaration::new_named(
"x",
TypeSpecifierNonArray::Float,
)],
vec![],
);
}
// struct Point2D {
// float x;
// float y;
// };
#[test]
fn declare_struct() {
let point = ExternalDeclaration::new_struct(
"Point2D",
vec![
StructFieldSpecifier::new("x", TypeSpecifierNonArray::Double),
StructFieldSpecifier::new("y", TypeSpecifierNonArray::Double),
],
);
assert!(point.is_some());
}
// struct Point2D {};
#[test]
fn declare_bad_struct() {
let point = ExternalDeclaration::new_struct("Point2D", vec![]);
assert!(point.is_none());
}
#[test]
fn initializer_from_expr() {
let _: Initializer = Expr::from(false).into();
}
}
|