summaryrefslogtreecommitdiffstats
path: root/third_party/rust/neqo-transport/src/cc/tests/cubic.rs
blob: 2e0200fd6d329173976e0e89295a24ceb23d3b41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

#![allow(clippy::cast_possible_truncation)]
#![allow(clippy::cast_sign_loss)]

use std::{
    ops::Sub,
    time::{Duration, Instant},
};

use test_fixture::now;

use crate::{
    cc::{
        classic_cc::{ClassicCongestionControl, CWND_INITIAL},
        cubic::{
            Cubic, CUBIC_ALPHA, CUBIC_BETA_USIZE_DIVIDEND, CUBIC_BETA_USIZE_DIVISOR, CUBIC_C,
            CUBIC_FAST_CONVERGENCE,
        },
        CongestionControl, MAX_DATAGRAM_SIZE, MAX_DATAGRAM_SIZE_F64,
    },
    packet::PacketType,
    rtt::RttEstimate,
    tracking::SentPacket,
};

const RTT: Duration = Duration::from_millis(100);
const RTT_ESTIMATE: RttEstimate = RttEstimate::from_duration(Duration::from_millis(100));
const CWND_INITIAL_F64: f64 = 10.0 * MAX_DATAGRAM_SIZE_F64;
const CWND_INITIAL_10_F64: f64 = 10.0 * CWND_INITIAL_F64;
const CWND_INITIAL_10: usize = 10 * CWND_INITIAL;
const CWND_AFTER_LOSS: usize = CWND_INITIAL * CUBIC_BETA_USIZE_DIVIDEND / CUBIC_BETA_USIZE_DIVISOR;
const CWND_AFTER_LOSS_SLOW_START: usize =
    (CWND_INITIAL + MAX_DATAGRAM_SIZE) * CUBIC_BETA_USIZE_DIVIDEND / CUBIC_BETA_USIZE_DIVISOR;

fn fill_cwnd(cc: &mut ClassicCongestionControl<Cubic>, mut next_pn: u64, now: Instant) -> u64 {
    while cc.bytes_in_flight() < cc.cwnd() {
        let sent = SentPacket::new(
            PacketType::Short,
            next_pn,           // pn
            now,               // time sent
            true,              // ack eliciting
            Vec::new(),        // tokens
            MAX_DATAGRAM_SIZE, // size
        );
        cc.on_packet_sent(&sent);
        next_pn += 1;
    }
    next_pn
}

fn ack_packet(cc: &mut ClassicCongestionControl<Cubic>, pn: u64, now: Instant) {
    let acked = SentPacket::new(
        PacketType::Short,
        pn,                // pn
        now,               // time sent
        true,              // ack eliciting
        Vec::new(),        // tokens
        MAX_DATAGRAM_SIZE, // size
    );
    cc.on_packets_acked(&[acked], &RTT_ESTIMATE, now);
}

fn packet_lost(cc: &mut ClassicCongestionControl<Cubic>, pn: u64) {
    const PTO: Duration = Duration::from_millis(120);
    let p_lost = SentPacket::new(
        PacketType::Short,
        pn,                // pn
        now(),             // time sent
        true,              // ack eliciting
        Vec::new(),        // tokens
        MAX_DATAGRAM_SIZE, // size
    );
    cc.on_packets_lost(None, None, PTO, &[p_lost]);
}

fn expected_tcp_acks(cwnd_rtt_start: usize) -> u64 {
    (f64::from(i32::try_from(cwnd_rtt_start).unwrap()) / MAX_DATAGRAM_SIZE_F64 / CUBIC_ALPHA)
        .round() as u64
}

#[test]
fn tcp_phase() {
    let mut cubic = ClassicCongestionControl::new(Cubic::default());

    // change to congestion avoidance state.
    cubic.set_ssthresh(1);

    let mut now = now();
    let start_time = now;
    // helper variables to remember the next packet number to be sent/acked.
    let mut next_pn_send = 0;
    let mut next_pn_ack = 0;

    next_pn_send = fill_cwnd(&mut cubic, next_pn_send, now);

    // This will start with TCP phase.
    // in this phase cwnd is increase by CUBIC_ALPHA every RTT. We can look at it as
    // increase of MAX_DATAGRAM_SIZE every 1 / CUBIC_ALPHA RTTs.
    // The phase will end when cwnd calculated with cubic equation is equal to TCP estimate:
    // CUBIC_C * (n * RTT / CUBIC_ALPHA)^3 * MAX_DATAGRAM_SIZE = n * MAX_DATAGRAM_SIZE
    // from this n = sqrt(CUBIC_ALPHA^3/ (CUBIC_C * RTT^3)).
    let num_tcp_increases = (CUBIC_ALPHA.powi(3) / (CUBIC_C * RTT.as_secs_f64().powi(3)))
        .sqrt()
        .floor() as u64;

    for _ in 0..num_tcp_increases {
        let cwnd_rtt_start = cubic.cwnd();
        // Expected acks during a period of RTT / CUBIC_ALPHA.
        let acks = expected_tcp_acks(cwnd_rtt_start);
        // The time between acks if they are ideally paced over a RTT.
        let time_increase = RTT / u32::try_from(cwnd_rtt_start / MAX_DATAGRAM_SIZE).unwrap();

        for _ in 0..acks {
            now += time_increase;
            ack_packet(&mut cubic, next_pn_ack, now);
            next_pn_ack += 1;
            next_pn_send = fill_cwnd(&mut cubic, next_pn_send, now);
        }

        assert_eq!(cubic.cwnd() - cwnd_rtt_start, MAX_DATAGRAM_SIZE);
    }

    // The next increase will be according to the cubic equation.

    let cwnd_rtt_start = cubic.cwnd();
    // cwnd_rtt_start has change, therefore calculate new time_increase (the time
    // between acks if they are ideally paced over a RTT).
    let time_increase = RTT / u32::try_from(cwnd_rtt_start / MAX_DATAGRAM_SIZE).unwrap();
    let mut num_acks = 0; // count the number of acks. until cwnd is increased by MAX_DATAGRAM_SIZE.

    while cwnd_rtt_start == cubic.cwnd() {
        num_acks += 1;
        now += time_increase;
        ack_packet(&mut cubic, next_pn_ack, now);
        next_pn_ack += 1;
        next_pn_send = fill_cwnd(&mut cubic, next_pn_send, now);
    }

    // Make sure that the increase is not according to TCP equation, i.e., that it took
    // less than RTT / CUBIC_ALPHA.
    let expected_ack_tcp_increase = expected_tcp_acks(cwnd_rtt_start);
    assert!(num_acks < expected_ack_tcp_increase);

    // This first increase after a TCP phase may be shorter than what it would take by a regular
    // cubic phase, because of the proper byte counting and the credit it already had before
    // entering this phase. Therefore We will perform another round and compare it to expected
    // increase using the cubic equation.

    let cwnd_rtt_start_after_tcp = cubic.cwnd();
    let elapsed_time = now - start_time;

    // calculate new time_increase.
    let time_increase = RTT / u32::try_from(cwnd_rtt_start_after_tcp / MAX_DATAGRAM_SIZE).unwrap();
    let mut num_acks2 = 0; // count the number of acks. until cwnd is increased by MAX_DATAGRAM_SIZE.

    while cwnd_rtt_start_after_tcp == cubic.cwnd() {
        num_acks2 += 1;
        now += time_increase;
        ack_packet(&mut cubic, next_pn_ack, now);
        next_pn_ack += 1;
        next_pn_send = fill_cwnd(&mut cubic, next_pn_send, now);
    }

    let expected_ack_tcp_increase2 = expected_tcp_acks(cwnd_rtt_start_after_tcp);
    assert!(num_acks2 < expected_ack_tcp_increase2);

    // The time needed to increase cwnd by MAX_DATAGRAM_SIZE using the cubic equation will be
    // calculates from: W_cubic(elapsed_time + t_to_increase) - W_cubis(elapsed_time) =
    // MAX_DATAGRAM_SIZE => CUBIC_C * (elapsed_time + t_to_increase)^3 * MAX_DATAGRAM_SIZE +
    // CWND_INITIAL -     CUBIC_C * elapsed_time^3 * MAX_DATAGRAM_SIZE + CWND_INITIAL =
    // MAX_DATAGRAM_SIZE => t_to_increase = cbrt((1 + CUBIC_C * elapsed_time^3) / CUBIC_C) -
    // elapsed_time (t_to_increase is in seconds)
    // number of ack needed is t_to_increase / time_increase.
    let expected_ack_cubic_increase =
        ((((1.0 + CUBIC_C * (elapsed_time).as_secs_f64().powi(3)) / CUBIC_C).cbrt()
            - elapsed_time.as_secs_f64())
            / time_increase.as_secs_f64())
        .ceil() as u64;
    // num_acks is very close to the calculated value. The exact value is hard to calculate
    // because the proportional increase(i.e. curr_cwnd_f64 / (target - curr_cwnd_f64) *
    // MAX_DATAGRAM_SIZE_F64) and the byte counting.
    assert_eq!(num_acks2, expected_ack_cubic_increase + 2);
}

#[test]
fn cubic_phase() {
    let mut cubic = ClassicCongestionControl::new(Cubic::default());
    // Set last_max_cwnd to a higher number make sure that cc is the cubic phase (cwnd is calculated
    // by the cubic equation).
    cubic.set_last_max_cwnd(CWND_INITIAL_10_F64);
    // Set ssthresh to something small to make sure that cc is in the congection avoidance phase.
    cubic.set_ssthresh(1);
    let mut now = now();
    let mut next_pn_send = 0;
    let mut next_pn_ack = 0;

    next_pn_send = fill_cwnd(&mut cubic, next_pn_send, now);

    let k = ((CWND_INITIAL_10_F64 - CWND_INITIAL_F64) / CUBIC_C / MAX_DATAGRAM_SIZE_F64).cbrt();
    let epoch_start = now;

    // The number of RTT until W_max is reached.
    let num_rtts_w_max = (k / RTT.as_secs_f64()).round() as u64;
    for _ in 0..num_rtts_w_max {
        let cwnd_rtt_start = cubic.cwnd();
        // Expected acks
        let acks = cwnd_rtt_start / MAX_DATAGRAM_SIZE;
        let time_increase = RTT / u32::try_from(acks).unwrap();
        for _ in 0..acks {
            now += time_increase;
            ack_packet(&mut cubic, next_pn_ack, now);
            next_pn_ack += 1;
            next_pn_send = fill_cwnd(&mut cubic, next_pn_send, now);
        }

        let expected =
            (CUBIC_C * ((now - epoch_start).as_secs_f64() - k).powi(3) * MAX_DATAGRAM_SIZE_F64
                + CWND_INITIAL_10_F64)
                .round() as usize;

        assert_within(cubic.cwnd(), expected, MAX_DATAGRAM_SIZE);
    }
    assert_eq!(cubic.cwnd(), CWND_INITIAL_10);
}

fn assert_within<T: Sub<Output = T> + PartialOrd + Copy>(value: T, expected: T, margin: T) {
    if value >= expected {
        assert!(value - expected < margin);
    } else {
        assert!(expected - value < margin);
    }
}

#[test]
fn congestion_event_slow_start() {
    let mut cubic = ClassicCongestionControl::new(Cubic::default());

    _ = fill_cwnd(&mut cubic, 0, now());
    ack_packet(&mut cubic, 0, now());

    assert_within(cubic.last_max_cwnd(), 0.0, f64::EPSILON);

    // cwnd is increased by 1 in slow start phase, after an ack.
    assert_eq!(cubic.cwnd(), CWND_INITIAL + MAX_DATAGRAM_SIZE);

    // Trigger a congestion_event in slow start phase
    packet_lost(&mut cubic, 1);

    // last_max_cwnd is equal to cwnd before decrease.
    assert_within(
        cubic.last_max_cwnd(),
        CWND_INITIAL_F64 + MAX_DATAGRAM_SIZE_F64,
        f64::EPSILON,
    );
    assert_eq!(cubic.cwnd(), CWND_AFTER_LOSS_SLOW_START);
}

#[test]
fn congestion_event_congestion_avoidance() {
    let mut cubic = ClassicCongestionControl::new(Cubic::default());

    // Set ssthresh to something small to make sure that cc is in the congection avoidance phase.
    cubic.set_ssthresh(1);

    // Set last_max_cwnd to something smaller than cwnd so that the fast convergence is not
    // triggered.
    cubic.set_last_max_cwnd(3.0 * MAX_DATAGRAM_SIZE_F64);

    _ = fill_cwnd(&mut cubic, 0, now());
    ack_packet(&mut cubic, 0, now());

    assert_eq!(cubic.cwnd(), CWND_INITIAL);

    // Trigger a congestion_event in slow start phase
    packet_lost(&mut cubic, 1);

    assert_within(cubic.last_max_cwnd(), CWND_INITIAL_F64, f64::EPSILON);
    assert_eq!(cubic.cwnd(), CWND_AFTER_LOSS);
}

#[test]
fn congestion_event_congestion_avoidance_2() {
    let mut cubic = ClassicCongestionControl::new(Cubic::default());

    // Set ssthresh to something small to make sure that cc is in the congection avoidance phase.
    cubic.set_ssthresh(1);

    // Set last_max_cwnd to something higher than cwnd so that the fast convergence is triggered.
    cubic.set_last_max_cwnd(CWND_INITIAL_10_F64);

    _ = fill_cwnd(&mut cubic, 0, now());
    ack_packet(&mut cubic, 0, now());

    assert_within(cubic.last_max_cwnd(), CWND_INITIAL_10_F64, f64::EPSILON);
    assert_eq!(cubic.cwnd(), CWND_INITIAL);

    // Trigger a congestion_event.
    packet_lost(&mut cubic, 1);

    assert_within(
        cubic.last_max_cwnd(),
        CWND_INITIAL_F64 * CUBIC_FAST_CONVERGENCE,
        f64::EPSILON,
    );
    assert_eq!(cubic.cwnd(), CWND_AFTER_LOSS);
}

#[test]
fn congestion_event_congestion_avoidance_test_no_overflow() {
    const PTO: Duration = Duration::from_millis(120);
    let mut cubic = ClassicCongestionControl::new(Cubic::default());

    // Set ssthresh to something small to make sure that cc is in the congection avoidance phase.
    cubic.set_ssthresh(1);

    // Set last_max_cwnd to something higher than cwnd so that the fast convergence is triggered.
    cubic.set_last_max_cwnd(CWND_INITIAL_10_F64);

    _ = fill_cwnd(&mut cubic, 0, now());
    ack_packet(&mut cubic, 1, now());

    assert_within(cubic.last_max_cwnd(), CWND_INITIAL_10_F64, f64::EPSILON);
    assert_eq!(cubic.cwnd(), CWND_INITIAL);

    // Now ack packet that was send earlier.
    ack_packet(&mut cubic, 0, now().checked_sub(PTO).unwrap());
}