1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
use crate::io_source::IoSource;
use crate::{event, sys, Interest, Registry, Token};
use std::fmt;
use std::io::{self, IoSlice, IoSliceMut, Read, Write};
use std::net::Shutdown;
use std::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use std::os::unix::net;
use std::path::Path;
/// A non-blocking Unix stream socket.
pub struct UnixStream {
inner: IoSource<net::UnixStream>,
}
impl UnixStream {
/// Connects to the socket named by `path`.
///
/// This may return a `WouldBlock` in which case the socket connection
/// cannot be completed immediately. Usually it means the backlog is full.
pub fn connect<P: AsRef<Path>>(path: P) -> io::Result<UnixStream> {
sys::uds::stream::connect(path.as_ref()).map(UnixStream::from_std)
}
/// Creates a new `UnixStream` from a standard `net::UnixStream`.
///
/// This function is intended to be used to wrap a Unix stream from the
/// standard library in the Mio equivalent. The conversion assumes nothing
/// about the underlying stream; it is left up to the user to set it in
/// non-blocking mode.
///
/// # Note
///
/// The Unix stream here will not have `connect` called on it, so it
/// should already be connected via some other means (be it manually, or
/// the standard library).
pub fn from_std(stream: net::UnixStream) -> UnixStream {
UnixStream {
inner: IoSource::new(stream),
}
}
/// Creates an unnamed pair of connected sockets.
///
/// Returns two `UnixStream`s which are connected to each other.
pub fn pair() -> io::Result<(UnixStream, UnixStream)> {
sys::uds::stream::pair().map(|(stream1, stream2)| {
(UnixStream::from_std(stream1), UnixStream::from_std(stream2))
})
}
/// Returns the socket address of the local half of this connection.
pub fn local_addr(&self) -> io::Result<sys::SocketAddr> {
sys::uds::stream::local_addr(&self.inner)
}
/// Returns the socket address of the remote half of this connection.
pub fn peer_addr(&self) -> io::Result<sys::SocketAddr> {
sys::uds::stream::peer_addr(&self.inner)
}
/// Returns the value of the `SO_ERROR` option.
pub fn take_error(&self) -> io::Result<Option<io::Error>> {
self.inner.take_error()
}
/// Shuts down the read, write, or both halves of this connection.
///
/// This function will cause all pending and future I/O calls on the
/// specified portions to immediately return with an appropriate value
/// (see the documentation of `Shutdown`).
pub fn shutdown(&self, how: Shutdown) -> io::Result<()> {
self.inner.shutdown(how)
}
/// Execute an I/O operation ensuring that the socket receives more events
/// if it hits a [`WouldBlock`] error.
///
/// # Notes
///
/// This method is required to be called for **all** I/O operations to
/// ensure the user will receive events once the socket is ready again after
/// returning a [`WouldBlock`] error.
///
/// [`WouldBlock`]: io::ErrorKind::WouldBlock
///
/// # Examples
///
/// ```
/// # use std::error::Error;
/// #
/// # fn main() -> Result<(), Box<dyn Error>> {
/// use std::io;
/// use std::os::unix::io::AsRawFd;
/// use mio::net::UnixStream;
///
/// let (stream1, stream2) = UnixStream::pair()?;
///
/// // Wait until the stream is writable...
///
/// // Write to the stream using a direct libc call, of course the
/// // `io::Write` implementation would be easier to use.
/// let buf = b"hello";
/// let n = stream1.try_io(|| {
/// let buf_ptr = &buf as *const _ as *const _;
/// let res = unsafe { libc::send(stream1.as_raw_fd(), buf_ptr, buf.len(), 0) };
/// if res != -1 {
/// Ok(res as usize)
/// } else {
/// // If EAGAIN or EWOULDBLOCK is set by libc::send, the closure
/// // should return `WouldBlock` error.
/// Err(io::Error::last_os_error())
/// }
/// })?;
/// eprintln!("write {} bytes", n);
///
/// // Wait until the stream is readable...
///
/// // Read from the stream using a direct libc call, of course the
/// // `io::Read` implementation would be easier to use.
/// let mut buf = [0; 512];
/// let n = stream2.try_io(|| {
/// let buf_ptr = &mut buf as *mut _ as *mut _;
/// let res = unsafe { libc::recv(stream2.as_raw_fd(), buf_ptr, buf.len(), 0) };
/// if res != -1 {
/// Ok(res as usize)
/// } else {
/// // If EAGAIN or EWOULDBLOCK is set by libc::recv, the closure
/// // should return `WouldBlock` error.
/// Err(io::Error::last_os_error())
/// }
/// })?;
/// eprintln!("read {} bytes", n);
/// # Ok(())
/// # }
/// ```
pub fn try_io<F, T>(&self, f: F) -> io::Result<T>
where
F: FnOnce() -> io::Result<T>,
{
self.inner.do_io(|_| f())
}
}
impl Read for UnixStream {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.do_io(|mut inner| inner.read(buf))
}
fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
self.inner.do_io(|mut inner| inner.read_vectored(bufs))
}
}
impl<'a> Read for &'a UnixStream {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.do_io(|mut inner| inner.read(buf))
}
fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
self.inner.do_io(|mut inner| inner.read_vectored(bufs))
}
}
impl Write for UnixStream {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.inner.do_io(|mut inner| inner.write(buf))
}
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
self.inner.do_io(|mut inner| inner.write_vectored(bufs))
}
fn flush(&mut self) -> io::Result<()> {
self.inner.do_io(|mut inner| inner.flush())
}
}
impl<'a> Write for &'a UnixStream {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.inner.do_io(|mut inner| inner.write(buf))
}
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
self.inner.do_io(|mut inner| inner.write_vectored(bufs))
}
fn flush(&mut self) -> io::Result<()> {
self.inner.do_io(|mut inner| inner.flush())
}
}
impl event::Source for UnixStream {
fn register(
&mut self,
registry: &Registry,
token: Token,
interests: Interest,
) -> io::Result<()> {
self.inner.register(registry, token, interests)
}
fn reregister(
&mut self,
registry: &Registry,
token: Token,
interests: Interest,
) -> io::Result<()> {
self.inner.reregister(registry, token, interests)
}
fn deregister(&mut self, registry: &Registry) -> io::Result<()> {
self.inner.deregister(registry)
}
}
impl fmt::Debug for UnixStream {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.inner.fmt(f)
}
}
impl IntoRawFd for UnixStream {
fn into_raw_fd(self) -> RawFd {
self.inner.into_inner().into_raw_fd()
}
}
impl AsRawFd for UnixStream {
fn as_raw_fd(&self) -> RawFd {
self.inner.as_raw_fd()
}
}
impl FromRawFd for UnixStream {
/// Converts a `RawFd` to a `UnixStream`.
///
/// # Notes
///
/// The caller is responsible for ensuring that the socket is in
/// non-blocking mode.
unsafe fn from_raw_fd(fd: RawFd) -> UnixStream {
UnixStream::from_std(FromRawFd::from_raw_fd(fd))
}
}
|