summaryrefslogtreecommitdiffstats
path: root/third_party/rust/hashbrown/src/raw/mod.rs
blob: 211b818a5f6ab73239c065aa25f9164e45347b06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
use crate::alloc::alloc::{handle_alloc_error, Layout};
use crate::scopeguard::{guard, ScopeGuard};
use crate::TryReserveError;
use core::iter::FusedIterator;
use core::marker::PhantomData;
use core::mem;
use core::mem::ManuallyDrop;
use core::mem::MaybeUninit;
use core::ptr::NonNull;
use core::{hint, ptr};

cfg_if! {
    // Use the SSE2 implementation if possible: it allows us to scan 16 buckets
    // at once instead of 8. We don't bother with AVX since it would require
    // runtime dispatch and wouldn't gain us much anyways: the probability of
    // finding a match drops off drastically after the first few buckets.
    //
    // I attempted an implementation on ARM using NEON instructions, but it
    // turns out that most NEON instructions have multi-cycle latency, which in
    // the end outweighs any gains over the generic implementation.
    if #[cfg(all(
        target_feature = "sse2",
        any(target_arch = "x86", target_arch = "x86_64"),
        not(miri)
    ))] {
        mod sse2;
        use sse2 as imp;
    } else {
        #[path = "generic.rs"]
        mod generic;
        use generic as imp;
    }
}

mod alloc;
pub(crate) use self::alloc::{do_alloc, Allocator, Global};

mod bitmask;

use self::bitmask::{BitMask, BitMaskIter};
use self::imp::Group;

// Branch prediction hint. This is currently only available on nightly but it
// consistently improves performance by 10-15%.
#[cfg(feature = "nightly")]
use core::intrinsics::{likely, unlikely};

// On stable we can use #[cold] to get a equivalent effect: this attributes
// suggests that the function is unlikely to be called
#[cfg(not(feature = "nightly"))]
#[inline]
#[cold]
fn cold() {}

#[cfg(not(feature = "nightly"))]
#[inline]
fn likely(b: bool) -> bool {
    if !b {
        cold();
    }
    b
}
#[cfg(not(feature = "nightly"))]
#[inline]
fn unlikely(b: bool) -> bool {
    if b {
        cold();
    }
    b
}

#[inline]
unsafe fn offset_from<T>(to: *const T, from: *const T) -> usize {
    to.offset_from(from) as usize
}

/// Whether memory allocation errors should return an error or abort.
#[derive(Copy, Clone)]
enum Fallibility {
    Fallible,
    Infallible,
}

impl Fallibility {
    /// Error to return on capacity overflow.
    #[cfg_attr(feature = "inline-more", inline)]
    fn capacity_overflow(self) -> TryReserveError {
        match self {
            Fallibility::Fallible => TryReserveError::CapacityOverflow,
            Fallibility::Infallible => panic!("Hash table capacity overflow"),
        }
    }

    /// Error to return on allocation error.
    #[cfg_attr(feature = "inline-more", inline)]
    fn alloc_err(self, layout: Layout) -> TryReserveError {
        match self {
            Fallibility::Fallible => TryReserveError::AllocError { layout },
            Fallibility::Infallible => handle_alloc_error(layout),
        }
    }
}

/// Control byte value for an empty bucket.
const EMPTY: u8 = 0b1111_1111;

/// Control byte value for a deleted bucket.
const DELETED: u8 = 0b1000_0000;

/// Checks whether a control byte represents a full bucket (top bit is clear).
#[inline]
fn is_full(ctrl: u8) -> bool {
    ctrl & 0x80 == 0
}

/// Checks whether a control byte represents a special value (top bit is set).
#[inline]
fn is_special(ctrl: u8) -> bool {
    ctrl & 0x80 != 0
}

/// Checks whether a special control value is EMPTY (just check 1 bit).
#[inline]
fn special_is_empty(ctrl: u8) -> bool {
    debug_assert!(is_special(ctrl));
    ctrl & 0x01 != 0
}

/// Primary hash function, used to select the initial bucket to probe from.
#[inline]
#[allow(clippy::cast_possible_truncation)]
fn h1(hash: u64) -> usize {
    // On 32-bit platforms we simply ignore the higher hash bits.
    hash as usize
}

/// Secondary hash function, saved in the low 7 bits of the control byte.
#[inline]
#[allow(clippy::cast_possible_truncation)]
fn h2(hash: u64) -> u8 {
    // Grab the top 7 bits of the hash. While the hash is normally a full 64-bit
    // value, some hash functions (such as FxHash) produce a usize result
    // instead, which means that the top 32 bits are 0 on 32-bit platforms.
    let hash_len = usize::min(mem::size_of::<usize>(), mem::size_of::<u64>());
    let top7 = hash >> (hash_len * 8 - 7);
    (top7 & 0x7f) as u8 // truncation
}

/// Probe sequence based on triangular numbers, which is guaranteed (since our
/// table size is a power of two) to visit every group of elements exactly once.
///
/// A triangular probe has us jump by 1 more group every time. So first we
/// jump by 1 group (meaning we just continue our linear scan), then 2 groups
/// (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on.
///
/// Proof that the probe will visit every group in the table:
/// <https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/>
struct ProbeSeq {
    pos: usize,
    stride: usize,
}

impl ProbeSeq {
    #[inline]
    fn move_next(&mut self, bucket_mask: usize) {
        // We should have found an empty bucket by now and ended the probe.
        debug_assert!(
            self.stride <= bucket_mask,
            "Went past end of probe sequence"
        );

        self.stride += Group::WIDTH;
        self.pos += self.stride;
        self.pos &= bucket_mask;
    }
}

/// Returns the number of buckets needed to hold the given number of items,
/// taking the maximum load factor into account.
///
/// Returns `None` if an overflow occurs.
// Workaround for emscripten bug emscripten-core/emscripten-fastcomp#258
#[cfg_attr(target_os = "emscripten", inline(never))]
#[cfg_attr(not(target_os = "emscripten"), inline)]
fn capacity_to_buckets(cap: usize) -> Option<usize> {
    debug_assert_ne!(cap, 0);

    // For small tables we require at least 1 empty bucket so that lookups are
    // guaranteed to terminate if an element doesn't exist in the table.
    if cap < 8 {
        // We don't bother with a table size of 2 buckets since that can only
        // hold a single element. Instead we skip directly to a 4 bucket table
        // which can hold 3 elements.
        return Some(if cap < 4 { 4 } else { 8 });
    }

    // Otherwise require 1/8 buckets to be empty (87.5% load)
    //
    // Be careful when modifying this, calculate_layout relies on the
    // overflow check here.
    let adjusted_cap = cap.checked_mul(8)? / 7;

    // Any overflows will have been caught by the checked_mul. Also, any
    // rounding errors from the division above will be cleaned up by
    // next_power_of_two (which can't overflow because of the previous division).
    Some(adjusted_cap.next_power_of_two())
}

/// Returns the maximum effective capacity for the given bucket mask, taking
/// the maximum load factor into account.
#[inline]
fn bucket_mask_to_capacity(bucket_mask: usize) -> usize {
    if bucket_mask < 8 {
        // For tables with 1/2/4/8 buckets, we always reserve one empty slot.
        // Keep in mind that the bucket mask is one less than the bucket count.
        bucket_mask
    } else {
        // For larger tables we reserve 12.5% of the slots as empty.
        ((bucket_mask + 1) / 8) * 7
    }
}

/// Helper which allows the max calculation for ctrl_align to be statically computed for each T
/// while keeping the rest of `calculate_layout_for` independent of `T`
#[derive(Copy, Clone)]
struct TableLayout {
    size: usize,
    ctrl_align: usize,
}

impl TableLayout {
    #[inline]
    fn new<T>() -> Self {
        let layout = Layout::new::<T>();
        Self {
            size: layout.size(),
            ctrl_align: usize::max(layout.align(), Group::WIDTH),
        }
    }

    #[inline]
    fn calculate_layout_for(self, buckets: usize) -> Option<(Layout, usize)> {
        debug_assert!(buckets.is_power_of_two());

        let TableLayout { size, ctrl_align } = self;
        // Manual layout calculation since Layout methods are not yet stable.
        let ctrl_offset =
            size.checked_mul(buckets)?.checked_add(ctrl_align - 1)? & !(ctrl_align - 1);
        let len = ctrl_offset.checked_add(buckets + Group::WIDTH)?;

        Some((
            unsafe { Layout::from_size_align_unchecked(len, ctrl_align) },
            ctrl_offset,
        ))
    }
}

/// Returns a Layout which describes the allocation required for a hash table,
/// and the offset of the control bytes in the allocation.
/// (the offset is also one past last element of buckets)
///
/// Returns `None` if an overflow occurs.
#[cfg_attr(feature = "inline-more", inline)]
fn calculate_layout<T>(buckets: usize) -> Option<(Layout, usize)> {
    TableLayout::new::<T>().calculate_layout_for(buckets)
}

/// A reference to a hash table bucket containing a `T`.
///
/// This is usually just a pointer to the element itself. However if the element
/// is a ZST, then we instead track the index of the element in the table so
/// that `erase` works properly.
pub struct Bucket<T> {
    // Actually it is pointer to next element than element itself
    // this is needed to maintain pointer arithmetic invariants
    // keeping direct pointer to element introduces difficulty.
    // Using `NonNull` for variance and niche layout
    ptr: NonNull<T>,
}

// This Send impl is needed for rayon support. This is safe since Bucket is
// never exposed in a public API.
unsafe impl<T> Send for Bucket<T> {}

impl<T> Clone for Bucket<T> {
    #[inline]
    fn clone(&self) -> Self {
        Self { ptr: self.ptr }
    }
}

impl<T> Bucket<T> {
    #[inline]
    unsafe fn from_base_index(base: NonNull<T>, index: usize) -> Self {
        let ptr = if mem::size_of::<T>() == 0 {
            // won't overflow because index must be less than length
            (index + 1) as *mut T
        } else {
            base.as_ptr().sub(index)
        };
        Self {
            ptr: NonNull::new_unchecked(ptr),
        }
    }
    #[inline]
    unsafe fn to_base_index(&self, base: NonNull<T>) -> usize {
        if mem::size_of::<T>() == 0 {
            self.ptr.as_ptr() as usize - 1
        } else {
            offset_from(base.as_ptr(), self.ptr.as_ptr())
        }
    }
    #[inline]
    pub fn as_ptr(&self) -> *mut T {
        if mem::size_of::<T>() == 0 {
            // Just return an arbitrary ZST pointer which is properly aligned
            mem::align_of::<T>() as *mut T
        } else {
            unsafe { self.ptr.as_ptr().sub(1) }
        }
    }
    #[inline]
    unsafe fn next_n(&self, offset: usize) -> Self {
        let ptr = if mem::size_of::<T>() == 0 {
            (self.ptr.as_ptr() as usize + offset) as *mut T
        } else {
            self.ptr.as_ptr().sub(offset)
        };
        Self {
            ptr: NonNull::new_unchecked(ptr),
        }
    }
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn drop(&self) {
        self.as_ptr().drop_in_place();
    }
    #[inline]
    pub unsafe fn read(&self) -> T {
        self.as_ptr().read()
    }
    #[inline]
    pub unsafe fn write(&self, val: T) {
        self.as_ptr().write(val);
    }
    #[inline]
    pub unsafe fn as_ref<'a>(&self) -> &'a T {
        &*self.as_ptr()
    }
    #[inline]
    pub unsafe fn as_mut<'a>(&self) -> &'a mut T {
        &mut *self.as_ptr()
    }
    #[cfg(feature = "raw")]
    #[inline]
    pub unsafe fn copy_from_nonoverlapping(&self, other: &Self) {
        self.as_ptr().copy_from_nonoverlapping(other.as_ptr(), 1);
    }
}

/// A raw hash table with an unsafe API.
pub struct RawTable<T, A: Allocator + Clone = Global> {
    table: RawTableInner<A>,
    // Tell dropck that we own instances of T.
    marker: PhantomData<T>,
}

/// Non-generic part of `RawTable` which allows functions to be instantiated only once regardless
/// of how many different key-value types are used.
struct RawTableInner<A> {
    // Mask to get an index from a hash value. The value is one less than the
    // number of buckets in the table.
    bucket_mask: usize,

    // [Padding], T1, T2, ..., Tlast, C1, C2, ...
    //                                ^ points here
    ctrl: NonNull<u8>,

    // Number of elements that can be inserted before we need to grow the table
    growth_left: usize,

    // Number of elements in the table, only really used by len()
    items: usize,

    alloc: A,
}

impl<T> RawTable<T, Global> {
    /// Creates a new empty hash table without allocating any memory.
    ///
    /// In effect this returns a table with exactly 1 bucket. However we can
    /// leave the data pointer dangling since that bucket is never written to
    /// due to our load factor forcing us to always have at least 1 free bucket.
    #[inline]
    pub const fn new() -> Self {
        Self {
            table: RawTableInner::new_in(Global),
            marker: PhantomData,
        }
    }

    /// Attempts to allocate a new hash table with at least enough capacity
    /// for inserting the given number of elements without reallocating.
    #[cfg(feature = "raw")]
    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
        Self::try_with_capacity_in(capacity, Global)
    }

    /// Allocates a new hash table with at least enough capacity for inserting
    /// the given number of elements without reallocating.
    pub fn with_capacity(capacity: usize) -> Self {
        Self::with_capacity_in(capacity, Global)
    }
}

impl<T, A: Allocator + Clone> RawTable<T, A> {
    /// Creates a new empty hash table without allocating any memory, using the
    /// given allocator.
    ///
    /// In effect this returns a table with exactly 1 bucket. However we can
    /// leave the data pointer dangling since that bucket is never written to
    /// due to our load factor forcing us to always have at least 1 free bucket.
    #[inline]
    pub fn new_in(alloc: A) -> Self {
        Self {
            table: RawTableInner::new_in(alloc),
            marker: PhantomData,
        }
    }

    /// Allocates a new hash table with the given number of buckets.
    ///
    /// The control bytes are left uninitialized.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn new_uninitialized(
        alloc: A,
        buckets: usize,
        fallibility: Fallibility,
    ) -> Result<Self, TryReserveError> {
        debug_assert!(buckets.is_power_of_two());

        Ok(Self {
            table: RawTableInner::new_uninitialized(
                alloc,
                TableLayout::new::<T>(),
                buckets,
                fallibility,
            )?,
            marker: PhantomData,
        })
    }

    /// Attempts to allocate a new hash table with at least enough capacity
    /// for inserting the given number of elements without reallocating.
    fn fallible_with_capacity(
        alloc: A,
        capacity: usize,
        fallibility: Fallibility,
    ) -> Result<Self, TryReserveError> {
        Ok(Self {
            table: RawTableInner::fallible_with_capacity(
                alloc,
                TableLayout::new::<T>(),
                capacity,
                fallibility,
            )?,
            marker: PhantomData,
        })
    }

    /// Attempts to allocate a new hash table using the given allocator, with at least enough
    /// capacity for inserting the given number of elements without reallocating.
    #[cfg(feature = "raw")]
    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
        Self::fallible_with_capacity(alloc, capacity, Fallibility::Fallible)
    }

    /// Allocates a new hash table using the given allocator, with at least enough capacity for
    /// inserting the given number of elements without reallocating.
    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
        // Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
        match Self::fallible_with_capacity(alloc, capacity, Fallibility::Infallible) {
            Ok(capacity) => capacity,
            Err(_) => unsafe { hint::unreachable_unchecked() },
        }
    }

    /// Returns a reference to the underlying allocator.
    #[inline]
    pub fn allocator(&self) -> &A {
        &self.table.alloc
    }

    /// Deallocates the table without dropping any entries.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn free_buckets(&mut self) {
        self.table.free_buckets(TableLayout::new::<T>());
    }

    /// Returns pointer to one past last element of data table.
    #[inline]
    pub unsafe fn data_end(&self) -> NonNull<T> {
        NonNull::new_unchecked(self.table.ctrl.as_ptr().cast())
    }

    /// Returns pointer to start of data table.
    #[inline]
    #[cfg(feature = "nightly")]
    pub unsafe fn data_start(&self) -> *mut T {
        self.data_end().as_ptr().wrapping_sub(self.buckets())
    }

    /// Returns the index of a bucket from a `Bucket`.
    #[inline]
    pub unsafe fn bucket_index(&self, bucket: &Bucket<T>) -> usize {
        bucket.to_base_index(self.data_end())
    }

    /// Returns a pointer to an element in the table.
    #[inline]
    pub unsafe fn bucket(&self, index: usize) -> Bucket<T> {
        debug_assert_ne!(self.table.bucket_mask, 0);
        debug_assert!(index < self.buckets());
        Bucket::from_base_index(self.data_end(), index)
    }

    /// Erases an element from the table without dropping it.
    #[cfg_attr(feature = "inline-more", inline)]
    #[deprecated(since = "0.8.1", note = "use erase or remove instead")]
    pub unsafe fn erase_no_drop(&mut self, item: &Bucket<T>) {
        let index = self.bucket_index(item);
        self.table.erase(index);
    }

    /// Erases an element from the table, dropping it in place.
    #[cfg_attr(feature = "inline-more", inline)]
    #[allow(clippy::needless_pass_by_value)]
    #[allow(deprecated)]
    pub unsafe fn erase(&mut self, item: Bucket<T>) {
        // Erase the element from the table first since drop might panic.
        self.erase_no_drop(&item);
        item.drop();
    }

    /// Finds and erases an element from the table, dropping it in place.
    /// Returns true if an element was found.
    #[cfg(feature = "raw")]
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn erase_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> bool {
        // Avoid `Option::map` because it bloats LLVM IR.
        if let Some(bucket) = self.find(hash, eq) {
            unsafe {
                self.erase(bucket);
            }
            true
        } else {
            false
        }
    }

    /// Removes an element from the table, returning it.
    #[cfg_attr(feature = "inline-more", inline)]
    #[allow(clippy::needless_pass_by_value)]
    #[allow(deprecated)]
    pub unsafe fn remove(&mut self, item: Bucket<T>) -> T {
        self.erase_no_drop(&item);
        item.read()
    }

    /// Finds and removes an element from the table, returning it.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn remove_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<T> {
        // Avoid `Option::map` because it bloats LLVM IR.
        match self.find(hash, eq) {
            Some(bucket) => Some(unsafe { self.remove(bucket) }),
            None => None,
        }
    }

    /// Marks all table buckets as empty without dropping their contents.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn clear_no_drop(&mut self) {
        self.table.clear_no_drop();
    }

    /// Removes all elements from the table without freeing the backing memory.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn clear(&mut self) {
        // Ensure that the table is reset even if one of the drops panic
        let mut self_ = guard(self, |self_| self_.clear_no_drop());
        unsafe {
            self_.drop_elements();
        }
    }

    unsafe fn drop_elements(&mut self) {
        if mem::needs_drop::<T>() && !self.is_empty() {
            for item in self.iter() {
                item.drop();
            }
        }
    }

    /// Shrinks the table to fit `max(self.len(), min_size)` elements.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn shrink_to(&mut self, min_size: usize, hasher: impl Fn(&T) -> u64) {
        // Calculate the minimal number of elements that we need to reserve
        // space for.
        let min_size = usize::max(self.table.items, min_size);
        if min_size == 0 {
            *self = Self::new_in(self.table.alloc.clone());
            return;
        }

        // Calculate the number of buckets that we need for this number of
        // elements. If the calculation overflows then the requested bucket
        // count must be larger than what we have right and nothing needs to be
        // done.
        let min_buckets = match capacity_to_buckets(min_size) {
            Some(buckets) => buckets,
            None => return,
        };

        // If we have more buckets than we need, shrink the table.
        if min_buckets < self.buckets() {
            // Fast path if the table is empty
            if self.table.items == 0 {
                *self = Self::with_capacity_in(min_size, self.table.alloc.clone());
            } else {
                // Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
                if self
                    .resize(min_size, hasher, Fallibility::Infallible)
                    .is_err()
                {
                    unsafe { hint::unreachable_unchecked() }
                }
            }
        }
    }

    /// Ensures that at least `additional` items can be inserted into the table
    /// without reallocation.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn reserve(&mut self, additional: usize, hasher: impl Fn(&T) -> u64) {
        if additional > self.table.growth_left {
            // Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
            if self
                .reserve_rehash(additional, hasher, Fallibility::Infallible)
                .is_err()
            {
                unsafe { hint::unreachable_unchecked() }
            }
        }
    }

    /// Tries to ensure that at least `additional` items can be inserted into
    /// the table without reallocation.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn try_reserve(
        &mut self,
        additional: usize,
        hasher: impl Fn(&T) -> u64,
    ) -> Result<(), TryReserveError> {
        if additional > self.table.growth_left {
            self.reserve_rehash(additional, hasher, Fallibility::Fallible)
        } else {
            Ok(())
        }
    }

    /// Out-of-line slow path for `reserve` and `try_reserve`.
    #[cold]
    #[inline(never)]
    fn reserve_rehash(
        &mut self,
        additional: usize,
        hasher: impl Fn(&T) -> u64,
        fallibility: Fallibility,
    ) -> Result<(), TryReserveError> {
        unsafe {
            self.table.reserve_rehash_inner(
                additional,
                &|table, index| hasher(table.bucket::<T>(index).as_ref()),
                fallibility,
                TableLayout::new::<T>(),
                if mem::needs_drop::<T>() {
                    Some(mem::transmute(ptr::drop_in_place::<T> as unsafe fn(*mut T)))
                } else {
                    None
                },
            )
        }
    }

    /// Allocates a new table of a different size and moves the contents of the
    /// current table into it.
    fn resize(
        &mut self,
        capacity: usize,
        hasher: impl Fn(&T) -> u64,
        fallibility: Fallibility,
    ) -> Result<(), TryReserveError> {
        unsafe {
            self.table.resize_inner(
                capacity,
                &|table, index| hasher(table.bucket::<T>(index).as_ref()),
                fallibility,
                TableLayout::new::<T>(),
            )
        }
    }

    /// Inserts a new element into the table, and returns its raw bucket.
    ///
    /// This does not check if the given element already exists in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn insert(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> Bucket<T> {
        unsafe {
            let mut index = self.table.find_insert_slot(hash);

            // We can avoid growing the table once we have reached our load
            // factor if we are replacing a tombstone. This works since the
            // number of EMPTY slots does not change in this case.
            let old_ctrl = *self.table.ctrl(index);
            if unlikely(self.table.growth_left == 0 && special_is_empty(old_ctrl)) {
                self.reserve(1, hasher);
                index = self.table.find_insert_slot(hash);
            }

            self.table.record_item_insert_at(index, old_ctrl, hash);

            let bucket = self.bucket(index);
            bucket.write(value);
            bucket
        }
    }

    /// Attempts to insert a new element without growing the table and return its raw bucket.
    ///
    /// Returns an `Err` containing the given element if inserting it would require growing the
    /// table.
    ///
    /// This does not check if the given element already exists in the table.
    #[cfg(feature = "raw")]
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn try_insert_no_grow(&mut self, hash: u64, value: T) -> Result<Bucket<T>, T> {
        unsafe {
            match self.table.prepare_insert_no_grow(hash) {
                Ok(index) => {
                    let bucket = self.bucket(index);
                    bucket.write(value);
                    Ok(bucket)
                }
                Err(()) => Err(value),
            }
        }
    }

    /// Inserts a new element into the table, and returns a mutable reference to it.
    ///
    /// This does not check if the given element already exists in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn insert_entry(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> &mut T {
        unsafe { self.insert(hash, value, hasher).as_mut() }
    }

    /// Inserts a new element into the table, without growing the table.
    ///
    /// There must be enough space in the table to insert the new element.
    ///
    /// This does not check if the given element already exists in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    #[cfg(any(feature = "raw", feature = "rustc-internal-api"))]
    pub unsafe fn insert_no_grow(&mut self, hash: u64, value: T) -> Bucket<T> {
        let (index, old_ctrl) = self.table.prepare_insert_slot(hash);
        let bucket = self.table.bucket(index);

        // If we are replacing a DELETED entry then we don't need to update
        // the load counter.
        self.table.growth_left -= special_is_empty(old_ctrl) as usize;

        bucket.write(value);
        self.table.items += 1;
        bucket
    }

    /// Temporary removes a bucket, applying the given function to the removed
    /// element and optionally put back the returned value in the same bucket.
    ///
    /// Returns `true` if the bucket still contains an element
    ///
    /// This does not check if the given bucket is actually occupied.
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn replace_bucket_with<F>(&mut self, bucket: Bucket<T>, f: F) -> bool
    where
        F: FnOnce(T) -> Option<T>,
    {
        let index = self.bucket_index(&bucket);
        let old_ctrl = *self.table.ctrl(index);
        debug_assert!(is_full(old_ctrl));
        let old_growth_left = self.table.growth_left;
        let item = self.remove(bucket);
        if let Some(new_item) = f(item) {
            self.table.growth_left = old_growth_left;
            self.table.set_ctrl(index, old_ctrl);
            self.table.items += 1;
            self.bucket(index).write(new_item);
            true
        } else {
            false
        }
    }

    /// Searches for an element in the table.
    #[inline]
    pub fn find(&self, hash: u64, mut eq: impl FnMut(&T) -> bool) -> Option<Bucket<T>> {
        let result = self.table.find_inner(hash, &mut |index| unsafe {
            eq(self.bucket(index).as_ref())
        });

        // Avoid `Option::map` because it bloats LLVM IR.
        match result {
            Some(index) => Some(unsafe { self.bucket(index) }),
            None => None,
        }
    }

    /// Gets a reference to an element in the table.
    #[inline]
    pub fn get(&self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&T> {
        // Avoid `Option::map` because it bloats LLVM IR.
        match self.find(hash, eq) {
            Some(bucket) => Some(unsafe { bucket.as_ref() }),
            None => None,
        }
    }

    /// Gets a mutable reference to an element in the table.
    #[inline]
    pub fn get_mut(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&mut T> {
        // Avoid `Option::map` because it bloats LLVM IR.
        match self.find(hash, eq) {
            Some(bucket) => Some(unsafe { bucket.as_mut() }),
            None => None,
        }
    }

    /// Attempts to get mutable references to `N` entries in the table at once.
    ///
    /// Returns an array of length `N` with the results of each query.
    ///
    /// At most one mutable reference will be returned to any entry. `None` will be returned if any
    /// of the hashes are duplicates. `None` will be returned if the hash is not found.
    ///
    /// The `eq` argument should be a closure such that `eq(i, k)` returns true if `k` is equal to
    /// the `i`th key to be looked up.
    pub fn get_many_mut<const N: usize>(
        &mut self,
        hashes: [u64; N],
        eq: impl FnMut(usize, &T) -> bool,
    ) -> Option<[&'_ mut T; N]> {
        unsafe {
            let ptrs = self.get_many_mut_pointers(hashes, eq)?;

            for (i, &cur) in ptrs.iter().enumerate() {
                if ptrs[..i].iter().any(|&prev| ptr::eq::<T>(prev, cur)) {
                    return None;
                }
            }
            // All bucket are distinct from all previous buckets so we're clear to return the result
            // of the lookup.

            // TODO use `MaybeUninit::array_assume_init` here instead once that's stable.
            Some(mem::transmute_copy(&ptrs))
        }
    }

    pub unsafe fn get_many_unchecked_mut<const N: usize>(
        &mut self,
        hashes: [u64; N],
        eq: impl FnMut(usize, &T) -> bool,
    ) -> Option<[&'_ mut T; N]> {
        let ptrs = self.get_many_mut_pointers(hashes, eq)?;
        Some(mem::transmute_copy(&ptrs))
    }

    unsafe fn get_many_mut_pointers<const N: usize>(
        &mut self,
        hashes: [u64; N],
        mut eq: impl FnMut(usize, &T) -> bool,
    ) -> Option<[*mut T; N]> {
        // TODO use `MaybeUninit::uninit_array` here instead once that's stable.
        let mut outs: MaybeUninit<[*mut T; N]> = MaybeUninit::uninit();
        let outs_ptr = outs.as_mut_ptr();

        for (i, &hash) in hashes.iter().enumerate() {
            let cur = self.find(hash, |k| eq(i, k))?;
            *(*outs_ptr).get_unchecked_mut(i) = cur.as_mut();
        }

        // TODO use `MaybeUninit::array_assume_init` here instead once that's stable.
        Some(outs.assume_init())
    }

    /// Returns the number of elements the map can hold without reallocating.
    ///
    /// This number is a lower bound; the table might be able to hold
    /// more, but is guaranteed to be able to hold at least this many.
    #[inline]
    pub fn capacity(&self) -> usize {
        self.table.items + self.table.growth_left
    }

    /// Returns the number of elements in the table.
    #[inline]
    pub fn len(&self) -> usize {
        self.table.items
    }

    /// Returns `true` if the table contains no elements.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the number of buckets in the table.
    #[inline]
    pub fn buckets(&self) -> usize {
        self.table.bucket_mask + 1
    }

    /// Returns an iterator over every element in the table. It is up to
    /// the caller to ensure that the `RawTable` outlives the `RawIter`.
    /// Because we cannot make the `next` method unsafe on the `RawIter`
    /// struct, we have to make the `iter` method unsafe.
    #[inline]
    pub unsafe fn iter(&self) -> RawIter<T> {
        let data = Bucket::from_base_index(self.data_end(), 0);
        RawIter {
            iter: RawIterRange::new(self.table.ctrl.as_ptr(), data, self.table.buckets()),
            items: self.table.items,
        }
    }

    /// Returns an iterator over occupied buckets that could match a given hash.
    ///
    /// `RawTable` only stores 7 bits of the hash value, so this iterator may
    /// return items that have a hash value different than the one provided. You
    /// should always validate the returned values before using them.
    ///
    /// It is up to the caller to ensure that the `RawTable` outlives the
    /// `RawIterHash`. Because we cannot make the `next` method unsafe on the
    /// `RawIterHash` struct, we have to make the `iter_hash` method unsafe.
    #[cfg_attr(feature = "inline-more", inline)]
    #[cfg(feature = "raw")]
    pub unsafe fn iter_hash(&self, hash: u64) -> RawIterHash<'_, T, A> {
        RawIterHash::new(self, hash)
    }

    /// Returns an iterator which removes all elements from the table without
    /// freeing the memory.
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn drain(&mut self) -> RawDrain<'_, T, A> {
        unsafe {
            let iter = self.iter();
            self.drain_iter_from(iter)
        }
    }

    /// Returns an iterator which removes all elements from the table without
    /// freeing the memory.
    ///
    /// Iteration starts at the provided iterator's current location.
    ///
    /// It is up to the caller to ensure that the iterator is valid for this
    /// `RawTable` and covers all items that remain in the table.
    #[cfg_attr(feature = "inline-more", inline)]
    pub unsafe fn drain_iter_from(&mut self, iter: RawIter<T>) -> RawDrain<'_, T, A> {
        debug_assert_eq!(iter.len(), self.len());
        RawDrain {
            iter,
            table: ManuallyDrop::new(mem::replace(self, Self::new_in(self.table.alloc.clone()))),
            orig_table: NonNull::from(self),
            marker: PhantomData,
        }
    }

    /// Returns an iterator which consumes all elements from the table.
    ///
    /// Iteration starts at the provided iterator's current location.
    ///
    /// It is up to the caller to ensure that the iterator is valid for this
    /// `RawTable` and covers all items that remain in the table.
    pub unsafe fn into_iter_from(self, iter: RawIter<T>) -> RawIntoIter<T, A> {
        debug_assert_eq!(iter.len(), self.len());

        let alloc = self.table.alloc.clone();
        let allocation = self.into_allocation();
        RawIntoIter {
            iter,
            allocation,
            marker: PhantomData,
            alloc,
        }
    }

    /// Converts the table into a raw allocation. The contents of the table
    /// should be dropped using a `RawIter` before freeing the allocation.
    #[cfg_attr(feature = "inline-more", inline)]
    pub(crate) fn into_allocation(self) -> Option<(NonNull<u8>, Layout)> {
        let alloc = if self.table.is_empty_singleton() {
            None
        } else {
            // Avoid `Option::unwrap_or_else` because it bloats LLVM IR.
            let (layout, ctrl_offset) = match calculate_layout::<T>(self.table.buckets()) {
                Some(lco) => lco,
                None => unsafe { hint::unreachable_unchecked() },
            };
            Some((
                unsafe { NonNull::new_unchecked(self.table.ctrl.as_ptr().sub(ctrl_offset)) },
                layout,
            ))
        };
        mem::forget(self);
        alloc
    }
}

unsafe impl<T, A: Allocator + Clone> Send for RawTable<T, A>
where
    T: Send,
    A: Send,
{
}
unsafe impl<T, A: Allocator + Clone> Sync for RawTable<T, A>
where
    T: Sync,
    A: Sync,
{
}

impl<A> RawTableInner<A> {
    #[inline]
    const fn new_in(alloc: A) -> Self {
        Self {
            // Be careful to cast the entire slice to a raw pointer.
            ctrl: unsafe { NonNull::new_unchecked(Group::static_empty() as *const _ as *mut u8) },
            bucket_mask: 0,
            items: 0,
            growth_left: 0,
            alloc,
        }
    }
}

impl<A: Allocator + Clone> RawTableInner<A> {
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn new_uninitialized(
        alloc: A,
        table_layout: TableLayout,
        buckets: usize,
        fallibility: Fallibility,
    ) -> Result<Self, TryReserveError> {
        debug_assert!(buckets.is_power_of_two());

        // Avoid `Option::ok_or_else` because it bloats LLVM IR.
        let (layout, ctrl_offset) = match table_layout.calculate_layout_for(buckets) {
            Some(lco) => lco,
            None => return Err(fallibility.capacity_overflow()),
        };

        // We need an additional check to ensure that the allocation doesn't
        // exceed `isize::MAX`. We can skip this check on 64-bit systems since
        // such allocations will never succeed anyways.
        //
        // This mirrors what Vec does in the standard library.
        if mem::size_of::<usize>() < 8 && layout.size() > isize::MAX as usize {
            return Err(fallibility.capacity_overflow());
        }

        let ptr: NonNull<u8> = match do_alloc(&alloc, layout) {
            Ok(block) => block.cast(),
            Err(_) => return Err(fallibility.alloc_err(layout)),
        };

        let ctrl = NonNull::new_unchecked(ptr.as_ptr().add(ctrl_offset));
        Ok(Self {
            ctrl,
            bucket_mask: buckets - 1,
            items: 0,
            growth_left: bucket_mask_to_capacity(buckets - 1),
            alloc,
        })
    }

    #[inline]
    fn fallible_with_capacity(
        alloc: A,
        table_layout: TableLayout,
        capacity: usize,
        fallibility: Fallibility,
    ) -> Result<Self, TryReserveError> {
        if capacity == 0 {
            Ok(Self::new_in(alloc))
        } else {
            unsafe {
                let buckets =
                    capacity_to_buckets(capacity).ok_or_else(|| fallibility.capacity_overflow())?;

                let result = Self::new_uninitialized(alloc, table_layout, buckets, fallibility)?;
                result.ctrl(0).write_bytes(EMPTY, result.num_ctrl_bytes());

                Ok(result)
            }
        }
    }

    /// Searches for an empty or deleted bucket which is suitable for inserting
    /// a new element and sets the hash for that slot.
    ///
    /// There must be at least 1 empty bucket in the table.
    #[inline]
    unsafe fn prepare_insert_slot(&self, hash: u64) -> (usize, u8) {
        let index = self.find_insert_slot(hash);
        let old_ctrl = *self.ctrl(index);
        self.set_ctrl_h2(index, hash);
        (index, old_ctrl)
    }

    /// Searches for an empty or deleted bucket which is suitable for inserting
    /// a new element.
    ///
    /// There must be at least 1 empty bucket in the table.
    #[inline]
    fn find_insert_slot(&self, hash: u64) -> usize {
        let mut probe_seq = self.probe_seq(hash);
        loop {
            unsafe {
                let group = Group::load(self.ctrl(probe_seq.pos));
                if let Some(bit) = group.match_empty_or_deleted().lowest_set_bit() {
                    let result = (probe_seq.pos + bit) & self.bucket_mask;

                    // In tables smaller than the group width, trailing control
                    // bytes outside the range of the table are filled with
                    // EMPTY entries. These will unfortunately trigger a
                    // match, but once masked may point to a full bucket that
                    // is already occupied. We detect this situation here and
                    // perform a second scan starting at the beginning of the
                    // table. This second scan is guaranteed to find an empty
                    // slot (due to the load factor) before hitting the trailing
                    // control bytes (containing EMPTY).
                    if unlikely(is_full(*self.ctrl(result))) {
                        debug_assert!(self.bucket_mask < Group::WIDTH);
                        debug_assert_ne!(probe_seq.pos, 0);
                        return Group::load_aligned(self.ctrl(0))
                            .match_empty_or_deleted()
                            .lowest_set_bit_nonzero();
                    }

                    return result;
                }
            }
            probe_seq.move_next(self.bucket_mask);
        }
    }

    /// Searches for an element in the table. This uses dynamic dispatch to reduce the amount of
    /// code generated, but it is eliminated by LLVM optimizations.
    #[inline]
    fn find_inner(&self, hash: u64, eq: &mut dyn FnMut(usize) -> bool) -> Option<usize> {
        let h2_hash = h2(hash);
        let mut probe_seq = self.probe_seq(hash);

        loop {
            let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) };

            for bit in group.match_byte(h2_hash) {
                let index = (probe_seq.pos + bit) & self.bucket_mask;

                if likely(eq(index)) {
                    return Some(index);
                }
            }

            if likely(group.match_empty().any_bit_set()) {
                return None;
            }

            probe_seq.move_next(self.bucket_mask);
        }
    }

    #[allow(clippy::mut_mut)]
    #[inline]
    unsafe fn prepare_rehash_in_place(&mut self) {
        // Bulk convert all full control bytes to DELETED, and all DELETED
        // control bytes to EMPTY. This effectively frees up all buckets
        // containing a DELETED entry.
        for i in (0..self.buckets()).step_by(Group::WIDTH) {
            let group = Group::load_aligned(self.ctrl(i));
            let group = group.convert_special_to_empty_and_full_to_deleted();
            group.store_aligned(self.ctrl(i));
        }

        // Fix up the trailing control bytes. See the comments in set_ctrl
        // for the handling of tables smaller than the group width.
        if self.buckets() < Group::WIDTH {
            self.ctrl(0)
                .copy_to(self.ctrl(Group::WIDTH), self.buckets());
        } else {
            self.ctrl(0)
                .copy_to(self.ctrl(self.buckets()), Group::WIDTH);
        }
    }

    #[inline]
    unsafe fn bucket<T>(&self, index: usize) -> Bucket<T> {
        debug_assert_ne!(self.bucket_mask, 0);
        debug_assert!(index < self.buckets());
        Bucket::from_base_index(self.data_end(), index)
    }

    #[inline]
    unsafe fn bucket_ptr(&self, index: usize, size_of: usize) -> *mut u8 {
        debug_assert_ne!(self.bucket_mask, 0);
        debug_assert!(index < self.buckets());
        let base: *mut u8 = self.data_end().as_ptr();
        base.sub((index + 1) * size_of)
    }

    #[inline]
    unsafe fn data_end<T>(&self) -> NonNull<T> {
        NonNull::new_unchecked(self.ctrl.as_ptr().cast())
    }

    /// Returns an iterator-like object for a probe sequence on the table.
    ///
    /// This iterator never terminates, but is guaranteed to visit each bucket
    /// group exactly once. The loop using `probe_seq` must terminate upon
    /// reaching a group containing an empty bucket.
    #[inline]
    fn probe_seq(&self, hash: u64) -> ProbeSeq {
        ProbeSeq {
            pos: h1(hash) & self.bucket_mask,
            stride: 0,
        }
    }

    /// Returns the index of a bucket for which a value must be inserted if there is enough rooom
    /// in the table, otherwise returns error
    #[cfg(feature = "raw")]
    #[inline]
    unsafe fn prepare_insert_no_grow(&mut self, hash: u64) -> Result<usize, ()> {
        let index = self.find_insert_slot(hash);
        let old_ctrl = *self.ctrl(index);
        if unlikely(self.growth_left == 0 && special_is_empty(old_ctrl)) {
            Err(())
        } else {
            self.record_item_insert_at(index, old_ctrl, hash);
            Ok(index)
        }
    }

    #[inline]
    unsafe fn record_item_insert_at(&mut self, index: usize, old_ctrl: u8, hash: u64) {
        self.growth_left -= usize::from(special_is_empty(old_ctrl));
        self.set_ctrl_h2(index, hash);
        self.items += 1;
    }

    #[inline]
    fn is_in_same_group(&self, i: usize, new_i: usize, hash: u64) -> bool {
        let probe_seq_pos = self.probe_seq(hash).pos;
        let probe_index =
            |pos: usize| (pos.wrapping_sub(probe_seq_pos) & self.bucket_mask) / Group::WIDTH;
        probe_index(i) == probe_index(new_i)
    }

    /// Sets a control byte to the hash, and possibly also the replicated control byte at
    /// the end of the array.
    #[inline]
    unsafe fn set_ctrl_h2(&self, index: usize, hash: u64) {
        self.set_ctrl(index, h2(hash));
    }

    #[inline]
    unsafe fn replace_ctrl_h2(&self, index: usize, hash: u64) -> u8 {
        let prev_ctrl = *self.ctrl(index);
        self.set_ctrl_h2(index, hash);
        prev_ctrl
    }

    /// Sets a control byte, and possibly also the replicated control byte at
    /// the end of the array.
    #[inline]
    unsafe fn set_ctrl(&self, index: usize, ctrl: u8) {
        // Replicate the first Group::WIDTH control bytes at the end of
        // the array without using a branch:
        // - If index >= Group::WIDTH then index == index2.
        // - Otherwise index2 == self.bucket_mask + 1 + index.
        //
        // The very last replicated control byte is never actually read because
        // we mask the initial index for unaligned loads, but we write it
        // anyways because it makes the set_ctrl implementation simpler.
        //
        // If there are fewer buckets than Group::WIDTH then this code will
        // replicate the buckets at the end of the trailing group. For example
        // with 2 buckets and a group size of 4, the control bytes will look
        // like this:
        //
        //     Real    |             Replicated
        // ---------------------------------------------
        // | [A] | [B] | [EMPTY] | [EMPTY] | [A] | [B] |
        // ---------------------------------------------
        let index2 = ((index.wrapping_sub(Group::WIDTH)) & self.bucket_mask) + Group::WIDTH;

        *self.ctrl(index) = ctrl;
        *self.ctrl(index2) = ctrl;
    }

    /// Returns a pointer to a control byte.
    #[inline]
    unsafe fn ctrl(&self, index: usize) -> *mut u8 {
        debug_assert!(index < self.num_ctrl_bytes());
        self.ctrl.as_ptr().add(index)
    }

    #[inline]
    fn buckets(&self) -> usize {
        self.bucket_mask + 1
    }

    #[inline]
    fn num_ctrl_bytes(&self) -> usize {
        self.bucket_mask + 1 + Group::WIDTH
    }

    #[inline]
    fn is_empty_singleton(&self) -> bool {
        self.bucket_mask == 0
    }

    #[allow(clippy::mut_mut)]
    #[inline]
    unsafe fn prepare_resize(
        &self,
        table_layout: TableLayout,
        capacity: usize,
        fallibility: Fallibility,
    ) -> Result<crate::scopeguard::ScopeGuard<Self, impl FnMut(&mut Self)>, TryReserveError> {
        debug_assert!(self.items <= capacity);

        // Allocate and initialize the new table.
        let mut new_table = RawTableInner::fallible_with_capacity(
            self.alloc.clone(),
            table_layout,
            capacity,
            fallibility,
        )?;
        new_table.growth_left -= self.items;
        new_table.items = self.items;

        // The hash function may panic, in which case we simply free the new
        // table without dropping any elements that may have been copied into
        // it.
        //
        // This guard is also used to free the old table on success, see
        // the comment at the bottom of this function.
        Ok(guard(new_table, move |self_| {
            if !self_.is_empty_singleton() {
                self_.free_buckets(table_layout);
            }
        }))
    }

    /// Reserves or rehashes to make room for `additional` more elements.
    ///
    /// This uses dynamic dispatch to reduce the amount of
    /// code generated, but it is eliminated by LLVM optimizations when inlined.
    #[allow(clippy::inline_always)]
    #[inline(always)]
    unsafe fn reserve_rehash_inner(
        &mut self,
        additional: usize,
        hasher: &dyn Fn(&mut Self, usize) -> u64,
        fallibility: Fallibility,
        layout: TableLayout,
        drop: Option<fn(*mut u8)>,
    ) -> Result<(), TryReserveError> {
        // Avoid `Option::ok_or_else` because it bloats LLVM IR.
        let new_items = match self.items.checked_add(additional) {
            Some(new_items) => new_items,
            None => return Err(fallibility.capacity_overflow()),
        };
        let full_capacity = bucket_mask_to_capacity(self.bucket_mask);
        if new_items <= full_capacity / 2 {
            // Rehash in-place without re-allocating if we have plenty of spare
            // capacity that is locked up due to DELETED entries.
            self.rehash_in_place(hasher, layout.size, drop);
            Ok(())
        } else {
            // Otherwise, conservatively resize to at least the next size up
            // to avoid churning deletes into frequent rehashes.
            self.resize_inner(
                usize::max(new_items, full_capacity + 1),
                hasher,
                fallibility,
                layout,
            )
        }
    }

    /// Allocates a new table of a different size and moves the contents of the
    /// current table into it.
    ///
    /// This uses dynamic dispatch to reduce the amount of
    /// code generated, but it is eliminated by LLVM optimizations when inlined.
    #[allow(clippy::inline_always)]
    #[inline(always)]
    unsafe fn resize_inner(
        &mut self,
        capacity: usize,
        hasher: &dyn Fn(&mut Self, usize) -> u64,
        fallibility: Fallibility,
        layout: TableLayout,
    ) -> Result<(), TryReserveError> {
        let mut new_table = self.prepare_resize(layout, capacity, fallibility)?;

        // Copy all elements to the new table.
        for i in 0..self.buckets() {
            if !is_full(*self.ctrl(i)) {
                continue;
            }

            // This may panic.
            let hash = hasher(self, i);

            // We can use a simpler version of insert() here since:
            // - there are no DELETED entries.
            // - we know there is enough space in the table.
            // - all elements are unique.
            let (index, _) = new_table.prepare_insert_slot(hash);

            ptr::copy_nonoverlapping(
                self.bucket_ptr(i, layout.size),
                new_table.bucket_ptr(index, layout.size),
                layout.size,
            );
        }

        // We successfully copied all elements without panicking. Now replace
        // self with the new table. The old table will have its memory freed but
        // the items will not be dropped (since they have been moved into the
        // new table).
        mem::swap(self, &mut new_table);

        Ok(())
    }

    /// Rehashes the contents of the table in place (i.e. without changing the
    /// allocation).
    ///
    /// If `hasher` panics then some the table's contents may be lost.
    ///
    /// This uses dynamic dispatch to reduce the amount of
    /// code generated, but it is eliminated by LLVM optimizations when inlined.
    #[allow(clippy::inline_always)]
    #[cfg_attr(feature = "inline-more", inline(always))]
    #[cfg_attr(not(feature = "inline-more"), inline)]
    unsafe fn rehash_in_place(
        &mut self,
        hasher: &dyn Fn(&mut Self, usize) -> u64,
        size_of: usize,
        drop: Option<fn(*mut u8)>,
    ) {
        // If the hash function panics then properly clean up any elements
        // that we haven't rehashed yet. We unfortunately can't preserve the
        // element since we lost their hash and have no way of recovering it
        // without risking another panic.
        self.prepare_rehash_in_place();

        let mut guard = guard(self, move |self_| {
            if let Some(drop) = drop {
                for i in 0..self_.buckets() {
                    if *self_.ctrl(i) == DELETED {
                        self_.set_ctrl(i, EMPTY);
                        drop(self_.bucket_ptr(i, size_of));
                        self_.items -= 1;
                    }
                }
            }
            self_.growth_left = bucket_mask_to_capacity(self_.bucket_mask) - self_.items;
        });

        // At this point, DELETED elements are elements that we haven't
        // rehashed yet. Find them and re-insert them at their ideal
        // position.
        'outer: for i in 0..guard.buckets() {
            if *guard.ctrl(i) != DELETED {
                continue;
            }

            let i_p = guard.bucket_ptr(i, size_of);

            'inner: loop {
                // Hash the current item
                let hash = hasher(*guard, i);

                // Search for a suitable place to put it
                let new_i = guard.find_insert_slot(hash);
                let new_i_p = guard.bucket_ptr(new_i, size_of);

                // Probing works by scanning through all of the control
                // bytes in groups, which may not be aligned to the group
                // size. If both the new and old position fall within the
                // same unaligned group, then there is no benefit in moving
                // it and we can just continue to the next item.
                if likely(guard.is_in_same_group(i, new_i, hash)) {
                    guard.set_ctrl_h2(i, hash);
                    continue 'outer;
                }

                // We are moving the current item to a new position. Write
                // our H2 to the control byte of the new position.
                let prev_ctrl = guard.replace_ctrl_h2(new_i, hash);
                if prev_ctrl == EMPTY {
                    guard.set_ctrl(i, EMPTY);
                    // If the target slot is empty, simply move the current
                    // element into the new slot and clear the old control
                    // byte.
                    ptr::copy_nonoverlapping(i_p, new_i_p, size_of);
                    continue 'outer;
                } else {
                    // If the target slot is occupied, swap the two elements
                    // and then continue processing the element that we just
                    // swapped into the old slot.
                    debug_assert_eq!(prev_ctrl, DELETED);
                    ptr::swap_nonoverlapping(i_p, new_i_p, size_of);
                    continue 'inner;
                }
            }
        }

        guard.growth_left = bucket_mask_to_capacity(guard.bucket_mask) - guard.items;

        mem::forget(guard);
    }

    #[inline]
    unsafe fn free_buckets(&mut self, table_layout: TableLayout) {
        // Avoid `Option::unwrap_or_else` because it bloats LLVM IR.
        let (layout, ctrl_offset) = match table_layout.calculate_layout_for(self.buckets()) {
            Some(lco) => lco,
            None => hint::unreachable_unchecked(),
        };
        self.alloc.deallocate(
            NonNull::new_unchecked(self.ctrl.as_ptr().sub(ctrl_offset)),
            layout,
        );
    }

    /// Marks all table buckets as empty without dropping their contents.
    #[inline]
    fn clear_no_drop(&mut self) {
        if !self.is_empty_singleton() {
            unsafe {
                self.ctrl(0).write_bytes(EMPTY, self.num_ctrl_bytes());
            }
        }
        self.items = 0;
        self.growth_left = bucket_mask_to_capacity(self.bucket_mask);
    }

    #[inline]
    unsafe fn erase(&mut self, index: usize) {
        debug_assert!(is_full(*self.ctrl(index)));
        let index_before = index.wrapping_sub(Group::WIDTH) & self.bucket_mask;
        let empty_before = Group::load(self.ctrl(index_before)).match_empty();
        let empty_after = Group::load(self.ctrl(index)).match_empty();

        // If we are inside a continuous block of Group::WIDTH full or deleted
        // cells then a probe window may have seen a full block when trying to
        // insert. We therefore need to keep that block non-empty so that
        // lookups will continue searching to the next probe window.
        //
        // Note that in this context `leading_zeros` refers to the bytes at the
        // end of a group, while `trailing_zeros` refers to the bytes at the
        // beginning of a group.
        let ctrl = if empty_before.leading_zeros() + empty_after.trailing_zeros() >= Group::WIDTH {
            DELETED
        } else {
            self.growth_left += 1;
            EMPTY
        };
        self.set_ctrl(index, ctrl);
        self.items -= 1;
    }
}

impl<T: Clone, A: Allocator + Clone> Clone for RawTable<T, A> {
    fn clone(&self) -> Self {
        if self.table.is_empty_singleton() {
            Self::new_in(self.table.alloc.clone())
        } else {
            unsafe {
                // Avoid `Result::ok_or_else` because it bloats LLVM IR.
                let new_table = match Self::new_uninitialized(
                    self.table.alloc.clone(),
                    self.table.buckets(),
                    Fallibility::Infallible,
                ) {
                    Ok(table) => table,
                    Err(_) => hint::unreachable_unchecked(),
                };

                // If cloning fails then we need to free the allocation for the
                // new table. However we don't run its drop since its control
                // bytes are not initialized yet.
                let mut guard = guard(ManuallyDrop::new(new_table), |new_table| {
                    new_table.free_buckets();
                });

                guard.clone_from_spec(self);

                // Disarm the scope guard and return the newly created table.
                ManuallyDrop::into_inner(ScopeGuard::into_inner(guard))
            }
        }
    }

    fn clone_from(&mut self, source: &Self) {
        if source.table.is_empty_singleton() {
            *self = Self::new_in(self.table.alloc.clone());
        } else {
            unsafe {
                // Make sure that if any panics occurs, we clear the table and
                // leave it in an empty state.
                let mut self_ = guard(self, |self_| {
                    self_.clear_no_drop();
                });

                // First, drop all our elements without clearing the control
                // bytes. If this panics then the scope guard will clear the
                // table, leaking any elements that were not dropped yet.
                //
                // This leak is unavoidable: we can't try dropping more elements
                // since this could lead to another panic and abort the process.
                self_.drop_elements();

                // If necessary, resize our table to match the source.
                if self_.buckets() != source.buckets() {
                    // Skip our drop by using ptr::write.
                    if !self_.table.is_empty_singleton() {
                        self_.free_buckets();
                    }
                    (&mut **self_ as *mut Self).write(
                        // Avoid `Result::unwrap_or_else` because it bloats LLVM IR.
                        match Self::new_uninitialized(
                            self_.table.alloc.clone(),
                            source.buckets(),
                            Fallibility::Infallible,
                        ) {
                            Ok(table) => table,
                            Err(_) => hint::unreachable_unchecked(),
                        },
                    );
                }

                self_.clone_from_spec(source);

                // Disarm the scope guard if cloning was successful.
                ScopeGuard::into_inner(self_);
            }
        }
    }
}

/// Specialization of `clone_from` for `Copy` types
trait RawTableClone {
    unsafe fn clone_from_spec(&mut self, source: &Self);
}
impl<T: Clone, A: Allocator + Clone> RawTableClone for RawTable<T, A> {
    default_fn! {
        #[cfg_attr(feature = "inline-more", inline)]
        unsafe fn clone_from_spec(&mut self, source: &Self) {
            self.clone_from_impl(source);
        }
    }
}
#[cfg(feature = "nightly")]
impl<T: Copy, A: Allocator + Clone> RawTableClone for RawTable<T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn clone_from_spec(&mut self, source: &Self) {
        source
            .table
            .ctrl(0)
            .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes());
        source
            .data_start()
            .copy_to_nonoverlapping(self.data_start(), self.table.buckets());

        self.table.items = source.table.items;
        self.table.growth_left = source.table.growth_left;
    }
}

impl<T: Clone, A: Allocator + Clone> RawTable<T, A> {
    /// Common code for clone and clone_from. Assumes:
    /// - `self.buckets() == source.buckets()`.
    /// - Any existing elements have been dropped.
    /// - The control bytes are not initialized yet.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn clone_from_impl(&mut self, source: &Self) {
        // Copy the control bytes unchanged. We do this in a single pass
        source
            .table
            .ctrl(0)
            .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes());

        // The cloning of elements may panic, in which case we need
        // to make sure we drop only the elements that have been
        // cloned so far.
        let mut guard = guard((0, &mut *self), |(index, self_)| {
            if mem::needs_drop::<T>() && !self_.is_empty() {
                for i in 0..=*index {
                    if is_full(*self_.table.ctrl(i)) {
                        self_.bucket(i).drop();
                    }
                }
            }
        });

        for from in source.iter() {
            let index = source.bucket_index(&from);
            let to = guard.1.bucket(index);
            to.write(from.as_ref().clone());

            // Update the index in case we need to unwind.
            guard.0 = index;
        }

        // Successfully cloned all items, no need to clean up.
        mem::forget(guard);

        self.table.items = source.table.items;
        self.table.growth_left = source.table.growth_left;
    }

    /// Variant of `clone_from` to use when a hasher is available.
    #[cfg(feature = "raw")]
    pub fn clone_from_with_hasher(&mut self, source: &Self, hasher: impl Fn(&T) -> u64) {
        // If we have enough capacity in the table, just clear it and insert
        // elements one by one. We don't do this if we have the same number of
        // buckets as the source since we can just copy the contents directly
        // in that case.
        if self.table.buckets() != source.table.buckets()
            && bucket_mask_to_capacity(self.table.bucket_mask) >= source.len()
        {
            self.clear();

            let guard_self = guard(&mut *self, |self_| {
                // Clear the partially copied table if a panic occurs, otherwise
                // items and growth_left will be out of sync with the contents
                // of the table.
                self_.clear();
            });

            unsafe {
                for item in source.iter() {
                    // This may panic.
                    let item = item.as_ref().clone();
                    let hash = hasher(&item);

                    // We can use a simpler version of insert() here since:
                    // - there are no DELETED entries.
                    // - we know there is enough space in the table.
                    // - all elements are unique.
                    let (index, _) = guard_self.table.prepare_insert_slot(hash);
                    guard_self.bucket(index).write(item);
                }
            }

            // Successfully cloned all items, no need to clean up.
            mem::forget(guard_self);

            self.table.items = source.table.items;
            self.table.growth_left -= source.table.items;
        } else {
            self.clone_from(source);
        }
    }
}

impl<T, A: Allocator + Clone + Default> Default for RawTable<T, A> {
    #[inline]
    fn default() -> Self {
        Self::new_in(Default::default())
    }
}

#[cfg(feature = "nightly")]
unsafe impl<#[may_dangle] T, A: Allocator + Clone> Drop for RawTable<T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        if !self.table.is_empty_singleton() {
            unsafe {
                self.drop_elements();
                self.free_buckets();
            }
        }
    }
}
#[cfg(not(feature = "nightly"))]
impl<T, A: Allocator + Clone> Drop for RawTable<T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        if !self.table.is_empty_singleton() {
            unsafe {
                self.drop_elements();
                self.free_buckets();
            }
        }
    }
}

impl<T, A: Allocator + Clone> IntoIterator for RawTable<T, A> {
    type Item = T;
    type IntoIter = RawIntoIter<T, A>;

    #[cfg_attr(feature = "inline-more", inline)]
    fn into_iter(self) -> RawIntoIter<T, A> {
        unsafe {
            let iter = self.iter();
            self.into_iter_from(iter)
        }
    }
}

/// Iterator over a sub-range of a table. Unlike `RawIter` this iterator does
/// not track an item count.
pub(crate) struct RawIterRange<T> {
    // Mask of full buckets in the current group. Bits are cleared from this
    // mask as each element is processed.
    current_group: BitMask,

    // Pointer to the buckets for the current group.
    data: Bucket<T>,

    // Pointer to the next group of control bytes,
    // Must be aligned to the group size.
    next_ctrl: *const u8,

    // Pointer one past the last control byte of this range.
    end: *const u8,
}

impl<T> RawIterRange<T> {
    /// Returns a `RawIterRange` covering a subset of a table.
    ///
    /// The control byte address must be aligned to the group size.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn new(ctrl: *const u8, data: Bucket<T>, len: usize) -> Self {
        debug_assert_ne!(len, 0);
        debug_assert_eq!(ctrl as usize % Group::WIDTH, 0);
        let end = ctrl.add(len);

        // Load the first group and advance ctrl to point to the next group
        let current_group = Group::load_aligned(ctrl).match_full();
        let next_ctrl = ctrl.add(Group::WIDTH);

        Self {
            current_group,
            data,
            next_ctrl,
            end,
        }
    }

    /// Splits a `RawIterRange` into two halves.
    ///
    /// Returns `None` if the remaining range is smaller than or equal to the
    /// group width.
    #[cfg_attr(feature = "inline-more", inline)]
    #[cfg(feature = "rayon")]
    pub(crate) fn split(mut self) -> (Self, Option<RawIterRange<T>>) {
        unsafe {
            if self.end <= self.next_ctrl {
                // Nothing to split if the group that we are current processing
                // is the last one.
                (self, None)
            } else {
                // len is the remaining number of elements after the group that
                // we are currently processing. It must be a multiple of the
                // group size (small tables are caught by the check above).
                let len = offset_from(self.end, self.next_ctrl);
                debug_assert_eq!(len % Group::WIDTH, 0);

                // Split the remaining elements into two halves, but round the
                // midpoint down in case there is an odd number of groups
                // remaining. This ensures that:
                // - The tail is at least 1 group long.
                // - The split is roughly even considering we still have the
                //   current group to process.
                let mid = (len / 2) & !(Group::WIDTH - 1);

                let tail = Self::new(
                    self.next_ctrl.add(mid),
                    self.data.next_n(Group::WIDTH).next_n(mid),
                    len - mid,
                );
                debug_assert_eq!(
                    self.data.next_n(Group::WIDTH).next_n(mid).ptr,
                    tail.data.ptr
                );
                debug_assert_eq!(self.end, tail.end);
                self.end = self.next_ctrl.add(mid);
                debug_assert_eq!(self.end.add(Group::WIDTH), tail.next_ctrl);
                (self, Some(tail))
            }
        }
    }

    /// # Safety
    /// If DO_CHECK_PTR_RANGE is false, caller must ensure that we never try to iterate
    /// after yielding all elements.
    #[cfg_attr(feature = "inline-more", inline)]
    unsafe fn next_impl<const DO_CHECK_PTR_RANGE: bool>(&mut self) -> Option<Bucket<T>> {
        loop {
            if let Some(index) = self.current_group.lowest_set_bit() {
                self.current_group = self.current_group.remove_lowest_bit();
                return Some(self.data.next_n(index));
            }

            if DO_CHECK_PTR_RANGE && self.next_ctrl >= self.end {
                return None;
            }

            // We might read past self.end up to the next group boundary,
            // but this is fine because it only occurs on tables smaller
            // than the group size where the trailing control bytes are all
            // EMPTY. On larger tables self.end is guaranteed to be aligned
            // to the group size (since tables are power-of-two sized).
            self.current_group = Group::load_aligned(self.next_ctrl).match_full();
            self.data = self.data.next_n(Group::WIDTH);
            self.next_ctrl = self.next_ctrl.add(Group::WIDTH);
        }
    }
}

// We make raw iterators unconditionally Send and Sync, and let the PhantomData
// in the actual iterator implementations determine the real Send/Sync bounds.
unsafe impl<T> Send for RawIterRange<T> {}
unsafe impl<T> Sync for RawIterRange<T> {}

impl<T> Clone for RawIterRange<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn clone(&self) -> Self {
        Self {
            data: self.data.clone(),
            next_ctrl: self.next_ctrl,
            current_group: self.current_group,
            end: self.end,
        }
    }
}

impl<T> Iterator for RawIterRange<T> {
    type Item = Bucket<T>;

    #[cfg_attr(feature = "inline-more", inline)]
    fn next(&mut self) -> Option<Bucket<T>> {
        unsafe {
            // SAFETY: We set checker flag to true.
            self.next_impl::<true>()
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        // We don't have an item count, so just guess based on the range size.
        let remaining_buckets = if self.end > self.next_ctrl {
            unsafe { offset_from(self.end, self.next_ctrl) }
        } else {
            0
        };

        // Add a group width to include the group we are currently processing.
        (0, Some(Group::WIDTH + remaining_buckets))
    }
}

impl<T> FusedIterator for RawIterRange<T> {}

/// Iterator which returns a raw pointer to every full bucket in the table.
///
/// For maximum flexibility this iterator is not bound by a lifetime, but you
/// must observe several rules when using it:
/// - You must not free the hash table while iterating (including via growing/shrinking).
/// - It is fine to erase a bucket that has been yielded by the iterator.
/// - Erasing a bucket that has not yet been yielded by the iterator may still
///   result in the iterator yielding that bucket (unless `reflect_remove` is called).
/// - It is unspecified whether an element inserted after the iterator was
///   created will be yielded by that iterator (unless `reflect_insert` is called).
/// - The order in which the iterator yields bucket is unspecified and may
///   change in the future.
pub struct RawIter<T> {
    pub(crate) iter: RawIterRange<T>,
    items: usize,
}

impl<T> RawIter<T> {
    /// Refresh the iterator so that it reflects a removal from the given bucket.
    ///
    /// For the iterator to remain valid, this method must be called once
    /// for each removed bucket before `next` is called again.
    ///
    /// This method should be called _before_ the removal is made. It is not necessary to call this
    /// method if you are removing an item that this iterator yielded in the past.
    #[cfg(feature = "raw")]
    pub fn reflect_remove(&mut self, b: &Bucket<T>) {
        self.reflect_toggle_full(b, false);
    }

    /// Refresh the iterator so that it reflects an insertion into the given bucket.
    ///
    /// For the iterator to remain valid, this method must be called once
    /// for each insert before `next` is called again.
    ///
    /// This method does not guarantee that an insertion of a bucket with a greater
    /// index than the last one yielded will be reflected in the iterator.
    ///
    /// This method should be called _after_ the given insert is made.
    #[cfg(feature = "raw")]
    pub fn reflect_insert(&mut self, b: &Bucket<T>) {
        self.reflect_toggle_full(b, true);
    }

    /// Refresh the iterator so that it reflects a change to the state of the given bucket.
    #[cfg(feature = "raw")]
    fn reflect_toggle_full(&mut self, b: &Bucket<T>, is_insert: bool) {
        unsafe {
            if b.as_ptr() > self.iter.data.as_ptr() {
                // The iterator has already passed the bucket's group.
                // So the toggle isn't relevant to this iterator.
                return;
            }

            if self.iter.next_ctrl < self.iter.end
                && b.as_ptr() <= self.iter.data.next_n(Group::WIDTH).as_ptr()
            {
                // The iterator has not yet reached the bucket's group.
                // We don't need to reload anything, but we do need to adjust the item count.

                if cfg!(debug_assertions) {
                    // Double-check that the user isn't lying to us by checking the bucket state.
                    // To do that, we need to find its control byte. We know that self.iter.data is
                    // at self.iter.next_ctrl - Group::WIDTH, so we work from there:
                    let offset = offset_from(self.iter.data.as_ptr(), b.as_ptr());
                    let ctrl = self.iter.next_ctrl.sub(Group::WIDTH).add(offset);
                    // This method should be called _before_ a removal, or _after_ an insert,
                    // so in both cases the ctrl byte should indicate that the bucket is full.
                    assert!(is_full(*ctrl));
                }

                if is_insert {
                    self.items += 1;
                } else {
                    self.items -= 1;
                }

                return;
            }

            // The iterator is at the bucket group that the toggled bucket is in.
            // We need to do two things:
            //
            //  - Determine if the iterator already yielded the toggled bucket.
            //    If it did, we're done.
            //  - Otherwise, update the iterator cached group so that it won't
            //    yield a to-be-removed bucket, or _will_ yield a to-be-added bucket.
            //    We'll also need to update the item count accordingly.
            if let Some(index) = self.iter.current_group.lowest_set_bit() {
                let next_bucket = self.iter.data.next_n(index);
                if b.as_ptr() > next_bucket.as_ptr() {
                    // The toggled bucket is "before" the bucket the iterator would yield next. We
                    // therefore don't need to do anything --- the iterator has already passed the
                    // bucket in question.
                    //
                    // The item count must already be correct, since a removal or insert "prior" to
                    // the iterator's position wouldn't affect the item count.
                } else {
                    // The removed bucket is an upcoming bucket. We need to make sure it does _not_
                    // get yielded, and also that it's no longer included in the item count.
                    //
                    // NOTE: We can't just reload the group here, both since that might reflect
                    // inserts we've already passed, and because that might inadvertently unset the
                    // bits for _other_ removals. If we do that, we'd have to also decrement the
                    // item count for those other bits that we unset. But the presumably subsequent
                    // call to reflect for those buckets might _also_ decrement the item count.
                    // Instead, we _just_ flip the bit for the particular bucket the caller asked
                    // us to reflect.
                    let our_bit = offset_from(self.iter.data.as_ptr(), b.as_ptr());
                    let was_full = self.iter.current_group.flip(our_bit);
                    debug_assert_ne!(was_full, is_insert);

                    if is_insert {
                        self.items += 1;
                    } else {
                        self.items -= 1;
                    }

                    if cfg!(debug_assertions) {
                        if b.as_ptr() == next_bucket.as_ptr() {
                            // The removed bucket should no longer be next
                            debug_assert_ne!(self.iter.current_group.lowest_set_bit(), Some(index));
                        } else {
                            // We should not have changed what bucket comes next.
                            debug_assert_eq!(self.iter.current_group.lowest_set_bit(), Some(index));
                        }
                    }
                }
            } else {
                // We must have already iterated past the removed item.
            }
        }
    }

    unsafe fn drop_elements(&mut self) {
        if mem::needs_drop::<T>() && self.len() != 0 {
            for item in self {
                item.drop();
            }
        }
    }
}

impl<T> Clone for RawIter<T> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn clone(&self) -> Self {
        Self {
            iter: self.iter.clone(),
            items: self.items,
        }
    }
}

impl<T> Iterator for RawIter<T> {
    type Item = Bucket<T>;

    #[cfg_attr(feature = "inline-more", inline)]
    fn next(&mut self) -> Option<Bucket<T>> {
        // Inner iterator iterates over buckets
        // so it can do unnecessary work if we already yielded all items.
        if self.items == 0 {
            return None;
        }

        let nxt = unsafe {
            // SAFETY: We check number of items to yield using `items` field.
            self.iter.next_impl::<false>()
        };

        if nxt.is_some() {
            self.items -= 1;
        }

        nxt
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.items, Some(self.items))
    }
}

impl<T> ExactSizeIterator for RawIter<T> {}
impl<T> FusedIterator for RawIter<T> {}

/// Iterator which consumes a table and returns elements.
pub struct RawIntoIter<T, A: Allocator + Clone = Global> {
    iter: RawIter<T>,
    allocation: Option<(NonNull<u8>, Layout)>,
    marker: PhantomData<T>,
    alloc: A,
}

impl<T, A: Allocator + Clone> RawIntoIter<T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn iter(&self) -> RawIter<T> {
        self.iter.clone()
    }
}

unsafe impl<T, A: Allocator + Clone> Send for RawIntoIter<T, A>
where
    T: Send,
    A: Send,
{
}
unsafe impl<T, A: Allocator + Clone> Sync for RawIntoIter<T, A>
where
    T: Sync,
    A: Sync,
{
}

#[cfg(feature = "nightly")]
unsafe impl<#[may_dangle] T, A: Allocator + Clone> Drop for RawIntoIter<T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        unsafe {
            // Drop all remaining elements
            self.iter.drop_elements();

            // Free the table
            if let Some((ptr, layout)) = self.allocation {
                self.alloc.deallocate(ptr, layout);
            }
        }
    }
}
#[cfg(not(feature = "nightly"))]
impl<T, A: Allocator + Clone> Drop for RawIntoIter<T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        unsafe {
            // Drop all remaining elements
            self.iter.drop_elements();

            // Free the table
            if let Some((ptr, layout)) = self.allocation {
                self.alloc.deallocate(ptr, layout);
            }
        }
    }
}

impl<T, A: Allocator + Clone> Iterator for RawIntoIter<T, A> {
    type Item = T;

    #[cfg_attr(feature = "inline-more", inline)]
    fn next(&mut self) -> Option<T> {
        unsafe { Some(self.iter.next()?.read()) }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T, A: Allocator + Clone> ExactSizeIterator for RawIntoIter<T, A> {}
impl<T, A: Allocator + Clone> FusedIterator for RawIntoIter<T, A> {}

/// Iterator which consumes elements without freeing the table storage.
pub struct RawDrain<'a, T, A: Allocator + Clone = Global> {
    iter: RawIter<T>,

    // The table is moved into the iterator for the duration of the drain. This
    // ensures that an empty table is left if the drain iterator is leaked
    // without dropping.
    table: ManuallyDrop<RawTable<T, A>>,
    orig_table: NonNull<RawTable<T, A>>,

    // We don't use a &'a mut RawTable<T> because we want RawDrain to be
    // covariant over T.
    marker: PhantomData<&'a RawTable<T, A>>,
}

impl<T, A: Allocator + Clone> RawDrain<'_, T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    pub fn iter(&self) -> RawIter<T> {
        self.iter.clone()
    }
}

unsafe impl<T, A: Allocator + Copy> Send for RawDrain<'_, T, A>
where
    T: Send,
    A: Send,
{
}
unsafe impl<T, A: Allocator + Copy> Sync for RawDrain<'_, T, A>
where
    T: Sync,
    A: Sync,
{
}

impl<T, A: Allocator + Clone> Drop for RawDrain<'_, T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    fn drop(&mut self) {
        unsafe {
            // Drop all remaining elements. Note that this may panic.
            self.iter.drop_elements();

            // Reset the contents of the table now that all elements have been
            // dropped.
            self.table.clear_no_drop();

            // Move the now empty table back to its original location.
            self.orig_table
                .as_ptr()
                .copy_from_nonoverlapping(&*self.table, 1);
        }
    }
}

impl<T, A: Allocator + Clone> Iterator for RawDrain<'_, T, A> {
    type Item = T;

    #[cfg_attr(feature = "inline-more", inline)]
    fn next(&mut self) -> Option<T> {
        unsafe {
            let item = self.iter.next()?;
            Some(item.read())
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T, A: Allocator + Clone> ExactSizeIterator for RawDrain<'_, T, A> {}
impl<T, A: Allocator + Clone> FusedIterator for RawDrain<'_, T, A> {}

/// Iterator over occupied buckets that could match a given hash.
///
/// `RawTable` only stores 7 bits of the hash value, so this iterator may return
/// items that have a hash value different than the one provided. You should
/// always validate the returned values before using them.
pub struct RawIterHash<'a, T, A: Allocator + Clone = Global> {
    inner: RawIterHashInner<'a, A>,
    _marker: PhantomData<T>,
}

struct RawIterHashInner<'a, A: Allocator + Clone> {
    table: &'a RawTableInner<A>,

    // The top 7 bits of the hash.
    h2_hash: u8,

    // The sequence of groups to probe in the search.
    probe_seq: ProbeSeq,

    group: Group,

    // The elements within the group with a matching h2-hash.
    bitmask: BitMaskIter,
}

impl<'a, T, A: Allocator + Clone> RawIterHash<'a, T, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    #[cfg(feature = "raw")]
    fn new(table: &'a RawTable<T, A>, hash: u64) -> Self {
        RawIterHash {
            inner: RawIterHashInner::new(&table.table, hash),
            _marker: PhantomData,
        }
    }
}
impl<'a, A: Allocator + Clone> RawIterHashInner<'a, A> {
    #[cfg_attr(feature = "inline-more", inline)]
    #[cfg(feature = "raw")]
    fn new(table: &'a RawTableInner<A>, hash: u64) -> Self {
        unsafe {
            let h2_hash = h2(hash);
            let probe_seq = table.probe_seq(hash);
            let group = Group::load(table.ctrl(probe_seq.pos));
            let bitmask = group.match_byte(h2_hash).into_iter();

            RawIterHashInner {
                table,
                h2_hash,
                probe_seq,
                group,
                bitmask,
            }
        }
    }
}

impl<'a, T, A: Allocator + Clone> Iterator for RawIterHash<'a, T, A> {
    type Item = Bucket<T>;

    fn next(&mut self) -> Option<Bucket<T>> {
        unsafe {
            match self.inner.next() {
                Some(index) => Some(self.inner.table.bucket(index)),
                None => None,
            }
        }
    }
}

impl<'a, A: Allocator + Clone> Iterator for RawIterHashInner<'a, A> {
    type Item = usize;

    fn next(&mut self) -> Option<Self::Item> {
        unsafe {
            loop {
                if let Some(bit) = self.bitmask.next() {
                    let index = (self.probe_seq.pos + bit) & self.table.bucket_mask;
                    return Some(index);
                }
                if likely(self.group.match_empty().any_bit_set()) {
                    return None;
                }
                self.probe_seq.move_next(self.table.bucket_mask);
                self.group = Group::load(self.table.ctrl(self.probe_seq.pos));
                self.bitmask = self.group.match_byte(self.h2_hash).into_iter();
            }
        }
    }
}

#[cfg(test)]
mod test_map {
    use super::*;

    fn rehash_in_place<T>(table: &mut RawTable<T>, hasher: impl Fn(&T) -> u64) {
        unsafe {
            table.table.rehash_in_place(
                &|table, index| hasher(table.bucket::<T>(index).as_ref()),
                mem::size_of::<T>(),
                if mem::needs_drop::<T>() {
                    Some(mem::transmute(ptr::drop_in_place::<T> as unsafe fn(*mut T)))
                } else {
                    None
                },
            );
        }
    }

    #[test]
    fn rehash() {
        let mut table = RawTable::new();
        let hasher = |i: &u64| *i;
        for i in 0..100 {
            table.insert(i, i, hasher);
        }

        for i in 0..100 {
            unsafe {
                assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i));
            }
            assert!(table.find(i + 100, |x| *x == i + 100).is_none());
        }

        rehash_in_place(&mut table, hasher);

        for i in 0..100 {
            unsafe {
                assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i));
            }
            assert!(table.find(i + 100, |x| *x == i + 100).is_none());
        }
    }
}