1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
use crate::{Plane, PlaneCut, Polygon};
use euclid::default::{Point3D, Vector3D};
use smallvec::SmallVec;
use std::fmt;
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct PolygonIdx(usize);
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct NodeIdx(usize);
/// Binary Space Partitioning splitter, uses a BSP tree.
pub struct BspSplitter<A: Copy> {
result: Vec<Polygon<A>>,
nodes: Vec<BspNode>,
polygons: Vec<Polygon<A>>,
}
impl<A: Copy> BspSplitter<A> {
/// Create a new BSP splitter.
pub fn new() -> Self {
BspSplitter {
result: Vec::new(),
nodes: vec![BspNode::new()],
polygons: Vec::new(),
}
}
}
impl<A> BspSplitter<A>
where
A: Copy + fmt::Debug + Default,
{
/// Put the splitter back in it initial state.
///
/// Call this at the beginning of every frame when reusing the splitter.
pub fn reset(&mut self) {
self.polygons.clear();
self.nodes.clear();
self.nodes.push(BspNode::new());
}
/// Add a polygon to the plane splitter.
///
/// This is where most of the expensive computation happens.
pub fn add(&mut self, poly: Polygon<A>) {
let root = NodeIdx(0);
self.insert(root, &poly);
}
/// Sort the added and split polygons against the view vector.
///
/// Call this towards the end of the frame after having added all polygons.
pub fn sort(&mut self, view: Vector3D<f64>) -> &[Polygon<A>] {
//debug!("\t\ttree before sorting {:?}", self.tree);
let poly = Polygon {
points: [Point3D::origin(); 4],
plane: Plane {
normal: -view, //Note: BSP `order()` is back to front
offset: 0.0,
},
anchor: A::default(),
};
let root = NodeIdx(0);
let mut result = std::mem::take(&mut self.result);
result.clear();
self.order(root, &poly, &mut result);
self.result = result;
&self.result
}
/// Process a set of polygons at once.
pub fn solve(&mut self, input: &[Polygon<A>], view: Vector3D<f64>) -> &[Polygon<A>]
where
A: Copy,
{
self.reset();
for p in input {
self.add(p.clone());
}
self.sort(view)
}
/// Insert a value into the sub-tree starting with this node.
/// This operation may spawn additional leafs/branches of the tree.
fn insert(&mut self, node_idx: NodeIdx, value: &Polygon<A>) {
let node = &mut self.nodes[node_idx.0];
if node.values.is_empty() {
node.values.push(add_polygon(&mut self.polygons, value));
return;
}
let mut front: SmallVec<[Polygon<A>; 2]> = SmallVec::new();
let mut back: SmallVec<[Polygon<A>; 2]> = SmallVec::new();
let first = node.values[0].0;
match self.polygons[first].cut(value, &mut front, &mut back) {
PlaneCut::Sibling => {
node.values.push(add_polygon(&mut self.polygons, value));
}
PlaneCut::Cut => {
if front.len() != 0 {
if self.nodes[node_idx.0].front.is_none() {
self.nodes[node_idx.0].front = Some(add_node(&mut self.nodes));
}
let node_front = self.nodes[node_idx.0].front.unwrap();
for p in &front {
self.insert(node_front, p)
}
}
if back.len() != 0 {
if self.nodes[node_idx.0].back.is_none() {
self.nodes[node_idx.0].back = Some(add_node(&mut self.nodes));
}
let node_back = self.nodes[node_idx.0].back.unwrap();
for p in &back {
self.insert(node_back, p)
}
}
}
}
}
/// Build the draw order of this sub-tree into an `out` vector,
/// so that the contained planes are sorted back to front according
/// to the view vector defined as the `base` plane front direction.
pub fn order(&self, node: NodeIdx, base: &Polygon<A>, out: &mut Vec<Polygon<A>>) {
let node = &self.nodes[node.0];
let (former, latter) = match node.values.first() {
None => return,
Some(first) => {
if base.is_aligned(&self.polygons[first.0]) {
(node.front, node.back)
} else {
(node.back, node.front)
}
}
};
if let Some(node) = former {
self.order(node, base, out);
}
out.reserve(node.values.len());
for poly_idx in &node.values {
out.push(self.polygons[poly_idx.0].clone());
}
if let Some(node) = latter {
self.order(node, base, out);
}
}
}
pub fn add_polygon<A: Copy>(polygons: &mut Vec<Polygon<A>>, poly: &Polygon<A>) -> PolygonIdx {
let index = PolygonIdx(polygons.len());
polygons.push(poly.clone());
index
}
pub fn add_node(nodes: &mut Vec<BspNode>) -> NodeIdx {
let index = NodeIdx(nodes.len());
nodes.push(BspNode::new());
index
}
/// A node in the `BspTree`, which can be considered a tree itself.
#[derive(Clone, Debug)]
pub struct BspNode {
values: SmallVec<[PolygonIdx; 4]>,
front: Option<NodeIdx>,
back: Option<NodeIdx>,
}
impl BspNode {
/// Create a new node.
pub fn new() -> Self {
BspNode {
values: SmallVec::new(),
front: None,
back: None,
}
}
}
|