1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
|
//! # Relocation computations
//!
//! The following notation is used to describe relocation computations
//! specific to x86_64 ELF.
//!
//! * A: The addend used to compute the value of the relocatable field.
//! * B: The base address at which a shared object is loaded into memory
//! during execution. Generally, a shared object file is built with a
//! base virtual address of 0. However, the execution address of the
//! shared object is different.
//! * G: The offset into the global offset table at which the address of
//! the relocation entry's symbol resides during execution.
//! * GOT: The address of the global offset table.
//! * L: The section offset or address of the procedure linkage table entry
//! for a symbol.
//! * P: The section offset or address of the storage unit being relocated,
//! computed using r_offset.
//! * S: The value of the symbol whose index resides in the relocation entry.
//! * Z: The size of the symbol whose index resides in the relocation entry.
//!
//! Below are some common x86_64 relocation computations you might find useful:
//!
//! | Relocation | Value | Size | Formula |
//! |:--------------------------|:------|:----------|:------------------|
//! | `R_X86_64_NONE` | 0 | NONE | NONE |
//! | `R_X86_64_64` | 1 | 64 | S + A |
//! | `R_X86_64_PC32` | 2 | 32 | S + A - P |
//! | `R_X86_64_GOT32` | 3 | 32 | G + A |
//! | `R_X86_64_PLT32` | 4 | 32 | L + A - P |
//! | `R_X86_64_COPY` | 5 | NONE | NONE |
//! | `R_X86_64_GLOB_DAT` | 6 | 64 | S |
//! | `R_X86_64_JUMP_SLOT` | 7 | 64 | S |
//! | `R_X86_64_RELATIVE` | 8 | 64 | B + A |
//! | `R_X86_64_GOTPCREL` | 9 | 32 | G + GOT + A - P |
//! | `R_X86_64_32` | 10 | 32 | S + A |
//! | `R_X86_64_32S` | 11 | 32 | S + A |
//! | `R_X86_64_16` | 12 | 16 | S + A |
//! | `R_X86_64_PC16` | 13 | 16 | S + A - P |
//! | `R_X86_64_8` | 14 | 8 | S + A |
//! | `R_X86_64_PC8` | 15 | 8 | S + A - P |
//! | `R_X86_64_DTPMOD64` | 16 | 64 | |
//! | `R_X86_64_DTPOFF64` | 17 | 64 | |
//! | `R_X86_64_TPOFF64` | 18 | 64 | |
//! | `R_X86_64_TLSGD` | 19 | 32 | |
//! | `R_X86_64_TLSLD` | 20 | 32 | |
//! | `R_X86_64_DTPOFF32` | 21 | 32 | |
//! | `R_X86_64_GOTTPOFF` | 22 | 32 | |
//! | `R_X86_64_TPOFF32` | 23 | 32 | |
//! | `R_X86_64_PC64` | 24 | 64 | S + A - P |
//! | `R_X86_64_GOTOFF64` | 25 | 64 | S + A - GOT |
//! | `R_X86_64_GOTPC32` | 26 | 32 | GOT + A - P |
//! | `R_X86_64_SIZE32` | 32 | 32 | Z + A |
//! | `R_X86_64_SIZE64` | 33 | 64 | Z + A |
//! | `R_X86_64_GOTPC32_TLSDESC`| 34 | 32 | |
//! | `R_X86_64_TLSDESC_CALL` | 35 | NONE | |
//! | `R_X86_64_TLSDESC` | 36 | 64 × 2 | |
//! | `R_X86_64_IRELATIVE` | 37 | 64 | indirect (B + A) |
//!
//! TLS information is at http://people.redhat.com/aoliva/writeups/TLS/RFC-TLSDESC-x86.txt
//!
//! `R_X86_64_IRELATIVE` is similar to `R_X86_64_RELATIVE` except that
//! the value used in this relocation is the program address returned by the function,
//! which takes no arguments, at the address of the result of the corresponding
//! `R_X86_64_RELATIVE` relocation.
//!
//! Read more https://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-54839.html
include!("constants_relocation.rs");
macro_rules! elf_reloc {
($size:ident, $isize:ty) => {
use core::fmt;
#[cfg(feature = "alloc")]
use scroll::{Pread, Pwrite, SizeWith};
#[repr(C)]
#[derive(Clone, Copy, PartialEq, Default)]
#[cfg_attr(feature = "alloc", derive(Pread, Pwrite, SizeWith))]
/// Relocation with an explicit addend
pub struct Rela {
/// Address
pub r_offset: $size,
/// Relocation type and symbol index
pub r_info: $size,
/// Addend
pub r_addend: $isize,
}
#[repr(C)]
#[derive(Clone, PartialEq, Default)]
#[cfg_attr(feature = "alloc", derive(Pread, Pwrite, SizeWith))]
/// Relocation without an addend
pub struct Rel {
/// address
pub r_offset: $size,
/// relocation type and symbol address
pub r_info: $size,
}
use plain;
unsafe impl plain::Plain for Rela {}
unsafe impl plain::Plain for Rel {}
impl fmt::Debug for Rela {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let sym = r_sym(self.r_info);
let typ = r_type(self.r_info);
f.debug_struct("Rela")
.field("r_offset", &format_args!("{:x}", self.r_offset))
.field("r_info", &format_args!("{:x}", self.r_info))
.field("r_addend", &format_args!("{:x}", self.r_addend))
.field("r_typ", &typ)
.field("r_sym", &sym)
.finish()
}
}
impl fmt::Debug for Rel {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let sym = r_sym(self.r_info);
let typ = r_type(self.r_info);
f.debug_struct("Rel")
.field("r_offset", &format_args!("{:x}", self.r_offset))
.field("r_info", &format_args!("{:x}", self.r_info))
.field("r_typ", &typ)
.field("r_sym", &sym)
.finish()
}
}
};
}
macro_rules! elf_rela_std_impl {
($size:ident, $isize:ty) => {
if_alloc! {
use crate::elf::reloc::Reloc;
use core::slice;
if_std! {
use crate::error::Result;
use std::fs::File;
use std::io::{Read, Seek};
use std::io::SeekFrom::Start;
}
impl From<Rela> for Reloc {
fn from(rela: Rela) -> Self {
Reloc {
r_offset: u64::from(rela.r_offset),
r_addend: Some(i64::from(rela.r_addend)),
r_sym: r_sym(rela.r_info) as usize,
r_type: r_type(rela.r_info),
}
}
}
impl From<Rel> for Reloc {
fn from(rel: Rel) -> Self {
Reloc {
r_offset: u64::from(rel.r_offset),
r_addend: None,
r_sym: r_sym(rel.r_info) as usize,
r_type: r_type(rel.r_info),
}
}
}
impl From<Reloc> for Rela {
fn from(rela: Reloc) -> Self {
let r_info = r_info(rela.r_sym as $size, $size::from(rela.r_type));
Rela {
r_offset: rela.r_offset as $size,
r_info: r_info,
r_addend: rela.r_addend.unwrap_or(0) as $isize,
}
}
}
impl From<Reloc> for Rel {
fn from(rel: Reloc) -> Self {
let r_info = r_info(rel.r_sym as $size, $size::from(rel.r_type));
Rel {
r_offset: rel.r_offset as $size,
r_info: r_info,
}
}
}
/// Gets the rela entries given a rela pointer and the _size_ of the rela section in the binary,
/// in bytes.
/// Assumes the pointer is valid and can safely return a slice of memory pointing to the relas because:
/// 1. `ptr` points to memory received from the kernel (i.e., it loaded the executable), _or_
/// 2. The binary has already been mmapped (i.e., it's a `SharedObject`), and hence it's safe to return a slice of that memory.
/// 3. Or if you obtained the pointer in some other lawful manner
pub unsafe fn from_raw_rela<'a>(ptr: *const Rela, size: usize) -> &'a [Rela] {
slice::from_raw_parts(ptr, size / SIZEOF_RELA)
}
/// Gets the rel entries given a rel pointer and the _size_ of the rel section in the binary,
/// in bytes.
/// Assumes the pointer is valid and can safely return a slice of memory pointing to the rels because:
/// 1. `ptr` points to memory received from the kernel (i.e., it loaded the executable), _or_
/// 2. The binary has already been mmapped (i.e., it's a `SharedObject`), and hence it's safe to return a slice of that memory.
/// 3. Or if you obtained the pointer in some other lawful manner
pub unsafe fn from_raw_rel<'a>(ptr: *const Rel, size: usize) -> &'a [Rel] {
slice::from_raw_parts(ptr, size / SIZEOF_REL)
}
#[cfg(feature = "std")]
pub fn from_fd(fd: &mut File, offset: usize, size: usize) -> Result<Vec<Rela>> {
let count = size / SIZEOF_RELA;
let mut relocs = vec![Rela::default(); count];
fd.seek(Start(offset as u64))?;
unsafe {
fd.read_exact(plain::as_mut_bytes(&mut *relocs))?;
}
Ok(relocs)
}
} // end if_alloc
};
}
pub mod reloc32 {
pub use crate::elf::reloc::*;
elf_reloc!(u32, i32);
pub const SIZEOF_RELA: usize = 4 + 4 + 4;
pub const SIZEOF_REL: usize = 4 + 4;
#[inline(always)]
pub fn r_sym(info: u32) -> u32 {
info >> 8
}
#[inline(always)]
pub fn r_type(info: u32) -> u32 {
info & 0xff
}
#[inline(always)]
pub fn r_info(sym: u32, typ: u32) -> u32 {
(sym << 8) + (typ & 0xff)
}
elf_rela_std_impl!(u32, i32);
}
pub mod reloc64 {
pub use crate::elf::reloc::*;
elf_reloc!(u64, i64);
pub const SIZEOF_RELA: usize = 8 + 8 + 8;
pub const SIZEOF_REL: usize = 8 + 8;
#[inline(always)]
pub fn r_sym(info: u64) -> u32 {
(info >> 32) as u32
}
#[inline(always)]
pub fn r_type(info: u64) -> u32 {
(info & 0xffff_ffff) as u32
}
#[inline(always)]
pub fn r_info(sym: u64, typ: u64) -> u64 {
(sym << 32) + typ
}
elf_rela_std_impl!(u64, i64);
}
//////////////////////////////
// Generic Reloc
/////////////////////////////
if_alloc! {
use scroll::{ctx, Pread};
use scroll::ctx::SizeWith;
use core::fmt;
use core::result;
use crate::container::{Ctx, Container};
use alloc::vec::Vec;
#[derive(Clone, Copy, PartialEq, Default)]
/// A unified ELF relocation structure
pub struct Reloc {
/// Address
pub r_offset: u64,
/// Addend
pub r_addend: Option<i64>,
/// The index into the corresponding symbol table - either dynamic or regular
pub r_sym: usize,
/// The relocation type
pub r_type: u32,
}
impl Reloc {
pub fn size(is_rela: bool, ctx: Ctx) -> usize {
use scroll::ctx::SizeWith;
Reloc::size_with(&(is_rela, ctx))
}
}
type RelocCtx = (bool, Ctx);
impl ctx::SizeWith<RelocCtx> for Reloc {
fn size_with( &(is_rela, Ctx { container, .. }): &RelocCtx) -> usize {
match container {
Container::Little => {
if is_rela { reloc32::SIZEOF_RELA } else { reloc32::SIZEOF_REL }
},
Container::Big => {
if is_rela { reloc64::SIZEOF_RELA } else { reloc64::SIZEOF_REL }
}
}
}
}
impl<'a> ctx::TryFromCtx<'a, RelocCtx> for Reloc {
type Error = crate::error::Error;
fn try_from_ctx(bytes: &'a [u8], (is_rela, Ctx { container, le }): RelocCtx) -> result::Result<(Self, usize), Self::Error> {
use scroll::Pread;
let reloc = match container {
Container::Little => {
if is_rela {
(bytes.pread_with::<reloc32::Rela>(0, le)?.into(), reloc32::SIZEOF_RELA)
} else {
(bytes.pread_with::<reloc32::Rel>(0, le)?.into(), reloc32::SIZEOF_REL)
}
},
Container::Big => {
if is_rela {
(bytes.pread_with::<reloc64::Rela>(0, le)?.into(), reloc64::SIZEOF_RELA)
} else {
(bytes.pread_with::<reloc64::Rel>(0, le)?.into(), reloc64::SIZEOF_REL)
}
}
};
Ok(reloc)
}
}
impl ctx::TryIntoCtx<RelocCtx> for Reloc {
type Error = crate::error::Error;
/// Writes the relocation into `bytes`
fn try_into_ctx(self, bytes: &mut [u8], (is_rela, Ctx {container, le}): RelocCtx) -> result::Result<usize, Self::Error> {
use scroll::Pwrite;
match container {
Container::Little => {
if is_rela {
let rela: reloc32::Rela = self.into();
Ok(bytes.pwrite_with(rela, 0, le)?)
} else {
let rel: reloc32::Rel = self.into();
Ok(bytes.pwrite_with(rel, 0, le)?)
}
},
Container::Big => {
if is_rela {
let rela: reloc64::Rela = self.into();
Ok(bytes.pwrite_with(rela, 0, le)?)
} else {
let rel: reloc64::Rel = self.into();
Ok(bytes.pwrite_with(rel, 0, le)?)
}
},
}
}
}
impl ctx::IntoCtx<(bool, Ctx)> for Reloc {
/// Writes the relocation into `bytes`
fn into_ctx(self, bytes: &mut [u8], ctx: RelocCtx) {
use scroll::Pwrite;
bytes.pwrite_with(self, 0, ctx).unwrap();
}
}
impl fmt::Debug for Reloc {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Reloc")
.field("r_offset", &format_args!("{:x}", self.r_offset))
.field("r_addend", &format_args!("{:x}", self.r_addend.unwrap_or(0)))
.field("r_sym", &self.r_sym)
.field("r_type", &self.r_type)
.finish()
}
}
#[derive(Default)]
/// An ELF section containing relocations, allowing lazy iteration over symbols.
pub struct RelocSection<'a> {
bytes: &'a [u8],
count: usize,
ctx: RelocCtx,
start: usize,
end: usize,
}
impl<'a> fmt::Debug for RelocSection<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let len = self.bytes.len();
fmt.debug_struct("RelocSection")
.field("bytes", &len)
.field("range", &format!("{:#x}..{:#x}", self.start, self.end))
.field("count", &self.count)
.field("Relocations", &self.to_vec())
.finish()
}
}
impl<'a> RelocSection<'a> {
#[cfg(feature = "endian_fd")]
/// Parse a REL or RELA section of size `filesz` from `offset`.
pub fn parse(bytes: &'a [u8], offset: usize, filesz: usize, is_rela: bool, ctx: Ctx) -> crate::error::Result<RelocSection<'a>> {
// TODO: better error message when too large (see symtab implementation)
let bytes = if filesz != 0 {
bytes.pread_with::<&'a [u8]>(offset, filesz)?
} else {
&[]
};
Ok(RelocSection {
bytes: bytes,
count: filesz / Reloc::size(is_rela, ctx),
ctx: (is_rela, ctx),
start: offset,
end: offset + filesz,
})
}
/// Try to parse a single relocation from the binary, at `index`.
#[inline]
pub fn get(&self, index: usize) -> Option<Reloc> {
if index >= self.count {
None
} else {
Some(self.bytes.pread_with(index * Reloc::size_with(&self.ctx), self.ctx).unwrap())
}
}
/// The number of relocations in the section.
#[inline]
pub fn len(&self) -> usize {
self.count
}
/// Returns true if section has no relocations.
#[inline]
pub fn is_empty(&self) -> bool {
self.count == 0
}
/// Iterate over all relocations.
pub fn iter(&self) -> RelocIterator<'a> {
self.into_iter()
}
/// Parse all relocations into a vector.
pub fn to_vec(&self) -> Vec<Reloc> {
self.iter().collect()
}
}
impl<'a, 'b> IntoIterator for &'b RelocSection<'a> {
type Item = <RelocIterator<'a> as Iterator>::Item;
type IntoIter = RelocIterator<'a>;
#[inline]
fn into_iter(self) -> Self::IntoIter {
RelocIterator {
bytes: self.bytes,
offset: 0,
index: 0,
count: self.count,
ctx: self.ctx,
}
}
}
pub struct RelocIterator<'a> {
bytes: &'a [u8],
offset: usize,
index: usize,
count: usize,
ctx: RelocCtx,
}
impl<'a> fmt::Debug for RelocIterator<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("RelocIterator")
.field("bytes", &"<... redacted ...>")
.field("offset", &self.offset)
.field("index", &self.index)
.field("count", &self.count)
.field("ctx", &self.ctx)
.finish()
}
}
impl<'a> Iterator for RelocIterator<'a> {
type Item = Reloc;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.index >= self.count {
None
} else {
self.index += 1;
Some(self.bytes.gread_with(&mut self.offset, self.ctx).unwrap())
}
}
}
impl<'a> ExactSizeIterator for RelocIterator<'a> {
#[inline]
fn len(&self) -> usize {
self.count - self.index
}
}
} // end if_alloc
|