summaryrefslogtreecommitdiffstats
path: root/third_party/rust/neqo-transport/src/connection/tests/priority.rs
blob: 1f86aa22e5ba1201d5c2a354afae1b2e182cf84b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use std::{cell::RefCell, mem, rc::Rc};

use neqo_common::event::Provider;
use test_fixture::{self, now};

use super::{
    super::{Connection, Error, Output},
    connect, default_client, default_server, fill_cwnd, maybe_authenticate,
};
use crate::{
    addr_valid::{AddressValidation, ValidateAddress},
    send_stream::{RetransmissionPriority, TransmissionPriority},
    ConnectionEvent, StreamId, StreamType,
};

const BLOCK_SIZE: usize = 4_096;

fn fill_stream(c: &mut Connection, id: StreamId) {
    loop {
        if c.stream_send(id, &[0x42; BLOCK_SIZE]).unwrap() < BLOCK_SIZE {
            return;
        }
    }
}

/// A receive stream cannot be prioritized (yet).
#[test]
fn receive_stream() {
    const MESSAGE: &[u8] = b"hello";
    let mut client = default_client();
    let mut server = default_server();
    connect(&mut client, &mut server);

    let id = client.stream_create(StreamType::UniDi).unwrap();
    assert_eq!(MESSAGE.len(), client.stream_send(id, MESSAGE).unwrap());
    let dgram = client.process_output(now()).dgram();

    server.process_input(&dgram.unwrap(), now());
    assert_eq!(
        server
            .stream_priority(
                id,
                TransmissionPriority::default(),
                RetransmissionPriority::default()
            )
            .unwrap_err(),
        Error::InvalidStreamId,
        "Priority doesn't apply to inbound unidirectional streams"
    );

    // But the stream does exist and can be read.
    let mut buf = [0; 10];
    let (len, end) = server.stream_recv(id, &mut buf).unwrap();
    assert_eq!(MESSAGE, &buf[..len]);
    assert!(!end);
}

/// Higher priority streams get sent ahead of lower ones, even when
/// the higher priority stream is written to later.
#[test]
fn relative() {
    let mut client = default_client();
    let mut server = default_server();
    connect(&mut client, &mut server);

    // id_normal is created first, but it is lower priority.
    let id_normal = client.stream_create(StreamType::UniDi).unwrap();
    fill_stream(&mut client, id_normal);
    let high = client.stream_create(StreamType::UniDi).unwrap();
    fill_stream(&mut client, high);
    client
        .stream_priority(
            high,
            TransmissionPriority::High,
            RetransmissionPriority::default(),
        )
        .unwrap();

    let dgram = client.process_output(now()).dgram();
    server.process_input(&dgram.unwrap(), now());

    // The "id_normal" stream will get a `NewStream` event, but no data.
    for e in server.events() {
        if let ConnectionEvent::RecvStreamReadable { stream_id } = e {
            assert_ne!(stream_id, id_normal);
        }
    }
}

/// Check that changing priority has effect on the next packet that is sent.
#[test]
fn reprioritize() {
    let mut client = default_client();
    let mut server = default_server();
    connect(&mut client, &mut server);

    // id_normal is created first, but it is lower priority.
    let id_normal = client.stream_create(StreamType::UniDi).unwrap();
    fill_stream(&mut client, id_normal);
    let id_high = client.stream_create(StreamType::UniDi).unwrap();
    fill_stream(&mut client, id_high);
    client
        .stream_priority(
            id_high,
            TransmissionPriority::High,
            RetransmissionPriority::default(),
        )
        .unwrap();

    let dgram = client.process_output(now()).dgram();
    server.process_input(&dgram.unwrap(), now());

    // The "id_normal" stream will get a `NewStream` event, but no data.
    for e in server.events() {
        if let ConnectionEvent::RecvStreamReadable { stream_id } = e {
            assert_ne!(stream_id, id_normal);
        }
    }

    // When the high priority stream drops in priority, the streams are equal
    // priority and so their stream ID determines what is sent.
    client
        .stream_priority(
            id_high,
            TransmissionPriority::Normal,
            RetransmissionPriority::default(),
        )
        .unwrap();
    let dgram = client.process_output(now()).dgram();
    server.process_input(&dgram.unwrap(), now());

    for e in server.events() {
        if let ConnectionEvent::RecvStreamReadable { stream_id } = e {
            assert_ne!(stream_id, id_high);
        }
    }
}

/// Retransmission can be prioritized differently (usually higher).
#[test]
fn repairing_loss() {
    let mut client = default_client();
    let mut server = default_server();
    connect(&mut client, &mut server);
    let mut now = now();

    // Send a few packets at low priority, lose one.
    let id_low = client.stream_create(StreamType::UniDi).unwrap();
    fill_stream(&mut client, id_low);
    client
        .stream_priority(
            id_low,
            TransmissionPriority::Low,
            RetransmissionPriority::Higher,
        )
        .unwrap();

    let _lost = client.process_output(now).dgram();
    for _ in 0..5 {
        match client.process_output(now) {
            Output::Datagram(d) => server.process_input(&d, now),
            Output::Callback(delay) => now += delay,
            Output::None => unreachable!(),
        }
    }

    // Generate an ACK.  The first packet is now considered lost.
    let ack = server.process_output(now).dgram();
    _ = server.events().count(); // Drain events.

    let id_normal = client.stream_create(StreamType::UniDi).unwrap();
    fill_stream(&mut client, id_normal);

    let dgram = client.process(ack.as_ref(), now).dgram();
    assert_eq!(client.stats().lost, 1); // Client should have noticed the loss.
    server.process_input(&dgram.unwrap(), now);

    // Only the low priority stream has data as the retransmission of the data from
    // the lost packet is now more important than new data from the high priority stream.
    for e in server.events() {
        println!("Event: {e:?}");
        if let ConnectionEvent::RecvStreamReadable { stream_id } = e {
            assert_eq!(stream_id, id_low);
        }
    }

    // However, only the retransmission is prioritized.
    // Though this might contain some retransmitted data, as other frames might push
    // the retransmitted data into a second packet, it will also contain data from the
    // normal priority stream.
    let dgram = client.process_output(now).dgram();
    server.process_input(&dgram.unwrap(), now);
    assert!(server.events().any(
        |e| matches!(e, ConnectionEvent::RecvStreamReadable { stream_id } if stream_id == id_normal),
    ));
}

#[test]
fn critical() {
    let mut client = default_client();
    let mut server = default_server();
    let now = now();

    // Rather than connect, send stream data in 0.5-RTT.
    // That allows this to test that critical streams pre-empt most frame types.
    let dgram = client.process_output(now).dgram();
    let dgram = server.process(dgram.as_ref(), now).dgram();
    client.process_input(&dgram.unwrap(), now);
    maybe_authenticate(&mut client);

    let id = server.stream_create(StreamType::UniDi).unwrap();
    server
        .stream_priority(
            id,
            TransmissionPriority::Critical,
            RetransmissionPriority::default(),
        )
        .unwrap();

    // Can't use fill_cwnd here because the server is blocked on the amplification
    // limit, so it can't fill the congestion window.
    while server.stream_create(StreamType::UniDi).is_ok() {}

    fill_stream(&mut server, id);
    let stats_before = server.stats().frame_tx;
    let dgram = server.process_output(now).dgram();
    let stats_after = server.stats().frame_tx;
    assert_eq!(stats_after.crypto, stats_before.crypto);
    assert_eq!(stats_after.streams_blocked, 0);
    assert_eq!(stats_after.new_connection_id, 0);
    assert_eq!(stats_after.new_token, 0);
    assert_eq!(stats_after.handshake_done, 0);

    // Complete the handshake.
    let dgram = client.process(dgram.as_ref(), now).dgram();
    server.process_input(&dgram.unwrap(), now);

    // Critical beats everything but HANDSHAKE_DONE.
    let stats_before = server.stats().frame_tx;
    mem::drop(fill_cwnd(&mut server, id, now));
    let stats_after = server.stats().frame_tx;
    assert_eq!(stats_after.crypto, stats_before.crypto);
    assert_eq!(stats_after.streams_blocked, 0);
    assert_eq!(stats_after.new_connection_id, 0);
    assert_eq!(stats_after.new_token, 0);
    assert_eq!(stats_after.handshake_done, 1);
}

#[test]
fn important() {
    let mut client = default_client();
    let mut server = default_server();
    let now = now();

    // Rather than connect, send stream data in 0.5-RTT.
    // That allows this to test that important streams pre-empt most frame types.
    let dgram = client.process_output(now).dgram();
    let dgram = server.process(dgram.as_ref(), now).dgram();
    client.process_input(&dgram.unwrap(), now);
    maybe_authenticate(&mut client);

    let id = server.stream_create(StreamType::UniDi).unwrap();
    server
        .stream_priority(
            id,
            TransmissionPriority::Important,
            RetransmissionPriority::default(),
        )
        .unwrap();
    fill_stream(&mut server, id);

    // Important beats everything but flow control.
    // Make enough streams to get a STREAMS_BLOCKED frame out.
    while server.stream_create(StreamType::UniDi).is_ok() {}

    let stats_before = server.stats().frame_tx;
    let dgram = server.process_output(now).dgram();
    let stats_after = server.stats().frame_tx;
    assert_eq!(stats_after.crypto, stats_before.crypto);
    assert_eq!(stats_after.streams_blocked, 1);
    assert_eq!(stats_after.new_connection_id, 0);
    assert_eq!(stats_after.new_token, 0);
    assert_eq!(stats_after.handshake_done, 0);
    assert_eq!(stats_after.stream, stats_before.stream + 1);

    // Complete the handshake.
    let dgram = client.process(dgram.as_ref(), now).dgram();
    server.process_input(&dgram.unwrap(), now);

    // Important beats everything but flow control.
    let stats_before = server.stats().frame_tx;
    mem::drop(fill_cwnd(&mut server, id, now));
    let stats_after = server.stats().frame_tx;
    assert_eq!(stats_after.crypto, stats_before.crypto);
    assert_eq!(stats_after.streams_blocked, 1);
    assert_eq!(stats_after.new_connection_id, 0);
    assert_eq!(stats_after.new_token, 0);
    assert_eq!(stats_after.handshake_done, 1);
    assert!(stats_after.stream > stats_before.stream);
}

#[test]
fn high_normal() {
    let mut client = default_client();
    let mut server = default_server();
    let now = now();

    // Rather than connect, send stream data in 0.5-RTT.
    // That allows this to test that important streams pre-empt most frame types.
    let dgram = client.process_output(now).dgram();
    let dgram = server.process(dgram.as_ref(), now).dgram();
    client.process_input(&dgram.unwrap(), now);
    maybe_authenticate(&mut client);

    let id = server.stream_create(StreamType::UniDi).unwrap();
    server
        .stream_priority(
            id,
            TransmissionPriority::High,
            RetransmissionPriority::default(),
        )
        .unwrap();
    fill_stream(&mut server, id);

    // Important beats everything but flow control.
    // Make enough streams to get a STREAMS_BLOCKED frame out.
    while server.stream_create(StreamType::UniDi).is_ok() {}

    let stats_before = server.stats().frame_tx;
    let dgram = server.process_output(now).dgram();
    let stats_after = server.stats().frame_tx;
    assert_eq!(stats_after.crypto, stats_before.crypto);
    assert_eq!(stats_after.streams_blocked, 1);
    assert_eq!(stats_after.new_connection_id, 0);
    assert_eq!(stats_after.new_token, 0);
    assert_eq!(stats_after.handshake_done, 0);
    assert_eq!(stats_after.stream, stats_before.stream + 1);

    // Complete the handshake.
    let dgram = client.process(dgram.as_ref(), now).dgram();
    server.process_input(&dgram.unwrap(), now);

    // High or Normal doesn't beat NEW_CONNECTION_ID,
    // but they beat CRYPTO/NEW_TOKEN.
    let stats_before = server.stats().frame_tx;
    server.send_ticket(now, &[]).unwrap();
    mem::drop(fill_cwnd(&mut server, id, now));
    let stats_after = server.stats().frame_tx;
    assert_eq!(stats_after.crypto, stats_before.crypto);
    assert_eq!(stats_after.streams_blocked, 1);
    assert_ne!(stats_after.new_connection_id, 0); // Note: > 0
    assert_eq!(stats_after.new_token, 0);
    assert_eq!(stats_after.handshake_done, 1);
    assert!(stats_after.stream > stats_before.stream);
}

#[test]
fn low() {
    let mut client = default_client();
    let mut server = default_server();
    let now = now();
    // Use address validation; note that we need to hold a strong reference
    // as the server will only hold a weak reference.
    let validation = Rc::new(RefCell::new(
        AddressValidation::new(now, ValidateAddress::Never).unwrap(),
    ));
    server.set_validation(Rc::clone(&validation));
    connect(&mut client, &mut server);

    let id = server.stream_create(StreamType::UniDi).unwrap();
    server
        .stream_priority(
            id,
            TransmissionPriority::Low,
            RetransmissionPriority::default(),
        )
        .unwrap();
    fill_stream(&mut server, id);

    // Send a session ticket and make it big enough to require a whole packet.
    // The resulting CRYPTO frame beats out the stream data.
    let stats_before = server.stats().frame_tx;
    server.send_ticket(now, &[0; 2048]).unwrap();
    mem::drop(server.process_output(now));
    let stats_after = server.stats().frame_tx;
    assert_eq!(stats_after.crypto, stats_before.crypto + 1);
    assert_eq!(stats_after.stream, stats_before.stream);

    // The above can't test if NEW_TOKEN wins because once that fits in a packet,
    // it is very hard to ensure that the STREAM frame won't also fit.
    // However, we can ensure that the next packet doesn't consist of just STREAM.
    let stats_before = server.stats().frame_tx;
    mem::drop(server.process_output(now));
    let stats_after = server.stats().frame_tx;
    assert_eq!(stats_after.crypto, stats_before.crypto + 1);
    assert_eq!(stats_after.new_token, 1);
    assert_eq!(stats_after.stream, stats_before.stream + 1);
}