1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
|
// Copyright (c) 2023 ISRG
// SPDX-License-Identifier: MPL-2.0
//
// This file contains code covered by the following copyright and permission notice
// and has been modified by ISRG and collaborators.
//
// Copyright (c) 2022 President and Fellows of Harvard College
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// This file incorporates work covered by the following copyright and
// permission notice:
//
// Copyright 2020 Thomas Steinke
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The following code is adapted from the opendp implementation to reduce dependencies:
// https://github.com/opendp/opendp/blob/main/rust/src/traits/samplers/cks20
//! Implementation of a sampler from the Discrete Gaussian Distribution.
//!
//! Follows
//! Clément Canonne, Gautam Kamath, Thomas Steinke. The Discrete Gaussian for Differential Privacy. 2020.
//! <https://arxiv.org/pdf/2004.00010.pdf>
use num_bigint::{BigInt, BigUint, UniformBigUint};
use num_integer::Integer;
use num_iter::range_inclusive;
use num_rational::Ratio;
use num_traits::{One, Zero};
use rand::{distributions::uniform::UniformSampler, distributions::Distribution, Rng};
use serde::{Deserialize, Serialize};
use super::{
DifferentialPrivacyBudget, DifferentialPrivacyDistribution, DifferentialPrivacyStrategy,
DpError, ZCdpBudget,
};
/// Sample from the Bernoulli(gamma) distribution, where $gamma /leq 1$.
///
/// `sample_bernoulli(gamma, rng)` returns numbers distributed as $Bernoulli(gamma)$.
/// using the given random number generator for base randomness. The procedure is as described
/// on page 30 of [[CKS20]].
///
/// [CKS20]: https://arxiv.org/pdf/2004.00010.pdf
fn sample_bernoulli<R: Rng + ?Sized>(gamma: &Ratio<BigUint>, rng: &mut R) -> bool {
let d = gamma.denom();
assert!(!d.is_zero());
assert!(gamma <= &Ratio::<BigUint>::one());
// sample uniform biguint in {1,...,d}
// uses the implementation of rand::Uniform for num_bigint::BigUint
let s = UniformBigUint::sample_single_inclusive(BigUint::one(), d, rng);
s <= *gamma.numer()
}
/// Sample from the Bernoulli(exp(-gamma)) distribution where `gamma` is in `[0,1]`.
///
/// `sample_bernoulli_exp1(gamma, rng)` returns numbers distributed as $Bernoulli(exp(-gamma))$,
/// using the given random number generator for base randomness. Follows Algorithm 1 of [[CKS20]],
/// splitting the branches into two non-recursive functions. This is the `gamma in [0,1]` branch.
///
/// [CKS20]: https://arxiv.org/pdf/2004.00010.pdf
fn sample_bernoulli_exp1<R: Rng + ?Sized>(gamma: &Ratio<BigUint>, rng: &mut R) -> bool {
assert!(!gamma.denom().is_zero());
assert!(gamma <= &Ratio::<BigUint>::one());
let mut k = BigUint::one();
loop {
if sample_bernoulli(&(gamma / k.clone()), rng) {
k += 1u8;
} else {
return k.is_odd();
}
}
}
/// Sample from the Bernoulli(exp(-gamma)) distribution.
///
/// `sample_bernoulli_exp(gamma, rng)` returns numbers distributed as $Bernoulli(exp(-gamma))$,
/// using the given random number generator for base randomness. Follows Algorithm 1 of [[CKS20]],
/// splitting the branches into two non-recursive functions. This is the `gamma > 1` branch.
///
/// [CKS20]: https://arxiv.org/pdf/2004.00010.pdf
fn sample_bernoulli_exp<R: Rng + ?Sized>(gamma: &Ratio<BigUint>, rng: &mut R) -> bool {
assert!(!gamma.denom().is_zero());
for _ in range_inclusive(BigUint::one(), gamma.floor().to_integer()) {
if !sample_bernoulli_exp1(&Ratio::<BigUint>::one(), rng) {
return false;
}
}
sample_bernoulli_exp1(&(gamma - gamma.floor()), rng)
}
/// Sample from the geometric distribution with parameter 1 - exp(-gamma).
///
/// `sample_geometric_exp(gamma, rng)` returns numbers distributed according to
/// $Geometric(1 - exp(-gamma))$, using the given random number generator for base randomness.
/// The code follows all but the last three lines of Algorithm 2 in [[CKS20]].
///
/// [CKS20]: https://arxiv.org/pdf/2004.00010.pdf
fn sample_geometric_exp<R: Rng + ?Sized>(gamma: &Ratio<BigUint>, rng: &mut R) -> BigUint {
let (s, t) = (gamma.numer(), gamma.denom());
assert!(!t.is_zero());
if gamma.is_zero() {
return BigUint::zero();
}
// sampler for uniform biguint in {0...t-1}
// uses the implementation of rand::Uniform for num_bigint::BigUint
let usampler = UniformBigUint::new(BigUint::zero(), t);
let mut u = usampler.sample(rng);
while !sample_bernoulli_exp1(&Ratio::<BigUint>::new(u.clone(), t.clone()), rng) {
u = usampler.sample(rng);
}
let mut v = BigUint::zero();
loop {
if sample_bernoulli_exp1(&Ratio::<BigUint>::one(), rng) {
v += 1u8;
} else {
break;
}
}
// we do integer division, so the following term equals floor((u + t*v)/s)
(u + t * v) / s
}
/// Sample from the discrete Laplace distribution.
///
/// `sample_discrete_laplace(scale, rng)` returns numbers distributed according to
/// $\mathcal{L}_\mathbb{Z}(0, scale)$, using the given random number generator for base randomness.
/// This follows Algorithm 2 of [[CKS20]], using a subfunction for geometric sampling.
///
/// [CKS20]: https://arxiv.org/pdf/2004.00010.pdf
fn sample_discrete_laplace<R: Rng + ?Sized>(scale: &Ratio<BigUint>, rng: &mut R) -> BigInt {
let (s, t) = (scale.numer(), scale.denom());
assert!(!t.is_zero());
if s.is_zero() {
return BigInt::zero();
}
loop {
let negative = sample_bernoulli(&Ratio::<BigUint>::new(BigUint::one(), 2u8.into()), rng);
let y: BigInt = sample_geometric_exp(&scale.recip(), rng).into();
if negative && y.is_zero() {
continue;
} else {
return if negative { -y } else { y };
}
}
}
/// Sample from the discrete Gaussian distribution.
///
/// `sample_discrete_gaussian(sigma, rng)` returns `BigInt` numbers distributed as
/// $\mathcal{N}_\mathbb{Z}(0, sigma^2)$, using the given random number generator for base
/// randomness. Follows Algorithm 3 from [[CKS20]].
///
/// [CKS20]: https://arxiv.org/pdf/2004.00010.pdf
fn sample_discrete_gaussian<R: Rng + ?Sized>(sigma: &Ratio<BigUint>, rng: &mut R) -> BigInt {
assert!(!sigma.denom().is_zero());
if sigma.is_zero() {
return 0.into();
}
let t = sigma.floor() + BigUint::one();
// no need to compute these parts of the probability term every iteration
let summand = sigma.pow(2) / t.clone();
// compute probability of accepting the laplace sample y
let prob = |term: Ratio<BigUint>| term.pow(2) * (sigma.pow(2) * BigUint::from(2u8)).recip();
loop {
let y = sample_discrete_laplace(&t, rng);
// absolute value without type conversion
let y_abs: Ratio<BigUint> = BigUint::new(y.to_u32_digits().1).into();
// unsigned subtraction-followed-by-square
let prob: Ratio<BigUint> = if y_abs < summand {
prob(summand.clone() - y_abs)
} else {
prob(y_abs - summand.clone())
};
if sample_bernoulli_exp(&prob, rng) {
return y;
}
}
}
/// Samples `BigInt` numbers according to the discrete Gaussian distribution with mean zero.
/// The distribution is defined over the integers, represented by arbitrary-precision integers.
/// The sampling procedure follows [[CKS20]].
///
/// [CKS20]: https://arxiv.org/pdf/2004.00010.pdf
#[derive(Clone, Debug)]
pub struct DiscreteGaussian {
/// The standard deviation of the distribution.
std: Ratio<BigUint>,
}
impl DiscreteGaussian {
/// Create a new sampler from the Discrete Gaussian Distribution with the given
/// standard deviation and mean zero. Errors if the input has denominator zero.
pub fn new(std: Ratio<BigUint>) -> Result<DiscreteGaussian, DpError> {
if std.denom().is_zero() {
return Err(DpError::ZeroDenominator);
}
Ok(DiscreteGaussian { std })
}
}
impl Distribution<BigInt> for DiscreteGaussian {
fn sample<R>(&self, rng: &mut R) -> BigInt
where
R: Rng + ?Sized,
{
sample_discrete_gaussian(&self.std, rng)
}
}
impl DifferentialPrivacyDistribution for DiscreteGaussian {}
/// A DP strategy using the discrete gaussian distribution.
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Ord, PartialOrd)]
pub struct DiscreteGaussianDpStrategy<B>
where
B: DifferentialPrivacyBudget,
{
budget: B,
}
/// A DP strategy using the discrete gaussian distribution providing zero-concentrated DP.
pub type ZCdpDiscreteGaussian = DiscreteGaussianDpStrategy<ZCdpBudget>;
impl DifferentialPrivacyStrategy for DiscreteGaussianDpStrategy<ZCdpBudget> {
type Budget = ZCdpBudget;
type Distribution = DiscreteGaussian;
type Sensitivity = Ratio<BigUint>;
fn from_budget(budget: ZCdpBudget) -> DiscreteGaussianDpStrategy<ZCdpBudget> {
DiscreteGaussianDpStrategy { budget }
}
/// Create a new sampler from the Discrete Gaussian Distribution with a standard
/// deviation calibrated to provide `1/2 epsilon^2` zero-concentrated differential
/// privacy when added to the result of an integer-valued function with sensitivity
/// `sensitivity`, following Theorem 4 from [[CKS20]]
///
/// [CKS20]: https://arxiv.org/pdf/2004.00010.pdf
fn create_distribution(
&self,
sensitivity: Ratio<BigUint>,
) -> Result<DiscreteGaussian, DpError> {
DiscreteGaussian::new(sensitivity / self.budget.epsilon.clone())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::dp::Rational;
use crate::vdaf::xof::SeedStreamTurboShake128;
use num_bigint::{BigUint, Sign, ToBigInt, ToBigUint};
use num_traits::{One, Signed, ToPrimitive};
use rand::{distributions::Distribution, SeedableRng};
use statrs::distribution::{ChiSquared, ContinuousCDF, Normal};
use std::collections::HashMap;
#[test]
fn test_discrete_gaussian() {
let sampler =
DiscreteGaussian::new(Ratio::<BigUint>::from_integer(BigUint::from(5u8))).unwrap();
// check samples are consistent
let mut rng = SeedStreamTurboShake128::from_seed([0u8; 16]);
let samples: Vec<i8> = (0..10)
.map(|_| i8::try_from(sampler.sample(&mut rng)).unwrap())
.collect();
let samples1: Vec<i8> = (0..10)
.map(|_| i8::try_from(sampler.sample(&mut rng)).unwrap())
.collect();
assert_eq!(samples, vec![0, -3, -2, 3, 2, -1, -5, 4, -7, -5]);
assert_eq!(samples1, vec![2, 7, -8, -3, 1, -3, -3, 6, -3, -1]);
}
#[test]
/// Make sure that the distribution created by `create_distribution`
/// of `ZCdpDicreteGaussian` is the same one as manually creating one
/// by using the constructor of `DiscreteGaussian` directly.
fn test_zcdp_discrete_gaussian() {
// sample from a manually created distribution
let sampler1 =
DiscreteGaussian::new(Ratio::<BigUint>::from_integer(BigUint::from(4u8))).unwrap();
let mut rng = SeedStreamTurboShake128::from_seed([0u8; 16]);
let samples1: Vec<i8> = (0..10)
.map(|_| i8::try_from(sampler1.sample(&mut rng)).unwrap())
.collect();
// sample from the distribution created by the `zcdp` strategy
let zcdp = ZCdpDiscreteGaussian {
budget: ZCdpBudget::new(Rational::try_from(0.25).unwrap()),
};
let sampler2 = zcdp
.create_distribution(Ratio::<BigUint>::from_integer(1u8.into()))
.unwrap();
let mut rng2 = SeedStreamTurboShake128::from_seed([0u8; 16]);
let samples2: Vec<i8> = (0..10)
.map(|_| i8::try_from(sampler2.sample(&mut rng2)).unwrap())
.collect();
assert_eq!(samples2, samples1);
}
pub fn test_mean<FS: FnMut() -> BigInt>(
mut sampler: FS,
hyp_mean: f64,
hyp_var: f64,
alpha: f64,
n: u32,
) -> bool {
// we test if the mean from our sampler is within the given error margin assuimng its
// normally distributed with mean hyp_mean and variance sqrt(hyp_var/n)
// this assumption is from the central limit theorem
// inverse cdf (quantile function) is F s.t. P[X<=F(p)]=p for X ~ N(0,1)
// (i.e. X from the standard normal distribution)
let probit = |p| Normal::new(0.0, 1.0).unwrap().inverse_cdf(p);
// x such that the probability of a N(0,1) variable attaining
// a value outside of (-x, x) is alpha
let z_stat = probit(alpha / 2.).abs();
// confidence interval for the mean
let abs_p_tol = Ratio::<BigInt>::from_float(z_stat * (hyp_var / n as f64).sqrt()).unwrap();
// take n samples from the distribution, compute empirical mean
let emp_mean = Ratio::<BigInt>::new((0..n).map(|_| sampler()).sum::<BigInt>(), n.into());
(emp_mean - Ratio::<BigInt>::from_float(hyp_mean).unwrap()).abs() < abs_p_tol
}
fn histogram(
d: &Vec<BigInt>,
bin_bounds: &[Option<(BigInt, BigInt)>],
smallest: BigInt,
largest: BigInt,
) -> HashMap<Option<(BigInt, BigInt)>, u64> {
// a binned histogram of the samples in `d`
// used for chi_square test
fn insert<T>(hist: &mut HashMap<T, u64>, key: &T, val: u64)
where
T: Eq + std::hash::Hash + Clone,
{
*hist.entry(key.clone()).or_default() += val;
}
// regular histogram
let mut hist = HashMap::<BigInt, u64>::new();
//binned histogram
let mut bin_hist = HashMap::<Option<(BigInt, BigInt)>, u64>::new();
for val in d {
// throw outliers with bound bins
if val < &smallest || val > &largest {
insert(&mut bin_hist, &None, 1);
} else {
insert(&mut hist, val, 1);
}
}
// sort values into their bins
for (a, b) in bin_bounds.iter().flatten() {
for i in range_inclusive(a.clone(), b.clone()) {
if let Some(count) = hist.get(&i) {
insert(&mut bin_hist, &Some((a.clone(), b.clone())), *count);
}
}
}
bin_hist
}
fn discrete_gauss_cdf_approx(
sigma: &BigUint,
bin_bounds: &[Option<(BigInt, BigInt)>],
) -> HashMap<Option<(BigInt, BigInt)>, f64> {
// approximate bin probabilties from theoretical distribution
// formula is eq. (1) on page 3 of [[CKS20]]
//
// [CKS20]: https://arxiv.org/pdf/2004.00010.pdf
let sigma = BigInt::from_biguint(Sign::Plus, sigma.clone());
let exp_sum = |lower: &BigInt, upper: &BigInt| {
range_inclusive(lower.clone(), upper.clone())
.map(|x: BigInt| {
f64::exp(
Ratio::<BigInt>::new(-(x.pow(2)), 2 * sigma.pow(2))
.to_f64()
.unwrap(),
)
})
.sum::<f64>()
};
// denominator is approximate up to 10 times the variance
// outside of that probabilities should be very small
// so the error will be negligible for the test
let denom = exp_sum(&(-10i8 * sigma.pow(2)), &(10i8 * sigma.pow(2)));
// compute probabilities for each bin
let mut cdf = HashMap::new();
let mut p_outside = 1.0; // probability of not landing inside bin boundaries
for (a, b) in bin_bounds.iter().flatten() {
let entry = exp_sum(a, b) / denom;
assert!(!entry.is_zero() && entry.is_finite());
cdf.insert(Some((a.clone(), b.clone())), entry);
p_outside -= entry;
}
cdf.insert(None, p_outside);
cdf
}
fn chi_square(sigma: &BigUint, n_bins: usize, alpha: f64) -> bool {
// perform pearsons chi-squared test on the discrete gaussian sampler
let sigma_signed = BigInt::from_biguint(Sign::Plus, sigma.clone());
// cut off at 3 times the std. and collect all outliers in a seperate bin
let global_bound = 3u8 * sigma_signed;
// bounds of bins
let lower_bounds = range_inclusive(-global_bound.clone(), global_bound.clone()).step_by(
((2u8 * global_bound.clone()) / BigInt::from(n_bins))
.try_into()
.unwrap(),
);
let mut bin_bounds: Vec<Option<(BigInt, BigInt)>> = std::iter::zip(
lower_bounds.clone().take(n_bins),
lower_bounds.map(|x: BigInt| x - 1u8).skip(1),
)
.map(Some)
.collect();
bin_bounds.push(None); // bin for outliers
// approximate bin probabilities
let cdf = discrete_gauss_cdf_approx(sigma, &bin_bounds);
// chi2 stat wants at least 5 expected entries per bin
// so we choose n_samples in a way that gives us that
let n_samples = cdf
.values()
.map(|val| f64::ceil(5.0 / *val) as u32)
.max()
.unwrap();
// collect that number of samples
let mut rng = SeedStreamTurboShake128::from_seed([0u8; 16]);
let samples: Vec<BigInt> = (1..n_samples)
.map(|_| {
sample_discrete_gaussian(&Ratio::<BigUint>::from_integer(sigma.clone()), &mut rng)
})
.collect();
// make a histogram from the samples
let hist = histogram(&samples, &bin_bounds, -global_bound.clone(), global_bound);
// compute pearsons chi-squared test statistic
let stat: f64 = bin_bounds
.iter()
.map(|key| {
let expected = cdf.get(&(key.clone())).unwrap() * n_samples as f64;
if let Some(val) = hist.get(&(key.clone())) {
(*val as f64 - expected).powf(2.) / expected
} else {
0.0
}
})
.sum::<f64>();
let chi2 = ChiSquared::new((cdf.len() - 1) as f64).unwrap();
// the probability of observing X >= stat for X ~ chi-squared
// (the "p-value")
let p = 1.0 - chi2.cdf(stat);
p > alpha
}
#[test]
fn empirical_test_gauss() {
[100, 2000, 20000].iter().for_each(|p| {
let mut rng = SeedStreamTurboShake128::from_seed([0u8; 16]);
let sampler = || {
sample_discrete_gaussian(
&Ratio::<BigUint>::from_integer((*p).to_biguint().unwrap()),
&mut rng,
)
};
let mean = 0.0;
let var = (p * p) as f64;
assert!(
test_mean(sampler, mean, var, 0.00001, 1000),
"Empirical evaluation of discrete Gaussian({:?}) sampler mean failed.",
p
);
});
// we only do chi square for std 100 because it's expensive
assert!(chi_square(&(100u8.to_biguint().unwrap()), 10, 0.05));
}
#[test]
fn empirical_test_bernoulli_mean() {
[2u8, 5u8, 7u8, 9u8].iter().for_each(|p| {
let mut rng = SeedStreamTurboShake128::from_seed([0u8; 16]);
let sampler = || {
if sample_bernoulli(
&Ratio::<BigUint>::new(BigUint::one(), (*p).into()),
&mut rng,
) {
BigInt::one()
} else {
BigInt::zero()
}
};
let mean = 1. / (*p as f64);
let var = mean * (1. - mean);
assert!(
test_mean(sampler, mean, var, 0.00001, 1000),
"Empirical evaluation of the Bernoulli(1/{:?}) distribution mean failed",
p
);
})
}
#[test]
fn empirical_test_geometric_mean() {
[2u8, 5u8, 7u8, 9u8].iter().for_each(|p| {
let mut rng = SeedStreamTurboShake128::from_seed([0u8; 16]);
let sampler = || {
sample_geometric_exp(
&Ratio::<BigUint>::new(BigUint::one(), (*p).into()),
&mut rng,
)
.to_bigint()
.unwrap()
};
let p_prob = 1. - f64::exp(-(1. / *p as f64));
let mean = (1. - p_prob) / p_prob;
let var = (1. - p_prob) / p_prob.powi(2);
assert!(
test_mean(sampler, mean, var, 0.0001, 1000),
"Empirical evaluation of the Geometric(1-exp(-1/{:?})) distribution mean failed",
p
);
})
}
#[test]
fn empirical_test_laplace_mean() {
[2u8, 5u8, 7u8, 9u8].iter().for_each(|p| {
let mut rng = SeedStreamTurboShake128::from_seed([0u8; 16]);
let sampler = || {
sample_discrete_laplace(
&Ratio::<BigUint>::new(BigUint::one(), (*p).into()),
&mut rng,
)
};
let mean = 0.0;
let var = (1. / *p as f64).powi(2);
assert!(
test_mean(sampler, mean, var, 0.0001, 1000),
"Empirical evaluation of the Laplace(0,1/{:?}) distribution mean failed",
p
);
})
}
}
|