1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
|
/*!
This module provides forward and reverse substring search routines.
Unlike the standard library's substring search routines, these work on
arbitrary bytes. For all non-empty needles, these routines will report exactly
the same values as the corresponding routines in the standard library. For
the empty needle, the standard library reports matches only at valid UTF-8
boundaries, where as these routines will report matches at every position.
Other than being able to work on arbitrary bytes, the primary reason to prefer
these routines over the standard library routines is that these will generally
be faster. In some cases, significantly so.
# Example: iterating over substring matches
This example shows how to use [`find_iter`] to find occurrences of a substring
in a haystack.
```
use memchr::memmem;
let haystack = b"foo bar foo baz foo";
let mut it = memmem::find_iter(haystack, "foo");
assert_eq!(Some(0), it.next());
assert_eq!(Some(8), it.next());
assert_eq!(Some(16), it.next());
assert_eq!(None, it.next());
```
# Example: iterating over substring matches in reverse
This example shows how to use [`rfind_iter`] to find occurrences of a substring
in a haystack starting from the end of the haystack.
**NOTE:** This module does not implement double ended iterators, so reverse
searches aren't done by calling `rev` on a forward iterator.
```
use memchr::memmem;
let haystack = b"foo bar foo baz foo";
let mut it = memmem::rfind_iter(haystack, "foo");
assert_eq!(Some(16), it.next());
assert_eq!(Some(8), it.next());
assert_eq!(Some(0), it.next());
assert_eq!(None, it.next());
```
# Example: repeating a search for the same needle
It may be possible for the overhead of constructing a substring searcher to be
measurable in some workloads. In cases where the same needle is used to search
many haystacks, it is possible to do construction once and thus to avoid it for
subsequent searches. This can be done with a [`Finder`] (or a [`FinderRev`] for
reverse searches).
```
use memchr::memmem;
let finder = memmem::Finder::new("foo");
assert_eq!(Some(4), finder.find(b"baz foo quux"));
assert_eq!(None, finder.find(b"quux baz bar"));
```
*/
pub use self::prefilter::Prefilter;
use crate::{
cow::CowBytes,
memmem::{
prefilter::{Pre, PrefilterFn, PrefilterState},
rabinkarp::NeedleHash,
rarebytes::RareNeedleBytes,
},
};
/// Defines a suite of quickcheck properties for forward and reverse
/// substring searching.
///
/// This is defined in this specific spot so that it can be used freely among
/// the different substring search implementations. I couldn't be bothered to
/// fight with the macro-visibility rules enough to figure out how to stuff it
/// somewhere more convenient.
#[cfg(all(test, feature = "std"))]
macro_rules! define_memmem_quickcheck_tests {
($fwd:expr, $rev:expr) => {
use crate::memmem::proptests;
quickcheck::quickcheck! {
fn qc_fwd_prefix_is_substring(bs: Vec<u8>) -> bool {
proptests::prefix_is_substring(false, &bs, $fwd)
}
fn qc_fwd_suffix_is_substring(bs: Vec<u8>) -> bool {
proptests::suffix_is_substring(false, &bs, $fwd)
}
fn qc_fwd_matches_naive(
haystack: Vec<u8>,
needle: Vec<u8>
) -> bool {
proptests::matches_naive(false, &haystack, &needle, $fwd)
}
fn qc_rev_prefix_is_substring(bs: Vec<u8>) -> bool {
proptests::prefix_is_substring(true, &bs, $rev)
}
fn qc_rev_suffix_is_substring(bs: Vec<u8>) -> bool {
proptests::suffix_is_substring(true, &bs, $rev)
}
fn qc_rev_matches_naive(
haystack: Vec<u8>,
needle: Vec<u8>
) -> bool {
proptests::matches_naive(true, &haystack, &needle, $rev)
}
}
};
}
/// Defines a suite of "simple" hand-written tests for a substring
/// implementation.
///
/// This is defined here for the same reason that
/// define_memmem_quickcheck_tests is defined here.
#[cfg(test)]
macro_rules! define_memmem_simple_tests {
($fwd:expr, $rev:expr) => {
use crate::memmem::testsimples;
#[test]
fn simple_forward() {
testsimples::run_search_tests_fwd($fwd);
}
#[test]
fn simple_reverse() {
testsimples::run_search_tests_rev($rev);
}
};
}
mod byte_frequencies;
#[cfg(memchr_runtime_simd)]
mod genericsimd;
mod prefilter;
mod rabinkarp;
mod rarebytes;
mod twoway;
mod util;
#[cfg(memchr_runtime_simd)]
mod vector;
#[cfg(all(memchr_runtime_wasm128))]
mod wasm;
#[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
mod x86;
/// Returns an iterator over all non-overlapping occurrences of a substring in
/// a haystack.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar foo baz foo";
/// let mut it = memmem::find_iter(haystack, b"foo");
/// assert_eq!(Some(0), it.next());
/// assert_eq!(Some(8), it.next());
/// assert_eq!(Some(16), it.next());
/// assert_eq!(None, it.next());
/// ```
#[inline]
pub fn find_iter<'h, 'n, N: 'n + ?Sized + AsRef<[u8]>>(
haystack: &'h [u8],
needle: &'n N,
) -> FindIter<'h, 'n> {
FindIter::new(haystack, Finder::new(needle))
}
/// Returns a reverse iterator over all non-overlapping occurrences of a
/// substring in a haystack.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar foo baz foo";
/// let mut it = memmem::rfind_iter(haystack, b"foo");
/// assert_eq!(Some(16), it.next());
/// assert_eq!(Some(8), it.next());
/// assert_eq!(Some(0), it.next());
/// assert_eq!(None, it.next());
/// ```
#[inline]
pub fn rfind_iter<'h, 'n, N: 'n + ?Sized + AsRef<[u8]>>(
haystack: &'h [u8],
needle: &'n N,
) -> FindRevIter<'h, 'n> {
FindRevIter::new(haystack, FinderRev::new(needle))
}
/// Returns the index of the first occurrence of the given needle.
///
/// Note that if you're are searching for the same needle in many different
/// small haystacks, it may be faster to initialize a [`Finder`] once,
/// and reuse it for each search.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar baz";
/// assert_eq!(Some(0), memmem::find(haystack, b"foo"));
/// assert_eq!(Some(4), memmem::find(haystack, b"bar"));
/// assert_eq!(None, memmem::find(haystack, b"quux"));
/// ```
#[inline]
pub fn find(haystack: &[u8], needle: &[u8]) -> Option<usize> {
if haystack.len() < 64 {
rabinkarp::find(haystack, needle)
} else {
Finder::new(needle).find(haystack)
}
}
/// Returns the index of the last occurrence of the given needle.
///
/// Note that if you're are searching for the same needle in many different
/// small haystacks, it may be faster to initialize a [`FinderRev`] once,
/// and reuse it for each search.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar baz";
/// assert_eq!(Some(0), memmem::rfind(haystack, b"foo"));
/// assert_eq!(Some(4), memmem::rfind(haystack, b"bar"));
/// assert_eq!(Some(8), memmem::rfind(haystack, b"ba"));
/// assert_eq!(None, memmem::rfind(haystack, b"quux"));
/// ```
#[inline]
pub fn rfind(haystack: &[u8], needle: &[u8]) -> Option<usize> {
if haystack.len() < 64 {
rabinkarp::rfind(haystack, needle)
} else {
FinderRev::new(needle).rfind(haystack)
}
}
/// An iterator over non-overlapping substring matches.
///
/// Matches are reported by the byte offset at which they begin.
///
/// `'h` is the lifetime of the haystack while `'n` is the lifetime of the
/// needle.
#[derive(Debug)]
pub struct FindIter<'h, 'n> {
haystack: &'h [u8],
prestate: PrefilterState,
finder: Finder<'n>,
pos: usize,
}
impl<'h, 'n> FindIter<'h, 'n> {
#[inline(always)]
pub(crate) fn new(
haystack: &'h [u8],
finder: Finder<'n>,
) -> FindIter<'h, 'n> {
let prestate = finder.searcher.prefilter_state();
FindIter { haystack, prestate, finder, pos: 0 }
}
/// Convert this iterator into its owned variant, such that it no longer
/// borrows the finder and needle.
///
/// If this is already an owned iterator, then this is a no-op. Otherwise,
/// this copies the needle.
///
/// This is only available when the `std` feature is enabled.
#[cfg(feature = "std")]
#[inline]
pub fn into_owned(self) -> FindIter<'h, 'static> {
FindIter {
haystack: self.haystack,
prestate: self.prestate,
finder: self.finder.into_owned(),
pos: self.pos,
}
}
}
impl<'h, 'n> Iterator for FindIter<'h, 'n> {
type Item = usize;
fn next(&mut self) -> Option<usize> {
if self.pos > self.haystack.len() {
return None;
}
let result = self
.finder
.searcher
.find(&mut self.prestate, &self.haystack[self.pos..]);
match result {
None => None,
Some(i) => {
let pos = self.pos + i;
self.pos = pos + core::cmp::max(1, self.finder.needle().len());
Some(pos)
}
}
}
}
/// An iterator over non-overlapping substring matches in reverse.
///
/// Matches are reported by the byte offset at which they begin.
///
/// `'h` is the lifetime of the haystack while `'n` is the lifetime of the
/// needle.
#[derive(Debug)]
pub struct FindRevIter<'h, 'n> {
haystack: &'h [u8],
finder: FinderRev<'n>,
/// When searching with an empty needle, this gets set to `None` after
/// we've yielded the last element at `0`.
pos: Option<usize>,
}
impl<'h, 'n> FindRevIter<'h, 'n> {
#[inline(always)]
pub(crate) fn new(
haystack: &'h [u8],
finder: FinderRev<'n>,
) -> FindRevIter<'h, 'n> {
let pos = Some(haystack.len());
FindRevIter { haystack, finder, pos }
}
/// Convert this iterator into its owned variant, such that it no longer
/// borrows the finder and needle.
///
/// If this is already an owned iterator, then this is a no-op. Otherwise,
/// this copies the needle.
///
/// This is only available when the `std` feature is enabled.
#[cfg(feature = "std")]
#[inline]
pub fn into_owned(self) -> FindRevIter<'h, 'static> {
FindRevIter {
haystack: self.haystack,
finder: self.finder.into_owned(),
pos: self.pos,
}
}
}
impl<'h, 'n> Iterator for FindRevIter<'h, 'n> {
type Item = usize;
fn next(&mut self) -> Option<usize> {
let pos = match self.pos {
None => return None,
Some(pos) => pos,
};
let result = self.finder.rfind(&self.haystack[..pos]);
match result {
None => None,
Some(i) => {
if pos == i {
self.pos = pos.checked_sub(1);
} else {
self.pos = Some(i);
}
Some(i)
}
}
}
}
/// A single substring searcher fixed to a particular needle.
///
/// The purpose of this type is to permit callers to construct a substring
/// searcher that can be used to search haystacks without the overhead of
/// constructing the searcher in the first place. This is a somewhat niche
/// concern when it's necessary to re-use the same needle to search multiple
/// different haystacks with as little overhead as possible. In general, using
/// [`find`] is good enough, but `Finder` is useful when you can meaningfully
/// observe searcher construction time in a profile.
///
/// When the `std` feature is enabled, then this type has an `into_owned`
/// version which permits building a `Finder` that is not connected to
/// the lifetime of its needle.
#[derive(Clone, Debug)]
pub struct Finder<'n> {
searcher: Searcher<'n>,
}
impl<'n> Finder<'n> {
/// Create a new finder for the given needle.
#[inline]
pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'n B) -> Finder<'n> {
FinderBuilder::new().build_forward(needle)
}
/// Returns the index of the first occurrence of this needle in the given
/// haystack.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem::Finder;
///
/// let haystack = b"foo bar baz";
/// assert_eq!(Some(0), Finder::new("foo").find(haystack));
/// assert_eq!(Some(4), Finder::new("bar").find(haystack));
/// assert_eq!(None, Finder::new("quux").find(haystack));
/// ```
pub fn find(&self, haystack: &[u8]) -> Option<usize> {
self.searcher.find(&mut self.searcher.prefilter_state(), haystack)
}
/// Returns an iterator over all occurrences of a substring in a haystack.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem::Finder;
///
/// let haystack = b"foo bar foo baz foo";
/// let finder = Finder::new(b"foo");
/// let mut it = finder.find_iter(haystack);
/// assert_eq!(Some(0), it.next());
/// assert_eq!(Some(8), it.next());
/// assert_eq!(Some(16), it.next());
/// assert_eq!(None, it.next());
/// ```
#[inline]
pub fn find_iter<'a, 'h>(
&'a self,
haystack: &'h [u8],
) -> FindIter<'h, 'a> {
FindIter::new(haystack, self.as_ref())
}
/// Convert this finder into its owned variant, such that it no longer
/// borrows the needle.
///
/// If this is already an owned finder, then this is a no-op. Otherwise,
/// this copies the needle.
///
/// This is only available when the `std` feature is enabled.
#[cfg(feature = "std")]
#[inline]
pub fn into_owned(self) -> Finder<'static> {
Finder { searcher: self.searcher.into_owned() }
}
/// Convert this finder into its borrowed variant.
///
/// This is primarily useful if your finder is owned and you'd like to
/// store its borrowed variant in some intermediate data structure.
///
/// Note that the lifetime parameter of the returned finder is tied to the
/// lifetime of `self`, and may be shorter than the `'n` lifetime of the
/// needle itself. Namely, a finder's needle can be either borrowed or
/// owned, so the lifetime of the needle returned must necessarily be the
/// shorter of the two.
#[inline]
pub fn as_ref(&self) -> Finder<'_> {
Finder { searcher: self.searcher.as_ref() }
}
/// Returns the needle that this finder searches for.
///
/// Note that the lifetime of the needle returned is tied to the lifetime
/// of the finder, and may be shorter than the `'n` lifetime. Namely, a
/// finder's needle can be either borrowed or owned, so the lifetime of the
/// needle returned must necessarily be the shorter of the two.
#[inline]
pub fn needle(&self) -> &[u8] {
self.searcher.needle()
}
}
/// A single substring reverse searcher fixed to a particular needle.
///
/// The purpose of this type is to permit callers to construct a substring
/// searcher that can be used to search haystacks without the overhead of
/// constructing the searcher in the first place. This is a somewhat niche
/// concern when it's necessary to re-use the same needle to search multiple
/// different haystacks with as little overhead as possible. In general,
/// using [`rfind`] is good enough, but `FinderRev` is useful when you can
/// meaningfully observe searcher construction time in a profile.
///
/// When the `std` feature is enabled, then this type has an `into_owned`
/// version which permits building a `FinderRev` that is not connected to
/// the lifetime of its needle.
#[derive(Clone, Debug)]
pub struct FinderRev<'n> {
searcher: SearcherRev<'n>,
}
impl<'n> FinderRev<'n> {
/// Create a new reverse finder for the given needle.
#[inline]
pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'n B) -> FinderRev<'n> {
FinderBuilder::new().build_reverse(needle)
}
/// Returns the index of the last occurrence of this needle in the given
/// haystack.
///
/// The haystack may be any type that can be cheaply converted into a
/// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem::FinderRev;
///
/// let haystack = b"foo bar baz";
/// assert_eq!(Some(0), FinderRev::new("foo").rfind(haystack));
/// assert_eq!(Some(4), FinderRev::new("bar").rfind(haystack));
/// assert_eq!(None, FinderRev::new("quux").rfind(haystack));
/// ```
pub fn rfind<B: AsRef<[u8]>>(&self, haystack: B) -> Option<usize> {
self.searcher.rfind(haystack.as_ref())
}
/// Returns a reverse iterator over all occurrences of a substring in a
/// haystack.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem::FinderRev;
///
/// let haystack = b"foo bar foo baz foo";
/// let finder = FinderRev::new(b"foo");
/// let mut it = finder.rfind_iter(haystack);
/// assert_eq!(Some(16), it.next());
/// assert_eq!(Some(8), it.next());
/// assert_eq!(Some(0), it.next());
/// assert_eq!(None, it.next());
/// ```
#[inline]
pub fn rfind_iter<'a, 'h>(
&'a self,
haystack: &'h [u8],
) -> FindRevIter<'h, 'a> {
FindRevIter::new(haystack, self.as_ref())
}
/// Convert this finder into its owned variant, such that it no longer
/// borrows the needle.
///
/// If this is already an owned finder, then this is a no-op. Otherwise,
/// this copies the needle.
///
/// This is only available when the `std` feature is enabled.
#[cfg(feature = "std")]
#[inline]
pub fn into_owned(self) -> FinderRev<'static> {
FinderRev { searcher: self.searcher.into_owned() }
}
/// Convert this finder into its borrowed variant.
///
/// This is primarily useful if your finder is owned and you'd like to
/// store its borrowed variant in some intermediate data structure.
///
/// Note that the lifetime parameter of the returned finder is tied to the
/// lifetime of `self`, and may be shorter than the `'n` lifetime of the
/// needle itself. Namely, a finder's needle can be either borrowed or
/// owned, so the lifetime of the needle returned must necessarily be the
/// shorter of the two.
#[inline]
pub fn as_ref(&self) -> FinderRev<'_> {
FinderRev { searcher: self.searcher.as_ref() }
}
/// Returns the needle that this finder searches for.
///
/// Note that the lifetime of the needle returned is tied to the lifetime
/// of the finder, and may be shorter than the `'n` lifetime. Namely, a
/// finder's needle can be either borrowed or owned, so the lifetime of the
/// needle returned must necessarily be the shorter of the two.
#[inline]
pub fn needle(&self) -> &[u8] {
self.searcher.needle()
}
}
/// A builder for constructing non-default forward or reverse memmem finders.
///
/// A builder is primarily useful for configuring a substring searcher.
/// Currently, the only configuration exposed is the ability to disable
/// heuristic prefilters used to speed up certain searches.
#[derive(Clone, Debug, Default)]
pub struct FinderBuilder {
config: SearcherConfig,
}
impl FinderBuilder {
/// Create a new finder builder with default settings.
pub fn new() -> FinderBuilder {
FinderBuilder::default()
}
/// Build a forward finder using the given needle from the current
/// settings.
pub fn build_forward<'n, B: ?Sized + AsRef<[u8]>>(
&self,
needle: &'n B,
) -> Finder<'n> {
Finder { searcher: Searcher::new(self.config, needle.as_ref()) }
}
/// Build a reverse finder using the given needle from the current
/// settings.
pub fn build_reverse<'n, B: ?Sized + AsRef<[u8]>>(
&self,
needle: &'n B,
) -> FinderRev<'n> {
FinderRev { searcher: SearcherRev::new(needle.as_ref()) }
}
/// Configure the prefilter setting for the finder.
///
/// See the documentation for [`Prefilter`] for more discussion on why
/// you might want to configure this.
pub fn prefilter(&mut self, prefilter: Prefilter) -> &mut FinderBuilder {
self.config.prefilter = prefilter;
self
}
}
/// The internal implementation of a forward substring searcher.
///
/// The reality is that this is a "meta" searcher. Namely, depending on a
/// variety of parameters (CPU support, target, needle size, haystack size and
/// even dynamic properties such as prefilter effectiveness), the actual
/// algorithm employed to do substring search may change.
#[derive(Clone, Debug)]
struct Searcher<'n> {
/// The actual needle we're searching for.
///
/// A CowBytes is like a Cow<[u8]>, except in no_std environments, it is
/// specialized to a single variant (the borrowed form).
needle: CowBytes<'n>,
/// A collection of facts computed on the needle that are useful for more
/// than one substring search algorithm.
ninfo: NeedleInfo,
/// A prefilter function, if it was deemed appropriate.
///
/// Some substring search implementations (like Two-Way) benefit greatly
/// if we can quickly find candidate starting positions for a match.
prefn: Option<PrefilterFn>,
/// The actual substring implementation in use.
kind: SearcherKind,
}
/// A collection of facts computed about a search needle.
///
/// We group these things together because it's useful to be able to hand them
/// to prefilters or substring algorithms that want them.
#[derive(Clone, Copy, Debug)]
pub(crate) struct NeedleInfo {
/// The offsets of "rare" bytes detected in the needle.
///
/// This is meant to be a heuristic in order to maximize the effectiveness
/// of vectorized code. Namely, vectorized code tends to focus on only
/// one or two bytes. If we pick bytes from the needle that occur
/// infrequently, then more time will be spent in the vectorized code and
/// will likely make the overall search (much) faster.
///
/// Of course, this is only a heuristic based on a background frequency
/// distribution of bytes. But it tends to work very well in practice.
pub(crate) rarebytes: RareNeedleBytes,
/// A Rabin-Karp hash of the needle.
///
/// This is store here instead of in a more specific Rabin-Karp search
/// since Rabin-Karp may be used even if another SearchKind corresponds
/// to some other search implementation. e.g., If measurements suggest RK
/// is faster in some cases or if a search implementation can't handle
/// particularly small haystack. (Moreover, we cannot use RK *generally*,
/// since its worst case time is multiplicative. Instead, we only use it
/// some small haystacks, where "small" is a constant.)
pub(crate) nhash: NeedleHash,
}
/// Configuration for substring search.
#[derive(Clone, Copy, Debug, Default)]
struct SearcherConfig {
/// This permits changing the behavior of the prefilter, since it can have
/// a variable impact on performance.
prefilter: Prefilter,
}
#[derive(Clone, Debug)]
enum SearcherKind {
/// A special case for empty needles. An empty needle always matches, even
/// in an empty haystack.
Empty,
/// This is used whenever the needle is a single byte. In this case, we
/// always use memchr.
OneByte(u8),
/// Two-Way is the generic work horse and is what provides our additive
/// linear time guarantee. In general, it's used when the needle is bigger
/// than 8 bytes or so.
TwoWay(twoway::Forward),
#[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
GenericSIMD128(x86::sse::Forward),
#[cfg(memchr_runtime_wasm128)]
GenericSIMD128(wasm::Forward),
#[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
GenericSIMD256(x86::avx::Forward),
}
impl<'n> Searcher<'n> {
fn new(config: SearcherConfig, needle: &'n [u8]) -> Searcher<'n> {
use self::SearcherKind::*;
let ninfo = NeedleInfo::new(needle);
let mk = |kind: SearcherKind| {
let prefn = prefilter::forward(
&config.prefilter,
&ninfo.rarebytes,
needle,
);
Searcher { needle: CowBytes::new(needle), ninfo, prefn, kind }
};
if needle.len() == 0 {
return mk(Empty);
}
if needle.len() == 1 {
return mk(OneByte(needle[0]));
}
#[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))]
{
if let Some(fwd) = x86::avx::Forward::new(&ninfo, needle) {
return mk(GenericSIMD256(fwd));
} else if let Some(fwd) = x86::sse::Forward::new(&ninfo, needle) {
return mk(GenericSIMD128(fwd));
}
}
#[cfg(all(target_arch = "wasm32", memchr_runtime_simd))]
{
if let Some(fwd) = wasm::Forward::new(&ninfo, needle) {
return mk(GenericSIMD128(fwd));
}
}
mk(TwoWay(twoway::Forward::new(needle)))
}
/// Return a fresh prefilter state that can be used with this searcher.
/// A prefilter state is used to track the effectiveness of a searcher's
/// prefilter for speeding up searches. Therefore, the prefilter state
/// should generally be reused on subsequent searches (such as in an
/// iterator). For searches on a different haystack, then a new prefilter
/// state should be used.
///
/// This always initializes a valid (but possibly inert) prefilter state
/// even if this searcher does not have a prefilter enabled.
fn prefilter_state(&self) -> PrefilterState {
if self.prefn.is_none() {
PrefilterState::inert()
} else {
PrefilterState::new()
}
}
fn needle(&self) -> &[u8] {
self.needle.as_slice()
}
fn as_ref(&self) -> Searcher<'_> {
use self::SearcherKind::*;
let kind = match self.kind {
Empty => Empty,
OneByte(b) => OneByte(b),
TwoWay(tw) => TwoWay(tw),
#[cfg(all(not(miri), memchr_runtime_simd))]
GenericSIMD128(gs) => GenericSIMD128(gs),
#[cfg(all(
not(miri),
target_arch = "x86_64",
memchr_runtime_simd
))]
GenericSIMD256(gs) => GenericSIMD256(gs),
};
Searcher {
needle: CowBytes::new(self.needle()),
ninfo: self.ninfo,
prefn: self.prefn,
kind,
}
}
#[cfg(feature = "std")]
fn into_owned(self) -> Searcher<'static> {
use self::SearcherKind::*;
let kind = match self.kind {
Empty => Empty,
OneByte(b) => OneByte(b),
TwoWay(tw) => TwoWay(tw),
#[cfg(all(not(miri), memchr_runtime_simd))]
GenericSIMD128(gs) => GenericSIMD128(gs),
#[cfg(all(
not(miri),
target_arch = "x86_64",
memchr_runtime_simd
))]
GenericSIMD256(gs) => GenericSIMD256(gs),
};
Searcher {
needle: self.needle.into_owned(),
ninfo: self.ninfo,
prefn: self.prefn,
kind,
}
}
/// Implements forward substring search by selecting the implementation
/// chosen at construction and executing it on the given haystack with the
/// prefilter's current state of effectiveness.
#[inline(always)]
fn find(
&self,
state: &mut PrefilterState,
haystack: &[u8],
) -> Option<usize> {
use self::SearcherKind::*;
let needle = self.needle();
if haystack.len() < needle.len() {
return None;
}
match self.kind {
Empty => Some(0),
OneByte(b) => crate::memchr(b, haystack),
TwoWay(ref tw) => {
// For very short haystacks (e.g., where the prefilter probably
// can't run), it's faster to just run RK.
if rabinkarp::is_fast(haystack, needle) {
rabinkarp::find_with(&self.ninfo.nhash, haystack, needle)
} else {
self.find_tw(tw, state, haystack, needle)
}
}
#[cfg(all(not(miri), memchr_runtime_simd))]
GenericSIMD128(ref gs) => {
// The SIMD matcher can't handle particularly short haystacks,
// so we fall back to RK in these cases.
if haystack.len() < gs.min_haystack_len() {
rabinkarp::find_with(&self.ninfo.nhash, haystack, needle)
} else {
gs.find(haystack, needle)
}
}
#[cfg(all(
not(miri),
target_arch = "x86_64",
memchr_runtime_simd
))]
GenericSIMD256(ref gs) => {
// The SIMD matcher can't handle particularly short haystacks,
// so we fall back to RK in these cases.
if haystack.len() < gs.min_haystack_len() {
rabinkarp::find_with(&self.ninfo.nhash, haystack, needle)
} else {
gs.find(haystack, needle)
}
}
}
}
/// Calls Two-Way on the given haystack/needle.
///
/// This is marked as unlineable since it seems to have a better overall
/// effect on benchmarks. However, this is one of those cases where
/// inlining it results an improvement in other benchmarks too, so I
/// suspect we just don't have enough data yet to make the right call here.
///
/// I suspect the main problem is that this function contains two different
/// inlined copies of Two-Way: one with and one without prefilters enabled.
#[inline(never)]
fn find_tw(
&self,
tw: &twoway::Forward,
state: &mut PrefilterState,
haystack: &[u8],
needle: &[u8],
) -> Option<usize> {
if let Some(prefn) = self.prefn {
// We used to look at the length of a haystack here. That is, if
// it was too small, then don't bother with the prefilter. But two
// things changed: the prefilter falls back to memchr for small
// haystacks, and, above, Rabin-Karp is employed for tiny haystacks
// anyway.
if state.is_effective() {
let mut pre = Pre { state, prefn, ninfo: &self.ninfo };
return tw.find(Some(&mut pre), haystack, needle);
}
}
tw.find(None, haystack, needle)
}
}
impl NeedleInfo {
pub(crate) fn new(needle: &[u8]) -> NeedleInfo {
NeedleInfo {
rarebytes: RareNeedleBytes::forward(needle),
nhash: NeedleHash::forward(needle),
}
}
}
/// The internal implementation of a reverse substring searcher.
///
/// See the forward searcher docs for more details. Currently, the reverse
/// searcher is considerably simpler since it lacks prefilter support. This
/// was done because it adds a lot of code, and more surface area to test. And
/// in particular, it's not clear whether a prefilter on reverse searching is
/// worth it. (If you have a compelling use case, please file an issue!)
#[derive(Clone, Debug)]
struct SearcherRev<'n> {
/// The actual needle we're searching for.
needle: CowBytes<'n>,
/// A Rabin-Karp hash of the needle.
nhash: NeedleHash,
/// The actual substring implementation in use.
kind: SearcherRevKind,
}
#[derive(Clone, Debug)]
enum SearcherRevKind {
/// A special case for empty needles. An empty needle always matches, even
/// in an empty haystack.
Empty,
/// This is used whenever the needle is a single byte. In this case, we
/// always use memchr.
OneByte(u8),
/// Two-Way is the generic work horse and is what provides our additive
/// linear time guarantee. In general, it's used when the needle is bigger
/// than 8 bytes or so.
TwoWay(twoway::Reverse),
}
impl<'n> SearcherRev<'n> {
fn new(needle: &'n [u8]) -> SearcherRev<'n> {
use self::SearcherRevKind::*;
let kind = if needle.len() == 0 {
Empty
} else if needle.len() == 1 {
OneByte(needle[0])
} else {
TwoWay(twoway::Reverse::new(needle))
};
SearcherRev {
needle: CowBytes::new(needle),
nhash: NeedleHash::reverse(needle),
kind,
}
}
fn needle(&self) -> &[u8] {
self.needle.as_slice()
}
fn as_ref(&self) -> SearcherRev<'_> {
use self::SearcherRevKind::*;
let kind = match self.kind {
Empty => Empty,
OneByte(b) => OneByte(b),
TwoWay(tw) => TwoWay(tw),
};
SearcherRev {
needle: CowBytes::new(self.needle()),
nhash: self.nhash,
kind,
}
}
#[cfg(feature = "std")]
fn into_owned(self) -> SearcherRev<'static> {
use self::SearcherRevKind::*;
let kind = match self.kind {
Empty => Empty,
OneByte(b) => OneByte(b),
TwoWay(tw) => TwoWay(tw),
};
SearcherRev {
needle: self.needle.into_owned(),
nhash: self.nhash,
kind,
}
}
/// Implements reverse substring search by selecting the implementation
/// chosen at construction and executing it on the given haystack with the
/// prefilter's current state of effectiveness.
#[inline(always)]
fn rfind(&self, haystack: &[u8]) -> Option<usize> {
use self::SearcherRevKind::*;
let needle = self.needle();
if haystack.len() < needle.len() {
return None;
}
match self.kind {
Empty => Some(haystack.len()),
OneByte(b) => crate::memrchr(b, haystack),
TwoWay(ref tw) => {
// For very short haystacks (e.g., where the prefilter probably
// can't run), it's faster to just run RK.
if rabinkarp::is_fast(haystack, needle) {
rabinkarp::rfind_with(&self.nhash, haystack, needle)
} else {
tw.rfind(haystack, needle)
}
}
}
}
}
/// This module defines some generic quickcheck properties useful for testing
/// any substring search algorithm. It also runs those properties for the
/// top-level public API memmem routines. (The properties are also used to
/// test various substring search implementations more granularly elsewhere as
/// well.)
#[cfg(all(test, feature = "std", not(miri)))]
mod proptests {
// N.B. This defines the quickcheck tests using the properties defined
// below. Because of macro-visibility weirdness, the actual macro is
// defined at the top of this file.
define_memmem_quickcheck_tests!(super::find, super::rfind);
/// Check that every prefix of the given byte string is a substring.
pub(crate) fn prefix_is_substring(
reverse: bool,
bs: &[u8],
mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
) -> bool {
if bs.is_empty() {
return true;
}
for i in 0..(bs.len() - 1) {
let prefix = &bs[..i];
if reverse {
assert_eq!(naive_rfind(bs, prefix), search(bs, prefix));
} else {
assert_eq!(naive_find(bs, prefix), search(bs, prefix));
}
}
true
}
/// Check that every suffix of the given byte string is a substring.
pub(crate) fn suffix_is_substring(
reverse: bool,
bs: &[u8],
mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
) -> bool {
if bs.is_empty() {
return true;
}
for i in 0..(bs.len() - 1) {
let suffix = &bs[i..];
if reverse {
assert_eq!(naive_rfind(bs, suffix), search(bs, suffix));
} else {
assert_eq!(naive_find(bs, suffix), search(bs, suffix));
}
}
true
}
/// Check that naive substring search matches the result of the given search
/// algorithm.
pub(crate) fn matches_naive(
reverse: bool,
haystack: &[u8],
needle: &[u8],
mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
) -> bool {
if reverse {
naive_rfind(haystack, needle) == search(haystack, needle)
} else {
naive_find(haystack, needle) == search(haystack, needle)
}
}
/// Naively search forwards for the given needle in the given haystack.
fn naive_find(haystack: &[u8], needle: &[u8]) -> Option<usize> {
if needle.is_empty() {
return Some(0);
} else if haystack.len() < needle.len() {
return None;
}
for i in 0..(haystack.len() - needle.len() + 1) {
if needle == &haystack[i..i + needle.len()] {
return Some(i);
}
}
None
}
/// Naively search in reverse for the given needle in the given haystack.
fn naive_rfind(haystack: &[u8], needle: &[u8]) -> Option<usize> {
if needle.is_empty() {
return Some(haystack.len());
} else if haystack.len() < needle.len() {
return None;
}
for i in (0..(haystack.len() - needle.len() + 1)).rev() {
if needle == &haystack[i..i + needle.len()] {
return Some(i);
}
}
None
}
}
/// This module defines some hand-written "simple" substring tests. It
/// also provides routines for easily running them on any substring search
/// implementation.
#[cfg(test)]
mod testsimples {
define_memmem_simple_tests!(super::find, super::rfind);
/// Each test is a (needle, haystack, expected_fwd, expected_rev) tuple.
type SearchTest =
(&'static str, &'static str, Option<usize>, Option<usize>);
const SEARCH_TESTS: &'static [SearchTest] = &[
("", "", Some(0), Some(0)),
("", "a", Some(0), Some(1)),
("", "ab", Some(0), Some(2)),
("", "abc", Some(0), Some(3)),
("a", "", None, None),
("a", "a", Some(0), Some(0)),
("a", "aa", Some(0), Some(1)),
("a", "ba", Some(1), Some(1)),
("a", "bba", Some(2), Some(2)),
("a", "bbba", Some(3), Some(3)),
("a", "bbbab", Some(3), Some(3)),
("a", "bbbabb", Some(3), Some(3)),
("a", "bbbabbb", Some(3), Some(3)),
("a", "bbbbbb", None, None),
("ab", "", None, None),
("ab", "a", None, None),
("ab", "b", None, None),
("ab", "ab", Some(0), Some(0)),
("ab", "aab", Some(1), Some(1)),
("ab", "aaab", Some(2), Some(2)),
("ab", "abaab", Some(0), Some(3)),
("ab", "baaab", Some(3), Some(3)),
("ab", "acb", None, None),
("ab", "abba", Some(0), Some(0)),
("abc", "ab", None, None),
("abc", "abc", Some(0), Some(0)),
("abc", "abcz", Some(0), Some(0)),
("abc", "abczz", Some(0), Some(0)),
("abc", "zabc", Some(1), Some(1)),
("abc", "zzabc", Some(2), Some(2)),
("abc", "azbc", None, None),
("abc", "abzc", None, None),
("abczdef", "abczdefzzzzzzzzzzzzzzzzzzzz", Some(0), Some(0)),
("abczdef", "zzzzzzzzzzzzzzzzzzzzabczdef", Some(20), Some(20)),
("xyz", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaxyz", Some(32), Some(32)),
// Failures caught by quickcheck.
("\u{0}\u{15}", "\u{0}\u{15}\u{15}\u{0}", Some(0), Some(0)),
("\u{0}\u{1e}", "\u{1e}\u{0}", None, None),
];
/// Run the substring search tests. `search` should be a closure that
/// accepts a haystack and a needle and returns the starting position
/// of the first occurrence of needle in the haystack, or `None` if one
/// doesn't exist.
pub(crate) fn run_search_tests_fwd(
mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
) {
for &(needle, haystack, expected_fwd, _) in SEARCH_TESTS {
let (n, h) = (needle.as_bytes(), haystack.as_bytes());
assert_eq!(
expected_fwd,
search(h, n),
"needle: {:?}, haystack: {:?}, expected: {:?}",
n,
h,
expected_fwd
);
}
}
/// Run the substring search tests. `search` should be a closure that
/// accepts a haystack and a needle and returns the starting position of
/// the last occurrence of needle in the haystack, or `None` if one doesn't
/// exist.
pub(crate) fn run_search_tests_rev(
mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>,
) {
for &(needle, haystack, _, expected_rev) in SEARCH_TESTS {
let (n, h) = (needle.as_bytes(), haystack.as_bytes());
assert_eq!(
expected_rev,
search(h, n),
"needle: {:?}, haystack: {:?}, expected: {:?}",
n,
h,
expected_rev
);
}
}
}
|