1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
use core::f64;
const O_THRESHOLD: f64 = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
const Q1: f64 = -3.33333333333331316428e-02; /* BFA11111 111110F4 */
const Q2: f64 = 1.58730158725481460165e-03; /* 3F5A01A0 19FE5585 */
const Q3: f64 = -7.93650757867487942473e-05; /* BF14CE19 9EAADBB7 */
const Q4: f64 = 4.00821782732936239552e-06; /* 3ED0CFCA 86E65239 */
const Q5: f64 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
/// Exponential, base *e*, of x-1 (f64)
///
/// Calculates the exponential of `x` and subtract 1, that is, *e* raised
/// to the power `x` minus 1 (where *e* is the base of the natural
/// system of logarithms, approximately 2.71828).
/// The result is accurate even for small values of `x`,
/// where using `exp(x)-1` would lose many significant digits.
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn expm1(mut x: f64) -> f64 {
let hi: f64;
let lo: f64;
let k: i32;
let c: f64;
let mut t: f64;
let mut y: f64;
let mut ui = x.to_bits();
let hx = ((ui >> 32) & 0x7fffffff) as u32;
let sign = (ui >> 63) as i32;
/* filter out huge and non-finite argument */
if hx >= 0x4043687A {
/* if |x|>=56*ln2 */
if x.is_nan() {
return x;
}
if sign != 0 {
return -1.0;
}
if x > O_THRESHOLD {
x *= f64::from_bits(0x7fe0000000000000);
return x;
}
}
/* argument reduction */
if hx > 0x3fd62e42 {
/* if |x| > 0.5 ln2 */
if hx < 0x3FF0A2B2 {
/* and |x| < 1.5 ln2 */
if sign == 0 {
hi = x - LN2_HI;
lo = LN2_LO;
k = 1;
} else {
hi = x + LN2_HI;
lo = -LN2_LO;
k = -1;
}
} else {
k = (INVLN2 * x + if sign != 0 { -0.5 } else { 0.5 }) as i32;
t = k as f64;
hi = x - t * LN2_HI; /* t*ln2_hi is exact here */
lo = t * LN2_LO;
}
x = hi - lo;
c = (hi - x) - lo;
} else if hx < 0x3c900000 {
/* |x| < 2**-54, return x */
if hx < 0x00100000 {
force_eval!(x);
}
return x;
} else {
c = 0.0;
k = 0;
}
/* x is now in primary range */
let hfx = 0.5 * x;
let hxs = x * hfx;
let r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
t = 3.0 - r1 * hfx;
let mut e = hxs * ((r1 - t) / (6.0 - x * t));
if k == 0 {
/* c is 0 */
return x - (x * e - hxs);
}
e = x * (e - c) - c;
e -= hxs;
/* exp(x) ~ 2^k (x_reduced - e + 1) */
if k == -1 {
return 0.5 * (x - e) - 0.5;
}
if k == 1 {
if x < -0.25 {
return -2.0 * (e - (x + 0.5));
}
return 1.0 + 2.0 * (x - e);
}
ui = ((0x3ff + k) as u64) << 52; /* 2^k */
let twopk = f64::from_bits(ui);
if k < 0 || k > 56 {
/* suffice to return exp(x)-1 */
y = x - e + 1.0;
if k == 1024 {
y = y * 2.0 * f64::from_bits(0x7fe0000000000000);
} else {
y = y * twopk;
}
return y - 1.0;
}
ui = ((0x3ff - k) as u64) << 52; /* 2^-k */
let uf = f64::from_bits(ui);
if k < 20 {
y = (x - e + (1.0 - uf)) * twopk;
} else {
y = (x - (e + uf) + 1.0) * twopk;
}
y
}
#[cfg(test)]
mod tests {
#[test]
fn sanity_check() {
assert_eq!(super::expm1(1.1), 2.0041660239464334);
}
}
|