1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
// Copyright (c) 2020 Apple Inc.
// SPDX-License-Identifier: MPL-2.0
//! Functions for polynomial interpolation and evaluation
#[cfg(all(feature = "crypto-dependencies", feature = "experimental"))]
use crate::fft::{discrete_fourier_transform, discrete_fourier_transform_inv_finish};
use crate::field::FftFriendlyFieldElement;
use std::convert::TryFrom;
/// Temporary memory used for FFT
#[derive(Clone, Debug)]
pub struct PolyFFTTempMemory<F> {
fft_tmp: Vec<F>,
fft_y_sub: Vec<F>,
fft_roots_sub: Vec<F>,
}
impl<F: FftFriendlyFieldElement> PolyFFTTempMemory<F> {
fn new(length: usize) -> Self {
PolyFFTTempMemory {
fft_tmp: vec![F::zero(); length],
fft_y_sub: vec![F::zero(); length],
fft_roots_sub: vec![F::zero(); length],
}
}
}
/// Auxiliary memory for polynomial interpolation and evaluation
#[derive(Clone, Debug)]
pub struct PolyAuxMemory<F> {
pub roots_2n: Vec<F>,
pub roots_2n_inverted: Vec<F>,
pub roots_n: Vec<F>,
pub roots_n_inverted: Vec<F>,
pub coeffs: Vec<F>,
pub fft_memory: PolyFFTTempMemory<F>,
}
impl<F: FftFriendlyFieldElement> PolyAuxMemory<F> {
pub fn new(n: usize) -> Self {
PolyAuxMemory {
roots_2n: fft_get_roots(2 * n, false),
roots_2n_inverted: fft_get_roots(2 * n, true),
roots_n: fft_get_roots(n, false),
roots_n_inverted: fft_get_roots(n, true),
coeffs: vec![F::zero(); 2 * n],
fft_memory: PolyFFTTempMemory::new(2 * n),
}
}
}
fn fft_recurse<F: FftFriendlyFieldElement>(
out: &mut [F],
n: usize,
roots: &[F],
ys: &[F],
tmp: &mut [F],
y_sub: &mut [F],
roots_sub: &mut [F],
) {
if n == 1 {
out[0] = ys[0];
return;
}
let half_n = n / 2;
let (tmp_first, tmp_second) = tmp.split_at_mut(half_n);
let (y_sub_first, y_sub_second) = y_sub.split_at_mut(half_n);
let (roots_sub_first, roots_sub_second) = roots_sub.split_at_mut(half_n);
// Recurse on the first half
for i in 0..half_n {
y_sub_first[i] = ys[i] + ys[i + half_n];
roots_sub_first[i] = roots[2 * i];
}
fft_recurse(
tmp_first,
half_n,
roots_sub_first,
y_sub_first,
tmp_second,
y_sub_second,
roots_sub_second,
);
for i in 0..half_n {
out[2 * i] = tmp_first[i];
}
// Recurse on the second half
for i in 0..half_n {
y_sub_first[i] = ys[i] - ys[i + half_n];
y_sub_first[i] *= roots[i];
}
fft_recurse(
tmp_first,
half_n,
roots_sub_first,
y_sub_first,
tmp_second,
y_sub_second,
roots_sub_second,
);
for i in 0..half_n {
out[2 * i + 1] = tmp[i];
}
}
/// Calculate `count` number of roots of unity of order `count`
fn fft_get_roots<F: FftFriendlyFieldElement>(count: usize, invert: bool) -> Vec<F> {
let mut roots = vec![F::zero(); count];
let mut gen = F::generator();
if invert {
gen = gen.inv();
}
roots[0] = F::one();
let step_size = F::generator_order() / F::Integer::try_from(count).unwrap();
// generator for subgroup of order count
gen = gen.pow(step_size);
roots[1] = gen;
for i in 2..count {
roots[i] = gen * roots[i - 1];
}
roots
}
fn fft_interpolate_raw<F: FftFriendlyFieldElement>(
out: &mut [F],
ys: &[F],
n_points: usize,
roots: &[F],
invert: bool,
mem: &mut PolyFFTTempMemory<F>,
) {
fft_recurse(
out,
n_points,
roots,
ys,
&mut mem.fft_tmp,
&mut mem.fft_y_sub,
&mut mem.fft_roots_sub,
);
if invert {
let n_inverse = F::from(F::Integer::try_from(n_points).unwrap()).inv();
for out_val in out[0..n_points].iter_mut() {
*out_val *= n_inverse;
}
}
}
pub fn poly_fft<F: FftFriendlyFieldElement>(
points_out: &mut [F],
points_in: &[F],
scaled_roots: &[F],
n_points: usize,
invert: bool,
mem: &mut PolyFFTTempMemory<F>,
) {
fft_interpolate_raw(points_out, points_in, n_points, scaled_roots, invert, mem)
}
// Evaluate a polynomial using Horner's method.
pub fn poly_eval<F: FftFriendlyFieldElement>(poly: &[F], eval_at: F) -> F {
if poly.is_empty() {
return F::zero();
}
let mut result = poly[poly.len() - 1];
for i in (0..poly.len() - 1).rev() {
result *= eval_at;
result += poly[i];
}
result
}
// Returns the degree of polynomial `p`.
pub fn poly_deg<F: FftFriendlyFieldElement>(p: &[F]) -> usize {
let mut d = p.len();
while d > 0 && p[d - 1] == F::zero() {
d -= 1;
}
d.saturating_sub(1)
}
// Multiplies polynomials `p` and `q` and returns the result.
pub fn poly_mul<F: FftFriendlyFieldElement>(p: &[F], q: &[F]) -> Vec<F> {
let p_size = poly_deg(p) + 1;
let q_size = poly_deg(q) + 1;
let mut out = vec![F::zero(); p_size + q_size];
for i in 0..p_size {
for j in 0..q_size {
out[i + j] += p[i] * q[j];
}
}
out.truncate(poly_deg(&out) + 1);
out
}
#[cfg(all(feature = "crypto-dependencies", feature = "experimental"))]
#[inline]
pub fn poly_interpret_eval<F: FftFriendlyFieldElement>(
points: &[F],
eval_at: F,
tmp_coeffs: &mut [F],
) -> F {
let size_inv = F::from(F::Integer::try_from(points.len()).unwrap()).inv();
discrete_fourier_transform(tmp_coeffs, points, points.len()).unwrap();
discrete_fourier_transform_inv_finish(tmp_coeffs, points.len(), size_inv);
poly_eval(&tmp_coeffs[..points.len()], eval_at)
}
// Returns a polynomial that evaluates to `0` if the input is in range `[start, end)`. Otherwise,
// the output is not `0`.
pub(crate) fn poly_range_check<F: FftFriendlyFieldElement>(start: usize, end: usize) -> Vec<F> {
let mut p = vec![F::one()];
let mut q = [F::zero(), F::one()];
for i in start..end {
q[0] = -F::from(F::Integer::try_from(i).unwrap());
p = poly_mul(&p, &q);
}
p
}
#[cfg(test)]
mod tests {
use crate::{
field::{
FftFriendlyFieldElement, Field64, FieldElement, FieldElementWithInteger, FieldPrio2,
},
polynomial::{
fft_get_roots, poly_deg, poly_eval, poly_fft, poly_mul, poly_range_check, PolyAuxMemory,
},
};
use rand::prelude::*;
use std::convert::TryFrom;
#[test]
fn test_roots() {
let count = 128;
let roots = fft_get_roots::<FieldPrio2>(count, false);
let roots_inv = fft_get_roots::<FieldPrio2>(count, true);
for i in 0..count {
assert_eq!(roots[i] * roots_inv[i], 1);
assert_eq!(roots[i].pow(u32::try_from(count).unwrap()), 1);
assert_eq!(roots_inv[i].pow(u32::try_from(count).unwrap()), 1);
}
}
#[test]
fn test_eval() {
let mut poly = [FieldPrio2::from(0); 4];
poly[0] = 2.into();
poly[1] = 1.into();
poly[2] = 5.into();
// 5*3^2 + 3 + 2 = 50
assert_eq!(poly_eval(&poly[..3], 3.into()), 50);
poly[3] = 4.into();
// 4*3^3 + 5*3^2 + 3 + 2 = 158
assert_eq!(poly_eval(&poly[..4], 3.into()), 158);
}
#[test]
fn test_poly_deg() {
let zero = FieldPrio2::zero();
let one = FieldPrio2::root(0).unwrap();
assert_eq!(poly_deg(&[zero]), 0);
assert_eq!(poly_deg(&[one]), 0);
assert_eq!(poly_deg(&[zero, one]), 1);
assert_eq!(poly_deg(&[zero, zero, one]), 2);
assert_eq!(poly_deg(&[zero, one, one]), 2);
assert_eq!(poly_deg(&[zero, one, one, one]), 3);
assert_eq!(poly_deg(&[zero, one, one, one, zero]), 3);
assert_eq!(poly_deg(&[zero, one, one, one, zero, zero]), 3);
}
#[test]
fn test_poly_mul() {
let p = [
Field64::from(u64::try_from(2).unwrap()),
Field64::from(u64::try_from(3).unwrap()),
];
let q = [
Field64::one(),
Field64::zero(),
Field64::from(u64::try_from(5).unwrap()),
];
let want = [
Field64::from(u64::try_from(2).unwrap()),
Field64::from(u64::try_from(3).unwrap()),
Field64::from(u64::try_from(10).unwrap()),
Field64::from(u64::try_from(15).unwrap()),
];
let got = poly_mul(&p, &q);
assert_eq!(&got, &want);
}
#[test]
fn test_poly_range_check() {
let start = 74;
let end = 112;
let p = poly_range_check(start, end);
// Check each number in the range.
for i in start..end {
let x = Field64::from(i as u64);
let y = poly_eval(&p, x);
assert_eq!(y, Field64::zero(), "range check failed for {i}");
}
// Check the number below the range.
let x = Field64::from((start - 1) as u64);
let y = poly_eval(&p, x);
assert_ne!(y, Field64::zero());
// Check a number above the range.
let x = Field64::from(end as u64);
let y = poly_eval(&p, x);
assert_ne!(y, Field64::zero());
}
#[test]
fn test_fft() {
let count = 128;
let mut mem = PolyAuxMemory::new(count / 2);
let mut poly = vec![FieldPrio2::from(0); count];
let mut points2 = vec![FieldPrio2::from(0); count];
let points = (0..count)
.map(|_| FieldPrio2::from(random::<u32>()))
.collect::<Vec<FieldPrio2>>();
// From points to coeffs and back
poly_fft(
&mut poly,
&points,
&mem.roots_2n,
count,
false,
&mut mem.fft_memory,
);
poly_fft(
&mut points2,
&poly,
&mem.roots_2n_inverted,
count,
true,
&mut mem.fft_memory,
);
assert_eq!(points, points2);
// interpolation
poly_fft(
&mut poly,
&points,
&mem.roots_2n,
count,
false,
&mut mem.fft_memory,
);
for (poly_coeff, root) in poly[..count].iter().zip(mem.roots_2n[..count].iter()) {
let mut should_be = FieldPrio2::from(0);
for (j, point_j) in points[..count].iter().enumerate() {
should_be = root.pow(u32::try_from(j).unwrap()) * *point_j + should_be;
}
assert_eq!(should_be, *poly_coeff);
}
}
}
|