1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(dead_code)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
use std::{
cell::RefCell,
mem,
ops::{Deref, DerefMut},
os::raw::c_uint,
ptr::null_mut,
};
use neqo_common::hex_with_len;
use crate::{
err::{secstatus_to_res, Error, Res},
null_safe_slice,
};
#[allow(clippy::upper_case_acronyms)]
#[allow(clippy::unreadable_literal)]
#[allow(unknown_lints, clippy::borrow_as_ptr)]
mod nss_p11 {
include!(concat!(env!("OUT_DIR"), "/nss_p11.rs"));
}
pub use nss_p11::*;
#[macro_export]
macro_rules! scoped_ptr {
($scoped:ident, $target:ty, $dtor:path) => {
pub struct $scoped {
ptr: *mut $target,
}
impl $scoped {
/// Create a new instance of `$scoped` from a pointer.
///
/// # Errors
///
/// When passed a null pointer generates an error.
pub fn from_ptr(ptr: *mut $target) -> Result<Self, $crate::err::Error> {
if ptr.is_null() {
Err($crate::err::Error::last_nss_error())
} else {
Ok(Self { ptr })
}
}
}
impl Deref for $scoped {
type Target = *mut $target;
#[must_use]
fn deref(&self) -> &*mut $target {
&self.ptr
}
}
impl DerefMut for $scoped {
fn deref_mut(&mut self) -> &mut *mut $target {
&mut self.ptr
}
}
impl Drop for $scoped {
#[allow(unused_must_use)]
fn drop(&mut self) {
unsafe { $dtor(self.ptr) };
}
}
};
}
scoped_ptr!(Certificate, CERTCertificate, CERT_DestroyCertificate);
scoped_ptr!(CertList, CERTCertList, CERT_DestroyCertList);
scoped_ptr!(PublicKey, SECKEYPublicKey, SECKEY_DestroyPublicKey);
impl PublicKey {
/// Get the HPKE serialization of the public key.
///
/// # Errors
///
/// When the key cannot be exported, which can be because the type is not supported.
///
/// # Panics
///
/// When keys are too large to fit in `c_uint/usize`. So only on programming error.
pub fn key_data(&self) -> Res<Vec<u8>> {
let mut buf = vec![0; 100];
let mut len: c_uint = 0;
secstatus_to_res(unsafe {
PK11_HPKE_Serialize(
**self,
buf.as_mut_ptr(),
&mut len,
c_uint::try_from(buf.len()).unwrap(),
)
})?;
buf.truncate(usize::try_from(len).unwrap());
Ok(buf)
}
}
impl Clone for PublicKey {
#[must_use]
fn clone(&self) -> Self {
let ptr = unsafe { SECKEY_CopyPublicKey(self.ptr) };
assert!(!ptr.is_null());
Self { ptr }
}
}
impl std::fmt::Debug for PublicKey {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
if let Ok(b) = self.key_data() {
write!(f, "PublicKey {}", hex_with_len(b))
} else {
write!(f, "Opaque PublicKey")
}
}
}
scoped_ptr!(PrivateKey, SECKEYPrivateKey, SECKEY_DestroyPrivateKey);
impl PrivateKey {
/// Get the bits of the private key.
///
/// # Errors
///
/// When the key cannot be exported, which can be because the type is not supported
/// or because the key data cannot be extracted from the PKCS#11 module.
///
/// # Panics
///
/// When the values are too large to fit. So never.
pub fn key_data(&self) -> Res<Vec<u8>> {
let mut key_item = Item::make_empty();
secstatus_to_res(unsafe {
PK11_ReadRawAttribute(
PK11ObjectType::PK11_TypePrivKey,
(**self).cast(),
CK_ATTRIBUTE_TYPE::from(CKA_VALUE),
&mut key_item,
)
})?;
let slc = unsafe { null_safe_slice(key_item.data, key_item.len) };
let key = Vec::from(slc);
// The data that `key_item` refers to needs to be freed, but we can't
// use the scoped `Item` implementation. This is OK as long as nothing
// panics between `PK11_ReadRawAttribute` succeeding and here.
unsafe {
SECITEM_FreeItem(&mut key_item, PRBool::from(false));
}
Ok(key)
}
}
unsafe impl Send for PrivateKey {}
impl Clone for PrivateKey {
#[must_use]
fn clone(&self) -> Self {
let ptr = unsafe { SECKEY_CopyPrivateKey(self.ptr) };
assert!(!ptr.is_null());
Self { ptr }
}
}
impl std::fmt::Debug for PrivateKey {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
if let Ok(b) = self.key_data() {
write!(f, "PrivateKey {}", hex_with_len(b))
} else {
write!(f, "Opaque PrivateKey")
}
}
}
scoped_ptr!(Slot, PK11SlotInfo, PK11_FreeSlot);
impl Slot {
pub fn internal() -> Res<Self> {
let p = unsafe { PK11_GetInternalSlot() };
Slot::from_ptr(p)
}
}
scoped_ptr!(SymKey, PK11SymKey, PK11_FreeSymKey);
impl SymKey {
/// You really don't want to use this.
///
/// # Errors
///
/// Internal errors in case of failures in NSS.
pub fn as_bytes(&self) -> Res<&[u8]> {
secstatus_to_res(unsafe { PK11_ExtractKeyValue(self.ptr) })?;
let key_item = unsafe { PK11_GetKeyData(self.ptr) };
// This is accessing a value attached to the key, so we can treat this as a borrow.
match unsafe { key_item.as_mut() } {
None => Err(Error::InternalError),
Some(key) => Ok(unsafe { null_safe_slice(key.data, key.len) }),
}
}
}
impl Clone for SymKey {
#[must_use]
fn clone(&self) -> Self {
let ptr = unsafe { PK11_ReferenceSymKey(self.ptr) };
assert!(!ptr.is_null());
Self { ptr }
}
}
impl std::fmt::Debug for SymKey {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
if let Ok(b) = self.as_bytes() {
write!(f, "SymKey {}", hex_with_len(b))
} else {
write!(f, "Opaque SymKey")
}
}
}
unsafe fn destroy_pk11_context(ctxt: *mut PK11Context) {
PK11_DestroyContext(ctxt, PRBool::from(true));
}
scoped_ptr!(Context, PK11Context, destroy_pk11_context);
unsafe fn destroy_secitem(item: *mut SECItem) {
SECITEM_FreeItem(item, PRBool::from(true));
}
scoped_ptr!(Item, SECItem, destroy_secitem);
impl Item {
/// Create a wrapper for a slice of this object.
/// Creating this object is technically safe, but using it is extremely dangerous.
/// Minimally, it can only be passed as a `const SECItem*` argument to functions,
/// or those that treat their argument as `const`.
pub fn wrap(buf: &[u8]) -> SECItem {
SECItem {
type_: SECItemType::siBuffer,
data: buf.as_ptr().cast_mut(),
len: c_uint::try_from(buf.len()).unwrap(),
}
}
/// Create a wrapper for a struct.
/// Creating this object is technically safe, but using it is extremely dangerous.
/// Minimally, it can only be passed as a `const SECItem*` argument to functions,
/// or those that treat their argument as `const`.
pub fn wrap_struct<T>(v: &T) -> SECItem {
let data: *const T = v;
SECItem {
type_: SECItemType::siBuffer,
data: data.cast_mut().cast(),
len: c_uint::try_from(mem::size_of::<T>()).unwrap(),
}
}
/// Make an empty `SECItem` for passing as a mutable `SECItem*` argument.
pub fn make_empty() -> SECItem {
SECItem {
type_: SECItemType::siBuffer,
data: null_mut(),
len: 0,
}
}
/// This dereferences the pointer held by the item and makes a copy of the
/// content that is referenced there.
///
/// # Safety
///
/// This dereferences two pointers. It doesn't get much less safe.
pub unsafe fn into_vec(self) -> Vec<u8> {
let b = self.ptr.as_ref().unwrap();
// Sanity check the type, as some types don't count bytes in `Item::len`.
assert_eq!(b.type_, SECItemType::siBuffer);
let slc = null_safe_slice(b.data, b.len);
Vec::from(slc)
}
}
#[cfg(feature = "disable-random")]
thread_local! {
static CURRENT_VALUE: std::cell::Cell<u8> = const { std::cell::Cell::new(0) };
}
#[cfg(feature = "disable-random")]
/// Fill a buffer with a predictable sequence of bytes.
pub fn randomize<B: AsMut<[u8]>>(mut buf: B) -> B {
let m_buf = buf.as_mut();
for v in m_buf.iter_mut() {
*v = CURRENT_VALUE.get();
CURRENT_VALUE.set(v.wrapping_add(1));
}
buf
}
/// Fill a buffer with randomness.
///
/// # Panics
///
/// When `size` is too large or NSS fails.
#[cfg(not(feature = "disable-random"))]
pub fn randomize<B: AsMut<[u8]>>(mut buf: B) -> B {
let m_buf = buf.as_mut();
let len = std::os::raw::c_int::try_from(m_buf.len()).unwrap();
secstatus_to_res(unsafe { PK11_GenerateRandom(m_buf.as_mut_ptr(), len) }).unwrap();
buf
}
struct RandomCache {
cache: [u8; Self::SIZE],
used: usize,
}
impl RandomCache {
const SIZE: usize = 256;
const CUTOFF: usize = 32;
fn new() -> Self {
RandomCache {
cache: [0; Self::SIZE],
used: Self::SIZE,
}
}
fn randomize<B: AsMut<[u8]>>(&mut self, mut buf: B) -> B {
let m_buf = buf.as_mut();
debug_assert!(m_buf.len() <= Self::CUTOFF);
let avail = Self::SIZE - self.used;
if m_buf.len() <= avail {
m_buf.copy_from_slice(&self.cache[self.used..self.used + m_buf.len()]);
self.used += m_buf.len();
} else {
if avail > 0 {
m_buf[..avail].copy_from_slice(&self.cache[self.used..]);
}
randomize(&mut self.cache[..]);
self.used = m_buf.len() - avail;
m_buf[avail..].copy_from_slice(&self.cache[..self.used]);
}
buf
}
}
/// Generate a randomized array.
///
/// # Panics
///
/// When `size` is too large or NSS fails.
#[must_use]
pub fn random<const N: usize>() -> [u8; N] {
thread_local!(static CACHE: RefCell<RandomCache> = RefCell::new(RandomCache::new()));
let buf = [0; N];
if N <= RandomCache::CUTOFF {
CACHE.with_borrow_mut(|c| c.randomize(buf))
} else {
randomize(buf)
}
}
#[cfg(test)]
mod test {
use test_fixture::fixture_init;
use super::RandomCache;
use crate::random;
#[cfg(not(feature = "disable-random"))]
#[test]
fn randomness() {
use crate::randomize;
fixture_init();
// If any of these ever fail, there is either a bug, or it's time to buy a lottery ticket.
assert_ne!(random::<16>(), randomize([0; 16]));
assert_ne!([0; 16], random::<16>());
assert_ne!([0; 64], random::<64>());
}
#[test]
fn cache_random_lengths() {
const ZERO: [u8; 256] = [0; 256];
fixture_init();
let mut cache = RandomCache::new();
let mut buf = [0; 256];
let bits = usize::BITS - (RandomCache::CUTOFF - 1).leading_zeros();
let mask = 0xff >> (u8::BITS - bits);
for _ in 0..100 {
let len = loop {
let len = usize::from(random::<1>()[0] & mask) + 1;
if len <= RandomCache::CUTOFF {
break len;
}
};
buf.fill(0);
if len >= 16 {
assert_ne!(&cache.randomize(&mut buf[..len])[..len], &ZERO[..len]);
}
}
}
}
|