1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
|
use {sys, Token};
use event_imp::{self as event, Ready, Event, Evented, PollOpt};
use std::{fmt, io, ptr, usize};
use std::cell::UnsafeCell;
use std::{mem, ops, isize};
#[cfg(all(unix, not(target_os = "fuchsia")))]
use std::os::unix::io::AsRawFd;
#[cfg(all(unix, not(target_os = "fuchsia")))]
use std::os::unix::io::RawFd;
use std::process;
use std::sync::{Arc, Mutex, Condvar};
use std::sync::atomic::{AtomicUsize, AtomicPtr, AtomicBool};
use std::sync::atomic::Ordering::{self, Acquire, Release, AcqRel, Relaxed, SeqCst};
use std::time::{Duration, Instant};
// Poll is backed by two readiness queues. The first is a system readiness queue
// represented by `sys::Selector`. The system readiness queue handles events
// provided by the system, such as TCP and UDP. The second readiness queue is
// implemented in user space by `ReadinessQueue`. It provides a way to implement
// purely user space `Evented` types.
//
// `ReadinessQueue` is backed by a MPSC queue that supports reuse of linked
// list nodes. This significantly reduces the number of required allocations.
// Each `Registration` / `SetReadiness` pair allocates a single readiness node
// that is used for the lifetime of the registration.
//
// The readiness node also includes a single atomic variable, `state` that
// tracks most of the state associated with the registration. This includes the
// current readiness, interest, poll options, and internal state. When the node
// state is mutated, it is queued in the MPSC channel. A call to
// `ReadinessQueue::poll` will dequeue and process nodes. The node state can
// still be mutated while it is queued in the channel for processing.
// Intermediate state values do not matter as long as the final state is
// included in the call to `poll`. This is the eventually consistent nature of
// the readiness queue.
//
// The readiness node is ref counted using the `ref_count` field. On creation,
// the ref_count is initialized to 3: one `Registration` handle, one
// `SetReadiness` handle, and one for the readiness queue. Since the readiness queue
// doesn't *always* hold a handle to the node, we don't use the Arc type for
// managing ref counts (this is to avoid constantly incrementing and
// decrementing the ref count when pushing & popping from the queue). When the
// `Registration` handle is dropped, the `dropped` flag is set on the node, then
// the node is pushed into the registration queue. When Poll::poll pops the
// node, it sees the drop flag is set, and decrements it's ref count.
//
// The MPSC queue is a modified version of the intrusive MPSC node based queue
// described by 1024cores [1].
//
// The first modification is that two markers are used instead of a single
// `stub`. The second marker is a `sleep_marker` which is used to signal to
// producers that the consumer is going to sleep. This sleep_marker is only used
// when the queue is empty, implying that the only node in the queue is
// `end_marker`.
//
// The second modification is an `until` argument passed to the dequeue
// function. When `poll` encounters a level-triggered node, the node will be
// immediately pushed back into the queue. In order to avoid an infinite loop,
// `poll` before pushing the node, the pointer is saved off and then passed
// again as the `until` argument. If the next node to pop is `until`, then
// `Dequeue::Empty` is returned.
//
// [1] http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue
/// Polls for readiness events on all registered values.
///
/// `Poll` allows a program to monitor a large number of `Evented` types,
/// waiting until one or more become "ready" for some class of operations; e.g.
/// reading and writing. An `Evented` type is considered ready if it is possible
/// to immediately perform a corresponding operation; e.g. [`read`] or
/// [`write`].
///
/// To use `Poll`, an `Evented` type must first be registered with the `Poll`
/// instance using the [`register`] method, supplying readiness interest. The
/// readiness interest tells `Poll` which specific operations on the handle to
/// monitor for readiness. A `Token` is also passed to the [`register`]
/// function. When `Poll` returns a readiness event, it will include this token.
/// This associates the event with the `Evented` handle that generated the
/// event.
///
/// [`read`]: tcp/struct.TcpStream.html#method.read
/// [`write`]: tcp/struct.TcpStream.html#method.write
/// [`register`]: #method.register
///
/// # Examples
///
/// A basic example -- establishing a `TcpStream` connection.
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Events, Poll, Ready, PollOpt, Token};
/// use mio::net::TcpStream;
///
/// use std::net::{TcpListener, SocketAddr};
///
/// // Bind a server socket to connect to.
/// let addr: SocketAddr = "127.0.0.1:0".parse()?;
/// let server = TcpListener::bind(&addr)?;
///
/// // Construct a new `Poll` handle as well as the `Events` we'll store into
/// let poll = Poll::new()?;
/// let mut events = Events::with_capacity(1024);
///
/// // Connect the stream
/// let stream = TcpStream::connect(&server.local_addr()?)?;
///
/// // Register the stream with `Poll`
/// poll.register(&stream, Token(0), Ready::readable() | Ready::writable(), PollOpt::edge())?;
///
/// // Wait for the socket to become ready. This has to happens in a loop to
/// // handle spurious wakeups.
/// loop {
/// poll.poll(&mut events, None)?;
///
/// for event in &events {
/// if event.token() == Token(0) && event.readiness().is_writable() {
/// // The socket connected (probably, it could still be a spurious
/// // wakeup)
/// return Ok(());
/// }
/// }
/// }
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
///
/// # Edge-triggered and level-triggered
///
/// An [`Evented`] registration may request edge-triggered events or
/// level-triggered events. This is done by setting `register`'s
/// [`PollOpt`] argument to either [`edge`] or [`level`].
///
/// The difference between the two can be described as follows. Supposed that
/// this scenario happens:
///
/// 1. A [`TcpStream`] is registered with `Poll`.
/// 2. The socket receives 2kb of data.
/// 3. A call to [`Poll::poll`] returns the token associated with the socket
/// indicating readable readiness.
/// 4. 1kb is read from the socket.
/// 5. Another call to [`Poll::poll`] is made.
///
/// If when the socket was registered with `Poll`, edge triggered events were
/// requested, then the call to [`Poll::poll`] done in step **5** will
/// (probably) hang despite there being another 1kb still present in the socket
/// read buffer. The reason for this is that edge-triggered mode delivers events
/// only when changes occur on the monitored [`Evented`]. So, in step *5* the
/// caller might end up waiting for some data that is already present inside the
/// socket buffer.
///
/// With edge-triggered events, operations **must** be performed on the
/// `Evented` type until [`WouldBlock`] is returned. In other words, after
/// receiving an event indicating readiness for a certain operation, one should
/// assume that [`Poll::poll`] may never return another event for the same token
/// and readiness until the operation returns [`WouldBlock`].
///
/// By contrast, when level-triggered notifications was requested, each call to
/// [`Poll::poll`] will return an event for the socket as long as data remains
/// in the socket buffer. Generally, level-triggered events should be avoided if
/// high performance is a concern.
///
/// Since even with edge-triggered events, multiple events can be generated upon
/// receipt of multiple chunks of data, the caller has the option to set the
/// [`oneshot`] flag. This tells `Poll` to disable the associated [`Evented`]
/// after the event is returned from [`Poll::poll`]. The subsequent calls to
/// [`Poll::poll`] will no longer include events for [`Evented`] handles that
/// are disabled even if the readiness state changes. The handle can be
/// re-enabled by calling [`reregister`]. When handles are disabled, internal
/// resources used to monitor the handle are maintained until the handle is
/// dropped or deregistered. This makes re-registering the handle a fast
/// operation.
///
/// For example, in the following scenario:
///
/// 1. A [`TcpStream`] is registered with `Poll`.
/// 2. The socket receives 2kb of data.
/// 3. A call to [`Poll::poll`] returns the token associated with the socket
/// indicating readable readiness.
/// 4. 2kb is read from the socket.
/// 5. Another call to read is issued and [`WouldBlock`] is returned
/// 6. The socket receives another 2kb of data.
/// 7. Another call to [`Poll::poll`] is made.
///
/// Assuming the socket was registered with `Poll` with the [`edge`] and
/// [`oneshot`] options, then the call to [`Poll::poll`] in step 7 would block. This
/// is because, [`oneshot`] tells `Poll` to disable events for the socket after
/// returning an event.
///
/// In order to receive the event for the data received in step 6, the socket
/// would need to be reregistered using [`reregister`].
///
/// [`PollOpt`]: struct.PollOpt.html
/// [`edge`]: struct.PollOpt.html#method.edge
/// [`level`]: struct.PollOpt.html#method.level
/// [`Poll::poll`]: struct.Poll.html#method.poll
/// [`WouldBlock`]: https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.WouldBlock
/// [`Evented`]: event/trait.Evented.html
/// [`TcpStream`]: tcp/struct.TcpStream.html
/// [`reregister`]: #method.reregister
/// [`oneshot`]: struct.PollOpt.html#method.oneshot
///
/// # Portability
///
/// Using `Poll` provides a portable interface across supported platforms as
/// long as the caller takes the following into consideration:
///
/// ### Spurious events
///
/// [`Poll::poll`] may return readiness events even if the associated
/// [`Evented`] handle is not actually ready. Given the same code, this may
/// happen more on some platforms than others. It is important to never assume
/// that, just because a readiness notification was received, that the
/// associated operation will succeed as well.
///
/// If operation fails with [`WouldBlock`], then the caller should not treat
/// this as an error, but instead should wait until another readiness event is
/// received.
///
/// ### Draining readiness
///
/// When using edge-triggered mode, once a readiness event is received, the
/// corresponding operation must be performed repeatedly until it returns
/// [`WouldBlock`]. Unless this is done, there is no guarantee that another
/// readiness event will be delivered, even if further data is received for the
/// [`Evented`] handle.
///
/// For example, in the first scenario described above, after step 5, even if
/// the socket receives more data there is no guarantee that another readiness
/// event will be delivered.
///
/// ### Readiness operations
///
/// The only readiness operations that are guaranteed to be present on all
/// supported platforms are [`readable`] and [`writable`]. All other readiness
/// operations may have false negatives and as such should be considered
/// **hints**. This means that if a socket is registered with [`readable`],
/// [`error`], and [`hup`] interest, and either an error or hup is received, a
/// readiness event will be generated for the socket, but it **may** only
/// include `readable` readiness. Also note that, given the potential for
/// spurious events, receiving a readiness event with `hup` or `error` doesn't
/// actually mean that a `read` on the socket will return a result matching the
/// readiness event.
///
/// In other words, portable programs that explicitly check for [`hup`] or
/// [`error`] readiness should be doing so as an **optimization** and always be
/// able to handle an error or HUP situation when performing the actual read
/// operation.
///
/// [`readable`]: struct.Ready.html#method.readable
/// [`writable`]: struct.Ready.html#method.writable
/// [`error`]: unix/struct.UnixReady.html#method.error
/// [`hup`]: unix/struct.UnixReady.html#method.hup
///
/// ### Registering handles
///
/// Unless otherwise noted, it should be assumed that types implementing
/// [`Evented`] will never become ready unless they are registered with `Poll`.
///
/// For example:
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Poll, Ready, PollOpt, Token};
/// use mio::net::TcpStream;
/// use std::time::Duration;
/// use std::thread;
///
/// let sock = TcpStream::connect(&"216.58.193.100:80".parse()?)?;
///
/// thread::sleep(Duration::from_secs(1));
///
/// let poll = Poll::new()?;
///
/// // The connect is not guaranteed to have started until it is registered at
/// // this point
/// poll.register(&sock, Token(0), Ready::readable() | Ready::writable(), PollOpt::edge())?;
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
///
/// # Implementation notes
///
/// `Poll` is backed by the selector provided by the operating system.
///
/// | OS | Selector |
/// |------------|-----------|
/// | Linux | [epoll] |
/// | OS X, iOS | [kqueue] |
/// | Windows | [IOCP] |
/// | FreeBSD | [kqueue] |
/// | Android | [epoll] |
///
/// On all supported platforms, socket operations are handled by using the
/// system selector. Platform specific extensions (e.g. [`EventedFd`]) allow
/// accessing other features provided by individual system selectors. For
/// example, Linux's [`signalfd`] feature can be used by registering the FD with
/// `Poll` via [`EventedFd`].
///
/// On all platforms except windows, a call to [`Poll::poll`] is mostly just a
/// direct call to the system selector. However, [IOCP] uses a completion model
/// instead of a readiness model. In this case, `Poll` must adapt the completion
/// model Mio's API. While non-trivial, the bridge layer is still quite
/// efficient. The most expensive part being calls to `read` and `write` require
/// data to be copied into an intermediate buffer before it is passed to the
/// kernel.
///
/// Notifications generated by [`SetReadiness`] are handled by an internal
/// readiness queue. A single call to [`Poll::poll`] will collect events from
/// both from the system selector and the internal readiness queue.
///
/// [epoll]: http://man7.org/linux/man-pages/man7/epoll.7.html
/// [kqueue]: https://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2
/// [IOCP]: https://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx
/// [`signalfd`]: http://man7.org/linux/man-pages/man2/signalfd.2.html
/// [`EventedFd`]: unix/struct.EventedFd.html
/// [`SetReadiness`]: struct.SetReadiness.html
/// [`Poll::poll`]: struct.Poll.html#method.poll
pub struct Poll {
// Platform specific IO selector
selector: sys::Selector,
// Custom readiness queue
readiness_queue: ReadinessQueue,
// Use an atomic to first check if a full lock will be required. This is a
// fast-path check for single threaded cases avoiding the extra syscall
lock_state: AtomicUsize,
// Sequences concurrent calls to `Poll::poll`
lock: Mutex<()>,
// Wakeup the next waiter
condvar: Condvar,
}
/// Handle to a user space `Poll` registration.
///
/// `Registration` allows implementing [`Evented`] for types that cannot work
/// with the [system selector]. A `Registration` is always paired with a
/// `SetReadiness`, which allows updating the registration's readiness state.
/// When [`set_readiness`] is called and the `Registration` is associated with a
/// [`Poll`] instance, a readiness event will be created and eventually returned
/// by [`poll`].
///
/// A `Registration` / `SetReadiness` pair is created by calling
/// [`Registration::new2`]. At this point, the registration is not being
/// monitored by a [`Poll`] instance, so calls to `set_readiness` will not
/// result in any readiness notifications.
///
/// `Registration` implements [`Evented`], so it can be used with [`Poll`] using
/// the same [`register`], [`reregister`], and [`deregister`] functions used
/// with TCP, UDP, etc... types. Once registered with [`Poll`], readiness state
/// changes result in readiness events being dispatched to the [`Poll`] instance
/// with which `Registration` is registered.
///
/// **Note**, before using `Registration` be sure to read the
/// [`set_readiness`] documentation and the [portability] notes. The
/// guarantees offered by `Registration` may be weaker than expected.
///
/// For high level documentation, see [`Poll`].
///
/// # Examples
///
/// ```
/// use mio::{Ready, Registration, Poll, PollOpt, Token};
/// use mio::event::Evented;
///
/// use std::io;
/// use std::time::Instant;
/// use std::thread;
///
/// pub struct Deadline {
/// when: Instant,
/// registration: Registration,
/// }
///
/// impl Deadline {
/// pub fn new(when: Instant) -> Deadline {
/// let (registration, set_readiness) = Registration::new2();
///
/// thread::spawn(move || {
/// let now = Instant::now();
///
/// if now < when {
/// thread::sleep(when - now);
/// }
///
/// set_readiness.set_readiness(Ready::readable());
/// });
///
/// Deadline {
/// when: when,
/// registration: registration,
/// }
/// }
///
/// pub fn is_elapsed(&self) -> bool {
/// Instant::now() >= self.when
/// }
/// }
///
/// impl Evented for Deadline {
/// fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt)
/// -> io::Result<()>
/// {
/// self.registration.register(poll, token, interest, opts)
/// }
///
/// fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt)
/// -> io::Result<()>
/// {
/// self.registration.reregister(poll, token, interest, opts)
/// }
///
/// fn deregister(&self, poll: &Poll) -> io::Result<()> {
/// poll.deregister(&self.registration)
/// }
/// }
/// ```
///
/// [system selector]: struct.Poll.html#implementation-notes
/// [`Poll`]: struct.Poll.html
/// [`Registration::new2`]: struct.Registration.html#method.new2
/// [`Evented`]: event/trait.Evented.html
/// [`set_readiness`]: struct.SetReadiness.html#method.set_readiness
/// [`register`]: struct.Poll.html#method.register
/// [`reregister`]: struct.Poll.html#method.reregister
/// [`deregister`]: struct.Poll.html#method.deregister
/// [portability]: struct.Poll.html#portability
pub struct Registration {
inner: RegistrationInner,
}
unsafe impl Send for Registration {}
unsafe impl Sync for Registration {}
/// Updates the readiness state of the associated `Registration`.
///
/// See [`Registration`] for more documentation on using `SetReadiness` and
/// [`Poll`] for high level polling documentation.
///
/// [`Poll`]: struct.Poll.html
/// [`Registration`]: struct.Registration.html
#[derive(Clone)]
pub struct SetReadiness {
inner: RegistrationInner,
}
unsafe impl Send for SetReadiness {}
unsafe impl Sync for SetReadiness {}
/// Used to associate an IO type with a Selector
#[derive(Debug)]
pub struct SelectorId {
id: AtomicUsize,
}
struct RegistrationInner {
// Unsafe pointer to the registration's node. The node is ref counted. This
// cannot "simply" be tracked by an Arc because `Poll::poll` has an implicit
// handle though it isn't stored anywhere. In other words, `Poll::poll`
// needs to decrement the ref count before the node is freed.
node: *mut ReadinessNode,
}
#[derive(Clone)]
struct ReadinessQueue {
inner: Arc<ReadinessQueueInner>,
}
unsafe impl Send for ReadinessQueue {}
unsafe impl Sync for ReadinessQueue {}
struct ReadinessQueueInner {
// Used to wake up `Poll` when readiness is set in another thread.
awakener: sys::Awakener,
// Head of the MPSC queue used to signal readiness to `Poll::poll`.
head_readiness: AtomicPtr<ReadinessNode>,
// Tail of the readiness queue.
//
// Only accessed by Poll::poll. Coordination will be handled by the poll fn
tail_readiness: UnsafeCell<*mut ReadinessNode>,
// Fake readiness node used to punctuate the end of the readiness queue.
// Before attempting to read from the queue, this node is inserted in order
// to partition the queue between nodes that are "owned" by the dequeue end
// and nodes that will be pushed on by producers.
end_marker: Box<ReadinessNode>,
// Similar to `end_marker`, but this node signals to producers that `Poll`
// has gone to sleep and must be woken up.
sleep_marker: Box<ReadinessNode>,
// Similar to `end_marker`, but the node signals that the queue is closed.
// This happens when `ReadyQueue` is dropped and signals to producers that
// the nodes should no longer be pushed into the queue.
closed_marker: Box<ReadinessNode>,
}
/// Node shared by a `Registration` / `SetReadiness` pair as well as the node
/// queued into the MPSC channel.
struct ReadinessNode {
// Node state, see struct docs for `ReadinessState`
//
// This variable is the primary point of coordination between all the
// various threads concurrently accessing the node.
state: AtomicState,
// The registration token cannot fit into the `state` variable, so it is
// broken out here. In order to atomically update both the state and token
// we have to jump through a few hoops.
//
// First, `state` includes `token_read_pos` and `token_write_pos`. These can
// either be 0, 1, or 2 which represent a token slot. `token_write_pos` is
// the token slot that contains the most up to date registration token.
// `token_read_pos` is the token slot that `poll` is currently reading from.
//
// When a call to `update` includes a different token than the one currently
// associated with the registration (token_write_pos), first an unused token
// slot is found. The unused slot is the one not represented by
// `token_read_pos` OR `token_write_pos`. The new token is written to this
// slot, then `state` is updated with the new `token_write_pos` value. This
// requires that there is only a *single* concurrent call to `update`.
//
// When `poll` reads a node state, it checks that `token_read_pos` matches
// `token_write_pos`. If they do not match, then it atomically updates
// `state` such that `token_read_pos` is set to `token_write_pos`. It will
// then read the token at the newly updated `token_read_pos`.
token_0: UnsafeCell<Token>,
token_1: UnsafeCell<Token>,
token_2: UnsafeCell<Token>,
// Used when the node is queued in the readiness linked list. Accessing
// this field requires winning the "queue" lock
next_readiness: AtomicPtr<ReadinessNode>,
// Ensures that there is only one concurrent call to `update`.
//
// Each call to `update` will attempt to swap `update_lock` from `false` to
// `true`. If the CAS succeeds, the thread has obtained the update lock. If
// the CAS fails, then the `update` call returns immediately and the update
// is discarded.
update_lock: AtomicBool,
// Pointer to Arc<ReadinessQueueInner>
readiness_queue: AtomicPtr<()>,
// Tracks the number of `ReadyRef` pointers
ref_count: AtomicUsize,
}
/// Stores the ReadinessNode state in an AtomicUsize. This wrapper around the
/// atomic variable handles encoding / decoding `ReadinessState` values.
struct AtomicState {
inner: AtomicUsize,
}
const MASK_2: usize = 4 - 1;
const MASK_4: usize = 16 - 1;
const QUEUED_MASK: usize = 1 << QUEUED_SHIFT;
const DROPPED_MASK: usize = 1 << DROPPED_SHIFT;
const READINESS_SHIFT: usize = 0;
const INTEREST_SHIFT: usize = 4;
const POLL_OPT_SHIFT: usize = 8;
const TOKEN_RD_SHIFT: usize = 12;
const TOKEN_WR_SHIFT: usize = 14;
const QUEUED_SHIFT: usize = 16;
const DROPPED_SHIFT: usize = 17;
/// Tracks all state for a single `ReadinessNode`. The state is packed into a
/// `usize` variable from low to high bit as follows:
///
/// 4 bits: Registration current readiness
/// 4 bits: Registration interest
/// 4 bits: Poll options
/// 2 bits: Token position currently being read from by `poll`
/// 2 bits: Token position last written to by `update`
/// 1 bit: Queued flag, set when node is being pushed into MPSC queue.
/// 1 bit: Dropped flag, set when all `Registration` handles have been dropped.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
struct ReadinessState(usize);
/// Returned by `dequeue_node`. Represents the different states as described by
/// the queue documentation on 1024cores.net.
enum Dequeue {
Data(*mut ReadinessNode),
Empty,
Inconsistent,
}
const AWAKEN: Token = Token(usize::MAX);
const MAX_REFCOUNT: usize = (isize::MAX) as usize;
/*
*
* ===== Poll =====
*
*/
impl Poll {
/// Return a new `Poll` handle.
///
/// This function will make a syscall to the operating system to create the
/// system selector. If this syscall fails, `Poll::new` will return with the
/// error.
///
/// See [struct] level docs for more details.
///
/// [struct]: struct.Poll.html
///
/// # Examples
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Poll, Events};
/// use std::time::Duration;
///
/// let poll = match Poll::new() {
/// Ok(poll) => poll,
/// Err(e) => panic!("failed to create Poll instance; err={:?}", e),
/// };
///
/// // Create a structure to receive polled events
/// let mut events = Events::with_capacity(1024);
///
/// // Wait for events, but none will be received because no `Evented`
/// // handles have been registered with this `Poll` instance.
/// let n = poll.poll(&mut events, Some(Duration::from_millis(500)))?;
/// assert_eq!(n, 0);
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
pub fn new() -> io::Result<Poll> {
is_send::<Poll>();
is_sync::<Poll>();
let poll = Poll {
selector: sys::Selector::new()?,
readiness_queue: ReadinessQueue::new()?,
lock_state: AtomicUsize::new(0),
lock: Mutex::new(()),
condvar: Condvar::new(),
};
// Register the notification wakeup FD with the IO poller
poll.readiness_queue.inner.awakener.register(&poll, AWAKEN, Ready::readable(), PollOpt::edge())?;
Ok(poll)
}
/// Register an `Evented` handle with the `Poll` instance.
///
/// Once registered, the `Poll` instance will monitor the `Evented` handle
/// for readiness state changes. When it notices a state change, it will
/// return a readiness event for the handle the next time [`poll`] is
/// called.
///
/// See the [`struct`] docs for a high level overview.
///
/// # Arguments
///
/// `handle: &E: Evented`: This is the handle that the `Poll` instance
/// should monitor for readiness state changes.
///
/// `token: Token`: The caller picks a token to associate with the socket.
/// When [`poll`] returns an event for the handle, this token is included.
/// This allows the caller to map the event to its handle. The token
/// associated with the `Evented` handle can be changed at any time by
/// calling [`reregister`].
///
/// `token` cannot be `Token(usize::MAX)` as it is reserved for internal
/// usage.
///
/// See documentation on [`Token`] for an example showing how to pick
/// [`Token`] values.
///
/// `interest: Ready`: Specifies which operations `Poll` should monitor for
/// readiness. `Poll` will only return readiness events for operations
/// specified by this argument.
///
/// If a socket is registered with readable interest and the socket becomes
/// writable, no event will be returned from [`poll`].
///
/// The readiness interest for an `Evented` handle can be changed at any
/// time by calling [`reregister`].
///
/// `opts: PollOpt`: Specifies the registration options. The most common
/// options being [`level`] for level-triggered events, [`edge`] for
/// edge-triggered events, and [`oneshot`].
///
/// The registration options for an `Evented` handle can be changed at any
/// time by calling [`reregister`].
///
/// # Notes
///
/// Unless otherwise specified, the caller should assume that once an
/// `Evented` handle is registered with a `Poll` instance, it is bound to
/// that `Poll` instance for the lifetime of the `Evented` handle. This
/// remains true even if the `Evented` handle is deregistered from the poll
/// instance using [`deregister`].
///
/// This function is **thread safe**. It can be called concurrently from
/// multiple threads.
///
/// [`struct`]: #
/// [`reregister`]: #method.reregister
/// [`deregister`]: #method.deregister
/// [`poll`]: #method.poll
/// [`level`]: struct.PollOpt.html#method.level
/// [`edge`]: struct.PollOpt.html#method.edge
/// [`oneshot`]: struct.PollOpt.html#method.oneshot
/// [`Token`]: struct.Token.html
///
/// # Examples
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Events, Poll, Ready, PollOpt, Token};
/// use mio::net::TcpStream;
/// use std::time::{Duration, Instant};
///
/// let poll = Poll::new()?;
/// let socket = TcpStream::connect(&"216.58.193.100:80".parse()?)?;
///
/// // Register the socket with `poll`
/// poll.register(&socket, Token(0), Ready::readable() | Ready::writable(), PollOpt::edge())?;
///
/// let mut events = Events::with_capacity(1024);
/// let start = Instant::now();
/// let timeout = Duration::from_millis(500);
///
/// loop {
/// let elapsed = start.elapsed();
///
/// if elapsed >= timeout {
/// // Connection timed out
/// return Ok(());
/// }
///
/// let remaining = timeout - elapsed;
/// poll.poll(&mut events, Some(remaining))?;
///
/// for event in &events {
/// if event.token() == Token(0) {
/// // Something (probably) happened on the socket.
/// return Ok(());
/// }
/// }
/// }
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
pub fn register<E: ?Sized>(&self, handle: &E, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()>
where E: Evented
{
validate_args(token)?;
/*
* Undefined behavior:
* - Reusing a token with a different `Evented` without deregistering
* (or closing) the original `Evented`.
*/
trace!("registering with poller");
// Register interests for this socket
handle.register(self, token, interest, opts)?;
Ok(())
}
/// Re-register an `Evented` handle with the `Poll` instance.
///
/// Re-registering an `Evented` handle allows changing the details of the
/// registration. Specifically, it allows updating the associated `token`,
/// `interest`, and `opts` specified in previous `register` and `reregister`
/// calls.
///
/// The `reregister` arguments fully override the previous values. In other
/// words, if a socket is registered with [`readable`] interest and the call
/// to `reregister` specifies [`writable`], then read interest is no longer
/// requested for the handle.
///
/// The `Evented` handle must have previously been registered with this
/// instance of `Poll` otherwise the call to `reregister` will return with
/// an error.
///
/// `token` cannot be `Token(usize::MAX)` as it is reserved for internal
/// usage.
///
/// See the [`register`] documentation for details about the function
/// arguments and see the [`struct`] docs for a high level overview of
/// polling.
///
/// # Examples
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Poll, Ready, PollOpt, Token};
/// use mio::net::TcpStream;
///
/// let poll = Poll::new()?;
/// let socket = TcpStream::connect(&"216.58.193.100:80".parse()?)?;
///
/// // Register the socket with `poll`, requesting readable
/// poll.register(&socket, Token(0), Ready::readable(), PollOpt::edge())?;
///
/// // Reregister the socket specifying a different token and write interest
/// // instead. `PollOpt::edge()` must be specified even though that value
/// // is not being changed.
/// poll.reregister(&socket, Token(2), Ready::writable(), PollOpt::edge())?;
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
///
/// [`struct`]: #
/// [`register`]: #method.register
/// [`readable`]: struct.Ready.html#method.readable
/// [`writable`]: struct.Ready.html#method.writable
pub fn reregister<E: ?Sized>(&self, handle: &E, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()>
where E: Evented
{
validate_args(token)?;
trace!("registering with poller");
// Register interests for this socket
handle.reregister(self, token, interest, opts)?;
Ok(())
}
/// Deregister an `Evented` handle with the `Poll` instance.
///
/// When an `Evented` handle is deregistered, the `Poll` instance will
/// no longer monitor it for readiness state changes. Unlike disabling
/// handles with oneshot, deregistering clears up any internal resources
/// needed to track the handle.
///
/// A handle can be passed back to `register` after it has been
/// deregistered; however, it must be passed back to the **same** `Poll`
/// instance.
///
/// `Evented` handles are automatically deregistered when they are dropped.
/// It is common to never need to explicitly call `deregister`.
///
/// # Examples
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Events, Poll, Ready, PollOpt, Token};
/// use mio::net::TcpStream;
/// use std::time::Duration;
///
/// let poll = Poll::new()?;
/// let socket = TcpStream::connect(&"216.58.193.100:80".parse()?)?;
///
/// // Register the socket with `poll`
/// poll.register(&socket, Token(0), Ready::readable(), PollOpt::edge())?;
///
/// poll.deregister(&socket)?;
///
/// let mut events = Events::with_capacity(1024);
///
/// // Set a timeout because this poll should never receive any events.
/// let n = poll.poll(&mut events, Some(Duration::from_secs(1)))?;
/// assert_eq!(0, n);
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
pub fn deregister<E: ?Sized>(&self, handle: &E) -> io::Result<()>
where E: Evented
{
trace!("deregistering handle with poller");
// Deregister interests for this socket
handle.deregister(self)?;
Ok(())
}
/// Wait for readiness events
///
/// Blocks the current thread and waits for readiness events for any of the
/// `Evented` handles that have been registered with this `Poll` instance.
/// The function will block until either at least one readiness event has
/// been received or `timeout` has elapsed. A `timeout` of `None` means that
/// `poll` will block until a readiness event has been received.
///
/// The supplied `events` will be cleared and newly received readiness events
/// will be pushed onto the end. At most `events.capacity()` events will be
/// returned. If there are further pending readiness events, they will be
/// returned on the next call to `poll`.
///
/// A single call to `poll` may result in multiple readiness events being
/// returned for a single `Evented` handle. For example, if a TCP socket
/// becomes both readable and writable, it may be possible for a single
/// readiness event to be returned with both [`readable`] and [`writable`]
/// readiness **OR** two separate events may be returned, one with
/// [`readable`] set and one with [`writable`] set.
///
/// Note that the `timeout` will be rounded up to the system clock
/// granularity (usually 1ms), and kernel scheduling delays mean that
/// the blocking interval may be overrun by a small amount.
///
/// `poll` returns the number of readiness events that have been pushed into
/// `events` or `Err` when an error has been encountered with the system
/// selector. The value returned is deprecated and will be removed in 0.7.0.
/// Accessing the events by index is also deprecated. Events can be
/// inserted by other events triggering, thus making sequential access
/// problematic. Use the iterator API instead. See [`iter`].
///
/// See the [struct] level documentation for a higher level discussion of
/// polling.
///
/// [`readable`]: struct.Ready.html#method.readable
/// [`writable`]: struct.Ready.html#method.writable
/// [struct]: #
/// [`iter`]: struct.Events.html#method.iter
///
/// # Examples
///
/// A basic example -- establishing a `TcpStream` connection.
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Events, Poll, Ready, PollOpt, Token};
/// use mio::net::TcpStream;
///
/// use std::net::{TcpListener, SocketAddr};
/// use std::thread;
///
/// // Bind a server socket to connect to.
/// let addr: SocketAddr = "127.0.0.1:0".parse()?;
/// let server = TcpListener::bind(&addr)?;
/// let addr = server.local_addr()?.clone();
///
/// // Spawn a thread to accept the socket
/// thread::spawn(move || {
/// let _ = server.accept();
/// });
///
/// // Construct a new `Poll` handle as well as the `Events` we'll store into
/// let poll = Poll::new()?;
/// let mut events = Events::with_capacity(1024);
///
/// // Connect the stream
/// let stream = TcpStream::connect(&addr)?;
///
/// // Register the stream with `Poll`
/// poll.register(&stream, Token(0), Ready::readable() | Ready::writable(), PollOpt::edge())?;
///
/// // Wait for the socket to become ready. This has to happens in a loop to
/// // handle spurious wakeups.
/// loop {
/// poll.poll(&mut events, None)?;
///
/// for event in &events {
/// if event.token() == Token(0) && event.readiness().is_writable() {
/// // The socket connected (probably, it could still be a spurious
/// // wakeup)
/// return Ok(());
/// }
/// }
/// }
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
///
/// [struct]: #
pub fn poll(&self, events: &mut Events, timeout: Option<Duration>) -> io::Result<usize> {
self.poll1(events, timeout, false)
}
/// Like `poll`, but may be interrupted by a signal
///
/// If `poll` is inturrupted while blocking, it will transparently retry the syscall. If you
/// want to handle signals yourself, however, use `poll_interruptible`.
pub fn poll_interruptible(&self, events: &mut Events, timeout: Option<Duration>) -> io::Result<usize> {
self.poll1(events, timeout, true)
}
fn poll1(&self, events: &mut Events, mut timeout: Option<Duration>, interruptible: bool) -> io::Result<usize> {
let zero = Some(Duration::from_millis(0));
// At a high level, the synchronization strategy is to acquire access to
// the critical section by transitioning the atomic from unlocked ->
// locked. If the attempt fails, the thread will wait on the condition
// variable.
//
// # Some more detail
//
// The `lock_state` atomic usize combines:
//
// - locked flag, stored in the least significant bit
// - number of waiting threads, stored in the rest of the bits.
//
// When a thread transitions the locked flag from 0 -> 1, it has
// obtained access to the critical section.
//
// When entering `poll`, a compare-and-swap from 0 -> 1 is attempted.
// This is a fast path for the case when there are no concurrent calls
// to poll, which is very common.
//
// On failure, the mutex is locked, and the thread attempts to increment
// the number of waiting threads component of `lock_state`. If this is
// successfully done while the locked flag is set, then the thread can
// wait on the condition variable.
//
// When a thread exits the critical section, it unsets the locked flag.
// If there are any waiters, which is atomically determined while
// unsetting the locked flag, then the condvar is notified.
let mut curr = self.lock_state.compare_and_swap(0, 1, SeqCst);
if 0 != curr {
// Enter slower path
let mut lock = self.lock.lock().unwrap();
let mut inc = false;
loop {
if curr & 1 == 0 {
// The lock is currently free, attempt to grab it
let mut next = curr | 1;
if inc {
// The waiter count has previously been incremented, so
// decrement it here
next -= 2;
}
let actual = self.lock_state.compare_and_swap(curr, next, SeqCst);
if actual != curr {
curr = actual;
continue;
}
// Lock acquired, break from the loop
break;
}
if timeout == zero {
if inc {
self.lock_state.fetch_sub(2, SeqCst);
}
return Ok(0);
}
// The lock is currently held, so wait for it to become
// free. If the waiter count hasn't been incremented yet, do
// so now
if !inc {
let next = curr.checked_add(2).expect("overflow");
let actual = self.lock_state.compare_and_swap(curr, next, SeqCst);
if actual != curr {
curr = actual;
continue;
}
// Track that the waiter count has been incremented for
// this thread and fall through to the condvar waiting
inc = true;
}
lock = match timeout {
Some(to) => {
let now = Instant::now();
// Wait to be notified
let (l, _) = self.condvar.wait_timeout(lock, to).unwrap();
// See how much time was elapsed in the wait
let elapsed = now.elapsed();
// Update `timeout` to reflect how much time is left to
// wait.
if elapsed >= to {
timeout = zero;
} else {
// Update the timeout
timeout = Some(to - elapsed);
}
l
}
None => {
self.condvar.wait(lock).unwrap()
}
};
// Reload the state
curr = self.lock_state.load(SeqCst);
// Try to lock again...
}
}
let ret = self.poll2(events, timeout, interruptible);
// Release the lock
if 1 != self.lock_state.fetch_and(!1, Release) {
// Acquire the mutex
let _lock = self.lock.lock().unwrap();
// There is at least one waiting thread, so notify one
self.condvar.notify_one();
}
ret
}
#[inline]
#[cfg_attr(feature = "cargo-clippy", allow(clippy::if_same_then_else))]
fn poll2(&self, events: &mut Events, mut timeout: Option<Duration>, interruptible: bool) -> io::Result<usize> {
// Compute the timeout value passed to the system selector. If the
// readiness queue has pending nodes, we still want to poll the system
// selector for new events, but we don't want to block the thread to
// wait for new events.
if timeout == Some(Duration::from_millis(0)) {
// If blocking is not requested, then there is no need to prepare
// the queue for sleep
//
// The sleep_marker should be removed by readiness_queue.poll().
} else if self.readiness_queue.prepare_for_sleep() {
// The readiness queue is empty. The call to `prepare_for_sleep`
// inserts `sleep_marker` into the queue. This signals to any
// threads setting readiness that the `Poll::poll` is going to
// sleep, so the awakener should be used.
} else {
// The readiness queue is not empty, so do not block the thread.
timeout = Some(Duration::from_millis(0));
}
loop {
let now = Instant::now();
// First get selector events
let res = self.selector.select(&mut events.inner, AWAKEN, timeout);
match res {
Ok(true) => {
// Some awakeners require reading from a FD.
self.readiness_queue.inner.awakener.cleanup();
break;
}
Ok(false) => break,
Err(ref e) if e.kind() == io::ErrorKind::Interrupted && !interruptible => {
// Interrupted by a signal; update timeout if necessary and retry
if let Some(to) = timeout {
let elapsed = now.elapsed();
if elapsed >= to {
break;
} else {
timeout = Some(to - elapsed);
}
}
}
Err(e) => return Err(e),
}
}
// Poll custom event queue
self.readiness_queue.poll(&mut events.inner);
// Return number of polled events
Ok(events.inner.len())
}
}
fn validate_args(token: Token) -> io::Result<()> {
if token == AWAKEN {
return Err(io::Error::new(io::ErrorKind::Other, "invalid token"));
}
Ok(())
}
impl fmt::Debug for Poll {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("Poll")
.finish()
}
}
#[cfg(all(unix, not(target_os = "fuchsia")))]
impl AsRawFd for Poll {
fn as_raw_fd(&self) -> RawFd {
self.selector.as_raw_fd()
}
}
/// A collection of readiness events.
///
/// `Events` is passed as an argument to [`Poll::poll`] and will be used to
/// receive any new readiness events received since the last poll. Usually, a
/// single `Events` instance is created at the same time as a [`Poll`] and
/// reused on each call to [`Poll::poll`].
///
/// See [`Poll`] for more documentation on polling.
///
/// # Examples
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Events, Poll};
/// use std::time::Duration;
///
/// let mut events = Events::with_capacity(1024);
/// let poll = Poll::new()?;
///
/// assert_eq!(0, events.len());
///
/// // Register `Evented` handles with `poll`
///
/// poll.poll(&mut events, Some(Duration::from_millis(100)))?;
///
/// for event in &events {
/// println!("event={:?}", event);
/// }
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
///
/// [`Poll::poll`]: struct.Poll.html#method.poll
/// [`Poll`]: struct.Poll.html
pub struct Events {
inner: sys::Events,
}
/// [`Events`] iterator.
///
/// This struct is created by the [`iter`] method on [`Events`].
///
/// # Examples
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Events, Poll};
/// use std::time::Duration;
///
/// let mut events = Events::with_capacity(1024);
/// let poll = Poll::new()?;
///
/// // Register handles with `poll`
///
/// poll.poll(&mut events, Some(Duration::from_millis(100)))?;
///
/// for event in events.iter() {
/// println!("event={:?}", event);
/// }
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
///
/// [`Events`]: struct.Events.html
/// [`iter`]: struct.Events.html#method.iter
#[derive(Debug, Clone)]
pub struct Iter<'a> {
inner: &'a Events,
pos: usize,
}
/// Owned [`Events`] iterator.
///
/// This struct is created by the `into_iter` method on [`Events`].
///
/// # Examples
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Events, Poll};
/// use std::time::Duration;
///
/// let mut events = Events::with_capacity(1024);
/// let poll = Poll::new()?;
///
/// // Register handles with `poll`
///
/// poll.poll(&mut events, Some(Duration::from_millis(100)))?;
///
/// for event in events {
/// println!("event={:?}", event);
/// }
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
/// [`Events`]: struct.Events.html
#[derive(Debug)]
pub struct IntoIter {
inner: Events,
pos: usize,
}
impl Events {
/// Return a new `Events` capable of holding up to `capacity` events.
///
/// # Examples
///
/// ```
/// use mio::Events;
///
/// let events = Events::with_capacity(1024);
///
/// assert_eq!(1024, events.capacity());
/// ```
pub fn with_capacity(capacity: usize) -> Events {
Events {
inner: sys::Events::with_capacity(capacity),
}
}
#[deprecated(since="0.6.10", note="Index access removed in favor of iterator only API.")]
#[doc(hidden)]
pub fn get(&self, idx: usize) -> Option<Event> {
self.inner.get(idx)
}
#[doc(hidden)]
#[deprecated(since="0.6.10", note="Index access removed in favor of iterator only API.")]
pub fn len(&self) -> usize {
self.inner.len()
}
/// Returns the number of `Event` values that `self` can hold.
///
/// ```
/// use mio::Events;
///
/// let events = Events::with_capacity(1024);
///
/// assert_eq!(1024, events.capacity());
/// ```
pub fn capacity(&self) -> usize {
self.inner.capacity()
}
/// Returns `true` if `self` contains no `Event` values.
///
/// # Examples
///
/// ```
/// use mio::Events;
///
/// let events = Events::with_capacity(1024);
///
/// assert!(events.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.inner.is_empty()
}
/// Returns an iterator over the `Event` values.
///
/// # Examples
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Events, Poll};
/// use std::time::Duration;
///
/// let mut events = Events::with_capacity(1024);
/// let poll = Poll::new()?;
///
/// // Register handles with `poll`
///
/// poll.poll(&mut events, Some(Duration::from_millis(100)))?;
///
/// for event in events.iter() {
/// println!("event={:?}", event);
/// }
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
pub fn iter(&self) -> Iter {
Iter {
inner: self,
pos: 0
}
}
/// Clearing all `Event` values from container explicitly.
///
/// # Examples
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Events, Poll};
/// use std::time::Duration;
///
/// let mut events = Events::with_capacity(1024);
/// let poll = Poll::new()?;
///
/// // Register handles with `poll`
/// for _ in 0..2 {
/// events.clear();
/// poll.poll(&mut events, Some(Duration::from_millis(100)))?;
///
/// for event in events.iter() {
/// println!("event={:?}", event);
/// }
/// }
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
pub fn clear(&mut self) {
self.inner.clear();
}
}
impl<'a> IntoIterator for &'a Events {
type Item = Event;
type IntoIter = Iter<'a>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a> Iterator for Iter<'a> {
type Item = Event;
fn next(&mut self) -> Option<Event> {
let ret = self.inner.inner.get(self.pos);
self.pos += 1;
ret
}
}
impl IntoIterator for Events {
type Item = Event;
type IntoIter = IntoIter;
fn into_iter(self) -> Self::IntoIter {
IntoIter {
inner: self,
pos: 0,
}
}
}
impl Iterator for IntoIter {
type Item = Event;
fn next(&mut self) -> Option<Event> {
let ret = self.inner.inner.get(self.pos);
self.pos += 1;
ret
}
}
impl fmt::Debug for Events {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Events")
.field("capacity", &self.capacity())
.finish()
}
}
// ===== Accessors for internal usage =====
pub fn selector(poll: &Poll) -> &sys::Selector {
&poll.selector
}
/*
*
* ===== Registration =====
*
*/
// TODO: get rid of this, windows depends on it for now
#[allow(dead_code)]
pub fn new_registration(poll: &Poll, token: Token, ready: Ready, opt: PollOpt)
-> (Registration, SetReadiness)
{
Registration::new_priv(poll, token, ready, opt)
}
impl Registration {
/// Create and return a new `Registration` and the associated
/// `SetReadiness`.
///
/// See [struct] documentation for more detail and [`Poll`]
/// for high level documentation on polling.
///
/// # Examples
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Events, Ready, Registration, Poll, PollOpt, Token};
/// use std::thread;
///
/// let (registration, set_readiness) = Registration::new2();
///
/// thread::spawn(move || {
/// use std::time::Duration;
/// thread::sleep(Duration::from_millis(500));
///
/// set_readiness.set_readiness(Ready::readable());
/// });
///
/// let poll = Poll::new()?;
/// poll.register(®istration, Token(0), Ready::readable() | Ready::writable(), PollOpt::edge())?;
///
/// let mut events = Events::with_capacity(256);
///
/// loop {
/// poll.poll(&mut events, None);
///
/// for event in &events {
/// if event.token() == Token(0) && event.readiness().is_readable() {
/// return Ok(());
/// }
/// }
/// }
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
/// [struct]: #
/// [`Poll`]: struct.Poll.html
pub fn new2() -> (Registration, SetReadiness) {
// Allocate the registration node. The new node will have `ref_count`
// set to 2: one SetReadiness, one Registration.
let node = Box::into_raw(Box::new(ReadinessNode::new(
ptr::null_mut(), Token(0), Ready::empty(), PollOpt::empty(), 2)));
let registration = Registration {
inner: RegistrationInner {
node,
},
};
let set_readiness = SetReadiness {
inner: RegistrationInner {
node,
},
};
(registration, set_readiness)
}
#[deprecated(since = "0.6.5", note = "use `new2` instead")]
#[cfg(feature = "with-deprecated")]
#[doc(hidden)]
pub fn new(poll: &Poll, token: Token, interest: Ready, opt: PollOpt)
-> (Registration, SetReadiness)
{
Registration::new_priv(poll, token, interest, opt)
}
// TODO: Get rid of this (windows depends on it for now)
fn new_priv(poll: &Poll, token: Token, interest: Ready, opt: PollOpt)
-> (Registration, SetReadiness)
{
is_send::<Registration>();
is_sync::<Registration>();
is_send::<SetReadiness>();
is_sync::<SetReadiness>();
// Clone handle to the readiness queue, this bumps the ref count
let queue = poll.readiness_queue.inner.clone();
// Convert to a *mut () pointer
let queue: *mut () = unsafe { mem::transmute(queue) };
// Allocate the registration node. The new node will have `ref_count`
// set to 3: one SetReadiness, one Registration, and one Poll handle.
let node = Box::into_raw(Box::new(ReadinessNode::new(
queue, token, interest, opt, 3)));
let registration = Registration {
inner: RegistrationInner {
node,
},
};
let set_readiness = SetReadiness {
inner: RegistrationInner {
node,
},
};
(registration, set_readiness)
}
#[deprecated(since = "0.6.5", note = "use `Evented` impl")]
#[cfg(feature = "with-deprecated")]
#[doc(hidden)]
pub fn update(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> {
self.inner.update(poll, token, interest, opts)
}
#[deprecated(since = "0.6.5", note = "use `Poll::deregister` instead")]
#[cfg(feature = "with-deprecated")]
#[doc(hidden)]
pub fn deregister(&self, poll: &Poll) -> io::Result<()> {
self.inner.update(poll, Token(0), Ready::empty(), PollOpt::empty())
}
}
impl Evented for Registration {
fn register(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> {
self.inner.update(poll, token, interest, opts)
}
fn reregister(&self, poll: &Poll, token: Token, interest: Ready, opts: PollOpt) -> io::Result<()> {
self.inner.update(poll, token, interest, opts)
}
fn deregister(&self, poll: &Poll) -> io::Result<()> {
self.inner.update(poll, Token(0), Ready::empty(), PollOpt::empty())
}
}
impl Drop for Registration {
fn drop(&mut self) {
// `flag_as_dropped` toggles the `dropped` flag and notifies
// `Poll::poll` to release its handle (which is just decrementing
// the ref count).
if self.inner.state.flag_as_dropped() {
// Can't do anything if the queuing fails
let _ = self.inner.enqueue_with_wakeup();
}
}
}
impl fmt::Debug for Registration {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("Registration")
.finish()
}
}
impl SetReadiness {
/// Returns the registration's current readiness.
///
/// # Note
///
/// There is no guarantee that `readiness` establishes any sort of memory
/// ordering. Any concurrent data access must be synchronized using another
/// strategy.
///
/// # Examples
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Registration, Ready};
///
/// let (registration, set_readiness) = Registration::new2();
///
/// assert!(set_readiness.readiness().is_empty());
///
/// set_readiness.set_readiness(Ready::readable())?;
/// assert!(set_readiness.readiness().is_readable());
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
pub fn readiness(&self) -> Ready {
self.inner.readiness()
}
/// Set the registration's readiness
///
/// If the associated `Registration` is registered with a [`Poll`] instance
/// and has requested readiness events that include `ready`, then a future
/// call to [`Poll::poll`] will receive a readiness event representing the
/// readiness state change.
///
/// # Note
///
/// There is no guarantee that `readiness` establishes any sort of memory
/// ordering. Any concurrent data access must be synchronized using another
/// strategy.
///
/// There is also no guarantee as to when the readiness event will be
/// delivered to poll. A best attempt will be made to make the delivery in a
/// "timely" fashion. For example, the following is **not** guaranteed to
/// work:
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Events, Registration, Ready, Poll, PollOpt, Token};
///
/// let poll = Poll::new()?;
/// let (registration, set_readiness) = Registration::new2();
///
/// poll.register(®istration,
/// Token(0),
/// Ready::readable(),
/// PollOpt::edge())?;
///
/// // Set the readiness, then immediately poll to try to get the readiness
/// // event
/// set_readiness.set_readiness(Ready::readable())?;
///
/// let mut events = Events::with_capacity(1024);
/// poll.poll(&mut events, None)?;
///
/// // There is NO guarantee that the following will work. It is possible
/// // that the readiness event will be delivered at a later time.
/// let event = events.get(0).unwrap();
/// assert_eq!(event.token(), Token(0));
/// assert!(event.readiness().is_readable());
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
///
/// # Examples
///
/// A simple example, for a more elaborate example, see the [`Evented`]
/// documentation.
///
/// ```
/// # use std::error::Error;
/// # fn try_main() -> Result<(), Box<Error>> {
/// use mio::{Registration, Ready};
///
/// let (registration, set_readiness) = Registration::new2();
///
/// assert!(set_readiness.readiness().is_empty());
///
/// set_readiness.set_readiness(Ready::readable())?;
/// assert!(set_readiness.readiness().is_readable());
/// # Ok(())
/// # }
/// #
/// # fn main() {
/// # try_main().unwrap();
/// # }
/// ```
///
/// [`Registration`]: struct.Registration.html
/// [`Evented`]: event/trait.Evented.html#examples
/// [`Poll`]: struct.Poll.html
/// [`Poll::poll`]: struct.Poll.html#method.poll
pub fn set_readiness(&self, ready: Ready) -> io::Result<()> {
self.inner.set_readiness(ready)
}
}
impl fmt::Debug for SetReadiness {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("SetReadiness")
.finish()
}
}
impl RegistrationInner {
/// Get the registration's readiness.
fn readiness(&self) -> Ready {
self.state.load(Relaxed).readiness()
}
/// Set the registration's readiness.
///
/// This function can be called concurrently by an arbitrary number of
/// SetReadiness handles.
fn set_readiness(&self, ready: Ready) -> io::Result<()> {
// Load the current atomic state.
let mut state = self.state.load(Acquire);
let mut next;
loop {
next = state;
if state.is_dropped() {
// Node is dropped, no more notifications
return Ok(());
}
// Update the readiness
next.set_readiness(ready);
// If the readiness is not blank, try to obtain permission to
// push the node into the readiness queue.
if !next.effective_readiness().is_empty() {
next.set_queued();
}
let actual = self.state.compare_and_swap(state, next, AcqRel);
if state == actual {
break;
}
state = actual;
}
if !state.is_queued() && next.is_queued() {
// We toggled the queued flag, making us responsible for queuing the
// node in the MPSC readiness queue.
self.enqueue_with_wakeup()?;
}
Ok(())
}
/// Update the registration details associated with the node
fn update(&self, poll: &Poll, token: Token, interest: Ready, opt: PollOpt) -> io::Result<()> {
// First, ensure poll instances match
//
// Load the queue pointer, `Relaxed` is sufficient here as only the
// pointer is being operated on. The actual memory is guaranteed to be
// visible the `poll: &Poll` ref passed as an argument to the function.
let mut queue = self.readiness_queue.load(Relaxed);
let other: &*mut () = unsafe {
&*(&poll.readiness_queue.inner as *const _ as *const *mut ())
};
let other = *other;
debug_assert!(mem::size_of::<Arc<ReadinessQueueInner>>() == mem::size_of::<*mut ()>());
if queue.is_null() {
// Attempt to set the queue pointer. `Release` ordering synchronizes
// with `Acquire` in `ensure_with_wakeup`.
let actual = self.readiness_queue.compare_and_swap(
queue, other, Release);
if actual.is_null() {
// The CAS succeeded, this means that the node's ref count
// should be incremented to reflect that the `poll` function
// effectively owns the node as well.
//
// `Relaxed` ordering used for the same reason as in
// RegistrationInner::clone
self.ref_count.fetch_add(1, Relaxed);
// Note that the `queue` reference stored in our
// `readiness_queue` field is intended to be a strong reference,
// so now that we've successfully claimed the reference we bump
// the refcount here.
//
// Down below in `release_node` when we deallocate this
// `RegistrationInner` is where we'll transmute this back to an
// arc and decrement the reference count.
mem::forget(poll.readiness_queue.clone());
} else {
// The CAS failed, another thread set the queue pointer, so ensure
// that the pointer and `other` match
if actual != other {
return Err(io::Error::new(io::ErrorKind::Other, "registration handle associated with another `Poll` instance"));
}
}
queue = other;
} else if queue != other {
return Err(io::Error::new(io::ErrorKind::Other, "registration handle associated with another `Poll` instance"));
}
unsafe {
let actual = &poll.readiness_queue.inner as *const _ as *const usize;
debug_assert_eq!(queue as usize, *actual);
}
// The `update_lock` atomic is used as a flag ensuring only a single
// thread concurrently enters the `update` critical section. Any
// concurrent calls to update are discarded. If coordinated updates are
// required, the Mio user is responsible for handling that.
//
// Acquire / Release ordering is used on `update_lock` to ensure that
// data access to the `token_*` variables are scoped to the critical
// section.
// Acquire the update lock.
if self.update_lock.compare_and_swap(false, true, Acquire) {
// The lock is already held. Discard the update
return Ok(());
}
// Relaxed ordering is acceptable here as the only memory that needs to
// be visible as part of the update are the `token_*` variables, and
// ordering has already been handled by the `update_lock` access.
let mut state = self.state.load(Relaxed);
let mut next;
// Read the current token, again this memory has been ordered by the
// acquire on `update_lock`.
let curr_token_pos = state.token_write_pos();
let curr_token = unsafe { self::token(self, curr_token_pos) };
let mut next_token_pos = curr_token_pos;
// If the `update` call is changing the token, then compute the next
// available token slot and write the token there.
//
// Note that this computation is happening *outside* of the
// compare-and-swap loop. The update lock ensures that only a single
// thread could be mutating the write_token_position, so the
// `next_token_pos` will never need to be recomputed even if
// `token_read_pos` concurrently changes. This is because
// `token_read_pos` can ONLY concurrently change to the current value of
// `token_write_pos`, so `next_token_pos` will always remain valid.
if token != curr_token {
next_token_pos = state.next_token_pos();
// Update the token
match next_token_pos {
0 => unsafe { *self.token_0.get() = token },
1 => unsafe { *self.token_1.get() = token },
2 => unsafe { *self.token_2.get() = token },
_ => unreachable!(),
}
}
// Now enter the compare-and-swap loop
loop {
next = state;
// The node is only dropped once all `Registration` handles are
// dropped. Only `Registration` can call `update`.
debug_assert!(!state.is_dropped());
// Update the write token position, this will also release the token
// to Poll::poll.
next.set_token_write_pos(next_token_pos);
// Update readiness and poll opts
next.set_interest(interest);
next.set_poll_opt(opt);
// If there is effective readiness, the node will need to be queued
// for processing. This exact behavior is still TBD, so we are
// conservative for now and always fire.
//
// See https://github.com/carllerche/mio/issues/535.
if !next.effective_readiness().is_empty() {
next.set_queued();
}
// compare-and-swap the state values. Only `Release` is needed here.
// The `Release` ensures that `Poll::poll` will see the token
// update and the update function doesn't care about any other
// memory visibility.
let actual = self.state.compare_and_swap(state, next, Release);
if actual == state {
break;
}
// CAS failed, but `curr_token_pos` should not have changed given
// that we still hold the update lock.
debug_assert_eq!(curr_token_pos, actual.token_write_pos());
state = actual;
}
// Release the lock
self.update_lock.store(false, Release);
if !state.is_queued() && next.is_queued() {
// We are responsible for enqueing the node.
enqueue_with_wakeup(queue, self)?;
}
Ok(())
}
}
impl ops::Deref for RegistrationInner {
type Target = ReadinessNode;
fn deref(&self) -> &ReadinessNode {
unsafe { &*self.node }
}
}
impl Clone for RegistrationInner {
fn clone(&self) -> RegistrationInner {
// Using a relaxed ordering is alright here, as knowledge of the
// original reference prevents other threads from erroneously deleting
// the object.
//
// As explained in the [Boost documentation][1], Increasing the
// reference counter can always be done with memory_order_relaxed: New
// references to an object can only be formed from an existing
// reference, and passing an existing reference from one thread to
// another must already provide any required synchronization.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
let old_size = self.ref_count.fetch_add(1, Relaxed);
// However we need to guard against massive refcounts in case someone
// is `mem::forget`ing Arcs. If we don't do this the count can overflow
// and users will use-after free. We racily saturate to `isize::MAX` on
// the assumption that there aren't ~2 billion threads incrementing
// the reference count at once. This branch will never be taken in
// any realistic program.
//
// We abort because such a program is incredibly degenerate, and we
// don't care to support it.
if old_size & !MAX_REFCOUNT != 0 {
process::abort();
}
RegistrationInner {
node: self.node,
}
}
}
impl Drop for RegistrationInner {
fn drop(&mut self) {
// Only handles releasing from `Registration` and `SetReadiness`
// handles. Poll has to call this itself.
release_node(self.node);
}
}
/*
*
* ===== ReadinessQueue =====
*
*/
impl ReadinessQueue {
/// Create a new `ReadinessQueue`.
fn new() -> io::Result<ReadinessQueue> {
is_send::<Self>();
is_sync::<Self>();
let end_marker = Box::new(ReadinessNode::marker());
let sleep_marker = Box::new(ReadinessNode::marker());
let closed_marker = Box::new(ReadinessNode::marker());
let ptr = &*end_marker as *const _ as *mut _;
Ok(ReadinessQueue {
inner: Arc::new(ReadinessQueueInner {
awakener: sys::Awakener::new()?,
head_readiness: AtomicPtr::new(ptr),
tail_readiness: UnsafeCell::new(ptr),
end_marker,
sleep_marker,
closed_marker,
})
})
}
/// Poll the queue for new events
fn poll(&self, dst: &mut sys::Events) {
// `until` is set with the first node that gets re-enqueued due to being
// set to have level-triggered notifications. This prevents an infinite
// loop where `Poll::poll` will keep dequeuing nodes it enqueues.
let mut until = ptr::null_mut();
if dst.len() == dst.capacity() {
// If `dst` is already full, the readiness queue won't be drained.
// This might result in `sleep_marker` staying in the queue and
// unecessary pipe writes occuring.
self.inner.clear_sleep_marker();
}
'outer:
while dst.len() < dst.capacity() {
// Dequeue a node. If the queue is in an inconsistent state, then
// stop polling. `Poll::poll` will be called again shortly and enter
// a syscall, which should be enough to enable the other thread to
// finish the queuing process.
let ptr = match unsafe { self.inner.dequeue_node(until) } {
Dequeue::Empty | Dequeue::Inconsistent => break,
Dequeue::Data(ptr) => ptr,
};
let node = unsafe { &*ptr };
// Read the node state with Acquire ordering. This allows reading
// the token variables.
let mut state = node.state.load(Acquire);
let mut next;
let mut readiness;
let mut opt;
loop {
// Build up any changes to the readiness node's state and
// attempt the CAS at the end
next = state;
// Given that the node was just read from the queue, the
// `queued` flag should still be set.
debug_assert!(state.is_queued());
// The dropped flag means we need to release the node and
// perform no further processing on it.
if state.is_dropped() {
// Release the node and continue
release_node(ptr);
continue 'outer;
}
// Process the node
readiness = state.effective_readiness();
opt = state.poll_opt();
if opt.is_edge() {
// Mark the node as dequeued
next.set_dequeued();
if opt.is_oneshot() && !readiness.is_empty() {
next.disarm();
}
} else if readiness.is_empty() {
next.set_dequeued();
}
// Ensure `token_read_pos` is set to `token_write_pos` so that
// we read the most up to date token value.
next.update_token_read_pos();
if state == next {
break;
}
let actual = node.state.compare_and_swap(state, next, AcqRel);
if actual == state {
break;
}
state = actual;
}
// If the queued flag is still set, then the node must be requeued.
// This typically happens when using level-triggered notifications.
if next.is_queued() {
if until.is_null() {
// We never want to see the node again
until = ptr;
}
// Requeue the node
self.inner.enqueue_node(node);
}
if !readiness.is_empty() {
// Get the token
let token = unsafe { token(node, next.token_read_pos()) };
// Push the event
dst.push_event(Event::new(readiness, token));
}
}
}
/// Prepare the queue for the `Poll::poll` thread to block in the system
/// selector. This involves changing `head_readiness` to `sleep_marker`.
/// Returns true if successful and `poll` can block.
fn prepare_for_sleep(&self) -> bool {
let end_marker = self.inner.end_marker();
let sleep_marker = self.inner.sleep_marker();
let tail = unsafe { *self.inner.tail_readiness.get() };
// If the tail is currently set to the sleep_marker, then check if the
// head is as well. If it is, then the queue is currently ready to
// sleep. If it is not, then the queue is not empty and there should be
// no sleeping.
if tail == sleep_marker {
return self.inner.head_readiness.load(Acquire) == sleep_marker;
}
// If the tail is not currently set to `end_marker`, then the queue is
// not empty.
if tail != end_marker {
return false;
}
// The sleep marker is *not* currently in the readiness queue.
//
// The sleep marker is only inserted in this function. It is also only
// inserted in the tail position. This is guaranteed by first checking
// that the end marker is in the tail position, pushing the sleep marker
// after the end marker, then removing the end marker.
//
// Before inserting a node into the queue, the next pointer has to be
// set to null. Again, this is only safe to do when the node is not
// currently in the queue, but we already have ensured this.
self.inner.sleep_marker.next_readiness.store(ptr::null_mut(), Relaxed);
let actual = self.inner.head_readiness.compare_and_swap(
end_marker, sleep_marker, AcqRel);
debug_assert!(actual != sleep_marker);
if actual != end_marker {
// The readiness queue is not empty
return false;
}
// The current tail should be pointing to `end_marker`
debug_assert!(unsafe { *self.inner.tail_readiness.get() == end_marker });
// The `end_marker` next pointer should be null
debug_assert!(self.inner.end_marker.next_readiness.load(Relaxed).is_null());
// Update tail pointer.
unsafe { *self.inner.tail_readiness.get() = sleep_marker; }
true
}
}
impl Drop for ReadinessQueue {
fn drop(&mut self) {
// Close the queue by enqueuing the closed node
self.inner.enqueue_node(&*self.inner.closed_marker);
loop {
// Free any nodes that happen to be left in the readiness queue
let ptr = match unsafe { self.inner.dequeue_node(ptr::null_mut()) } {
Dequeue::Empty => break,
Dequeue::Inconsistent => {
// This really shouldn't be possible as all other handles to
// `ReadinessQueueInner` are dropped, but handle this by
// spinning I guess?
continue;
}
Dequeue::Data(ptr) => ptr,
};
let node = unsafe { &*ptr };
let state = node.state.load(Acquire);
debug_assert!(state.is_queued());
release_node(ptr);
}
}
}
impl ReadinessQueueInner {
fn wakeup(&self) -> io::Result<()> {
self.awakener.wakeup()
}
/// Prepend the given node to the head of the readiness queue. This is done
/// with relaxed ordering. Returns true if `Poll` needs to be woken up.
fn enqueue_node_with_wakeup(&self, node: &ReadinessNode) -> io::Result<()> {
if self.enqueue_node(node) {
self.wakeup()?;
}
Ok(())
}
/// Push the node into the readiness queue
fn enqueue_node(&self, node: &ReadinessNode) -> bool {
// This is the 1024cores.net intrusive MPSC queue [1] "push" function.
let node_ptr = node as *const _ as *mut _;
// Relaxed used as the ordering is "released" when swapping
// `head_readiness`
node.next_readiness.store(ptr::null_mut(), Relaxed);
unsafe {
let mut prev = self.head_readiness.load(Acquire);
loop {
if prev == self.closed_marker() {
debug_assert!(node_ptr != self.closed_marker());
// debug_assert!(node_ptr != self.end_marker());
debug_assert!(node_ptr != self.sleep_marker());
if node_ptr != self.end_marker() {
// The readiness queue is shutdown, but the enqueue flag was
// set. This means that we are responsible for decrementing
// the ready queue's ref count
debug_assert!(node.ref_count.load(Relaxed) >= 2);
release_node(node_ptr);
}
return false;
}
let act = self.head_readiness.compare_and_swap(prev, node_ptr, AcqRel);
if prev == act {
break;
}
prev = act;
}
debug_assert!((*prev).next_readiness.load(Relaxed).is_null());
(*prev).next_readiness.store(node_ptr, Release);
prev == self.sleep_marker()
}
}
fn clear_sleep_marker(&self) {
let end_marker = self.end_marker();
let sleep_marker = self.sleep_marker();
unsafe {
let tail = *self.tail_readiness.get();
if tail != self.sleep_marker() {
return;
}
// The empty markeer is *not* currently in the readiness queue
// (since the sleep markeris).
self.end_marker.next_readiness.store(ptr::null_mut(), Relaxed);
let actual = self.head_readiness.compare_and_swap(
sleep_marker, end_marker, AcqRel);
debug_assert!(actual != end_marker);
if actual != sleep_marker {
// The readiness queue is not empty, we cannot remove the sleep
// markeer
return;
}
// Update the tail pointer.
*self.tail_readiness.get() = end_marker;
}
}
/// Must only be called in `poll` or `drop`
unsafe fn dequeue_node(&self, until: *mut ReadinessNode) -> Dequeue {
// This is the 1024cores.net intrusive MPSC queue [1] "pop" function
// with the modifications mentioned at the top of the file.
let mut tail = *self.tail_readiness.get();
let mut next = (*tail).next_readiness.load(Acquire);
if tail == self.end_marker() || tail == self.sleep_marker() || tail == self.closed_marker() {
if next.is_null() {
// Make sure the sleep marker is removed (as we are no longer
// sleeping
self.clear_sleep_marker();
return Dequeue::Empty;
}
*self.tail_readiness.get() = next;
tail = next;
next = (*next).next_readiness.load(Acquire);
}
// Only need to check `until` at this point. `until` is either null,
// which will never match tail OR it is a node that was pushed by
// the current thread. This means that either:
//
// 1) The queue is inconsistent, which is handled explicitly
// 2) We encounter `until` at this point in dequeue
// 3) we will pop a different node
if tail == until {
return Dequeue::Empty;
}
if !next.is_null() {
*self.tail_readiness.get() = next;
return Dequeue::Data(tail);
}
if self.head_readiness.load(Acquire) != tail {
return Dequeue::Inconsistent;
}
// Push the stub node
self.enqueue_node(&*self.end_marker);
next = (*tail).next_readiness.load(Acquire);
if !next.is_null() {
*self.tail_readiness.get() = next;
return Dequeue::Data(tail);
}
Dequeue::Inconsistent
}
fn end_marker(&self) -> *mut ReadinessNode {
&*self.end_marker as *const ReadinessNode as *mut ReadinessNode
}
fn sleep_marker(&self) -> *mut ReadinessNode {
&*self.sleep_marker as *const ReadinessNode as *mut ReadinessNode
}
fn closed_marker(&self) -> *mut ReadinessNode {
&*self.closed_marker as *const ReadinessNode as *mut ReadinessNode
}
}
impl ReadinessNode {
/// Return a new `ReadinessNode`, initialized with a ref_count of 3.
fn new(queue: *mut (),
token: Token,
interest: Ready,
opt: PollOpt,
ref_count: usize) -> ReadinessNode
{
ReadinessNode {
state: AtomicState::new(interest, opt),
// Only the first token is set, the others are initialized to 0
token_0: UnsafeCell::new(token),
token_1: UnsafeCell::new(Token(0)),
token_2: UnsafeCell::new(Token(0)),
next_readiness: AtomicPtr::new(ptr::null_mut()),
update_lock: AtomicBool::new(false),
readiness_queue: AtomicPtr::new(queue),
ref_count: AtomicUsize::new(ref_count),
}
}
fn marker() -> ReadinessNode {
ReadinessNode {
state: AtomicState::new(Ready::empty(), PollOpt::empty()),
token_0: UnsafeCell::new(Token(0)),
token_1: UnsafeCell::new(Token(0)),
token_2: UnsafeCell::new(Token(0)),
next_readiness: AtomicPtr::new(ptr::null_mut()),
update_lock: AtomicBool::new(false),
readiness_queue: AtomicPtr::new(ptr::null_mut()),
ref_count: AtomicUsize::new(0),
}
}
fn enqueue_with_wakeup(&self) -> io::Result<()> {
let queue = self.readiness_queue.load(Acquire);
if queue.is_null() {
// Not associated with a queue, nothing to do
return Ok(());
}
enqueue_with_wakeup(queue, self)
}
}
fn enqueue_with_wakeup(queue: *mut (), node: &ReadinessNode) -> io::Result<()> {
debug_assert!(!queue.is_null());
// This is ugly... but we don't want to bump the ref count.
let queue: &Arc<ReadinessQueueInner> = unsafe {
&*(&queue as *const *mut () as *const Arc<ReadinessQueueInner>)
};
queue.enqueue_node_with_wakeup(node)
}
unsafe fn token(node: &ReadinessNode, pos: usize) -> Token {
match pos {
0 => *node.token_0.get(),
1 => *node.token_1.get(),
2 => *node.token_2.get(),
_ => unreachable!(),
}
}
fn release_node(ptr: *mut ReadinessNode) {
unsafe {
// `AcqRel` synchronizes with other `release_node` functions and ensures
// that the drop happens after any reads / writes on other threads.
if (*ptr).ref_count.fetch_sub(1, AcqRel) != 1 {
return;
}
let node = Box::from_raw(ptr);
// Decrement the readiness_queue Arc
let queue = node.readiness_queue.load(Acquire);
if queue.is_null() {
return;
}
let _: Arc<ReadinessQueueInner> = mem::transmute(queue);
}
}
impl AtomicState {
fn new(interest: Ready, opt: PollOpt) -> AtomicState {
let state = ReadinessState::new(interest, opt);
AtomicState {
inner: AtomicUsize::new(state.into()),
}
}
/// Loads the current `ReadinessState`
fn load(&self, order: Ordering) -> ReadinessState {
self.inner.load(order).into()
}
/// Stores a state if the current state is the same as `current`.
fn compare_and_swap(&self, current: ReadinessState, new: ReadinessState, order: Ordering) -> ReadinessState {
self.inner.compare_and_swap(current.into(), new.into(), order).into()
}
// Returns `true` if the node should be queued
fn flag_as_dropped(&self) -> bool {
let prev: ReadinessState = self.inner.fetch_or(DROPPED_MASK | QUEUED_MASK, Release).into();
// The flag should not have been previously set
debug_assert!(!prev.is_dropped());
!prev.is_queued()
}
}
impl ReadinessState {
// Create a `ReadinessState` initialized with the provided arguments
#[inline]
fn new(interest: Ready, opt: PollOpt) -> ReadinessState {
let interest = event::ready_as_usize(interest);
let opt = event::opt_as_usize(opt);
debug_assert!(interest <= MASK_4);
debug_assert!(opt <= MASK_4);
let mut val = interest << INTEREST_SHIFT;
val |= opt << POLL_OPT_SHIFT;
ReadinessState(val)
}
#[inline]
fn get(self, mask: usize, shift: usize) -> usize{
(self.0 >> shift) & mask
}
#[inline]
fn set(&mut self, val: usize, mask: usize, shift: usize) {
self.0 = (self.0 & !(mask << shift)) | (val << shift)
}
/// Get the readiness
#[inline]
fn readiness(self) -> Ready {
let v = self.get(MASK_4, READINESS_SHIFT);
event::ready_from_usize(v)
}
#[inline]
fn effective_readiness(self) -> Ready {
self.readiness() & self.interest()
}
/// Set the readiness
#[inline]
fn set_readiness(&mut self, v: Ready) {
self.set(event::ready_as_usize(v), MASK_4, READINESS_SHIFT);
}
/// Get the interest
#[inline]
fn interest(self) -> Ready {
let v = self.get(MASK_4, INTEREST_SHIFT);
event::ready_from_usize(v)
}
/// Set the interest
#[inline]
fn set_interest(&mut self, v: Ready) {
self.set(event::ready_as_usize(v), MASK_4, INTEREST_SHIFT);
}
#[inline]
fn disarm(&mut self) {
self.set_interest(Ready::empty());
}
/// Get the poll options
#[inline]
fn poll_opt(self) -> PollOpt {
let v = self.get(MASK_4, POLL_OPT_SHIFT);
event::opt_from_usize(v)
}
/// Set the poll options
#[inline]
fn set_poll_opt(&mut self, v: PollOpt) {
self.set(event::opt_as_usize(v), MASK_4, POLL_OPT_SHIFT);
}
#[inline]
fn is_queued(self) -> bool {
self.0 & QUEUED_MASK == QUEUED_MASK
}
/// Set the queued flag
#[inline]
fn set_queued(&mut self) {
// Dropped nodes should never be queued
debug_assert!(!self.is_dropped());
self.0 |= QUEUED_MASK;
}
#[inline]
fn set_dequeued(&mut self) {
debug_assert!(self.is_queued());
self.0 &= !QUEUED_MASK
}
#[inline]
fn is_dropped(self) -> bool {
self.0 & DROPPED_MASK == DROPPED_MASK
}
#[inline]
fn token_read_pos(self) -> usize {
self.get(MASK_2, TOKEN_RD_SHIFT)
}
#[inline]
fn token_write_pos(self) -> usize {
self.get(MASK_2, TOKEN_WR_SHIFT)
}
#[inline]
fn next_token_pos(self) -> usize {
let rd = self.token_read_pos();
let wr = self.token_write_pos();
match wr {
0 => {
match rd {
1 => 2,
2 => 1,
0 => 1,
_ => unreachable!(),
}
}
1 => {
match rd {
0 => 2,
2 => 0,
1 => 2,
_ => unreachable!(),
}
}
2 => {
match rd {
0 => 1,
1 => 0,
2 => 0,
_ => unreachable!(),
}
}
_ => unreachable!(),
}
}
#[inline]
fn set_token_write_pos(&mut self, val: usize) {
self.set(val, MASK_2, TOKEN_WR_SHIFT);
}
#[inline]
fn update_token_read_pos(&mut self) {
let val = self.token_write_pos();
self.set(val, MASK_2, TOKEN_RD_SHIFT);
}
}
impl From<ReadinessState> for usize {
fn from(src: ReadinessState) -> usize {
src.0
}
}
impl From<usize> for ReadinessState {
fn from(src: usize) -> ReadinessState {
ReadinessState(src)
}
}
fn is_send<T: Send>() {}
fn is_sync<T: Sync>() {}
impl SelectorId {
pub fn new() -> SelectorId {
SelectorId {
id: AtomicUsize::new(0),
}
}
pub fn associate_selector(&self, poll: &Poll) -> io::Result<()> {
let selector_id = self.id.load(Ordering::SeqCst);
if selector_id != 0 && selector_id != poll.selector.id() {
Err(io::Error::new(io::ErrorKind::Other, "socket already registered"))
} else {
self.id.store(poll.selector.id(), Ordering::SeqCst);
Ok(())
}
}
}
impl Clone for SelectorId {
fn clone(&self) -> SelectorId {
SelectorId {
id: AtomicUsize::new(self.id.load(Ordering::SeqCst)),
}
}
}
#[test]
#[cfg(all(unix, not(target_os = "fuchsia")))]
pub fn as_raw_fd() {
let poll = Poll::new().unwrap();
assert!(poll.as_raw_fd() > 0);
}
|