1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
#!/usr/bin/env sage
# This file recomputes the values in src/fp.rs for each FFT-friendly finite
# field.
import pprint
class Field:
# The name of the field.
name: str
# The prime modulus that defines the field.
modulus: Integer
# A generator element that generates a large subgroup with an order that's
# a power of two. This is _not_ in Montgomery representation.
generator_element: Integer
# The base 2 logarithm of the order of the FFT-friendly multiplicative
# subgroup. The generator element will be a 2^num_roots-th root of unity.
num_roots: Integer
def __init__(self, name, modulus, generator_element):
assert is_prime(modulus)
self.name = name
self.modulus = modulus
self.generator_element = generator_element
self.num_roots = None
for (prime, power) in factor(modulus - 1):
if prime == 2:
self.num_roots = power
break
else:
raise Exception(
"Multiplicative subgroup order is not a multiple of two"
)
def mu(self):
"""
Computes mu, a constant used during multiplication. It is defined by
mu = (-p)^-1 mod r, where r is the modulus implicitly used in wrapping
machine word operations.
"""
r = 2 ^ 64
return (-self.modulus).inverse_mod(r)
def r2(self):
"""
Computes R^2 mod p. This constant is used when converting into
Montgomery representation. R is the machine word-friendly modulus
used in the Montgomery representation.
"""
R = 2 ^ 128
return R ^ 2 % self.modulus
def to_montgomery(self, element):
"""
Transforms an element into its Montgomery representation.
"""
R = 2 ^ 128
return element * R % self.modulus
def bit_mask(self):
"""
An integer with the same bit length as the prime modulus, but with all
bits set.
"""
return 2 ^ (self.modulus.nbits()) - 1
def roots(self):
"""
Returns a list of roots of unity, in Montgomery representation. The
value at index i is a 2^i-th root of unity. Note that the first array
element will thus be the Montgomery representation of one.
"""
return [
self.to_montgomery(
pow(
self.generator_element,
2 ^ (self.num_roots - i),
self.modulus,
)
)
for i in range(min(self.num_roots, 20) + 1)
]
FIELDS = [
Field(
"FieldPrio2",
2 ^ 20 * 4095 + 1,
3925978153,
),
Field(
"Field64",
2 ^ 32 * 4294967295 + 1,
pow(7, 4294967295, 2 ^ 32 * 4294967295 + 1),
),
Field(
"Field128",
2 ^ 66 * 4611686018427387897 + 1,
pow(7, 4611686018427387897, 2 ^ 66 * 4611686018427387897 + 1),
),
]
for field in FIELDS:
print(field.name)
print(f"p: {field.modulus}")
print(f"mu: {field.mu()}")
print(f"r2: {field.r2()}")
print(f"g: {field.to_montgomery(field.generator_element)}")
print(f"num_roots: {field.num_roots}")
print(f"bit_mask: {field.bit_mask()}")
print("roots:")
pprint.pprint(field.roots())
print()
|