1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
|
// SPDX-License-Identifier: MPL-2.0
//! Implements the Ping-Pong Topology described in [VDAF]. This topology assumes there are exactly
//! two aggregators, designated "Leader" and "Helper". This topology is required for implementing
//! the [Distributed Aggregation Protocol][DAP].
//!
//! [VDAF]: https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vdaf-08#section-5.8
//! [DAP]: https://datatracker.ietf.org/doc/html/draft-ietf-ppm-dap
use crate::{
codec::{decode_u32_items, encode_u32_items, CodecError, Decode, Encode, ParameterizedDecode},
vdaf::{Aggregator, PrepareTransition, VdafError},
};
use std::fmt::Debug;
/// Errors emitted by this module.
#[derive(Debug, thiserror::Error)]
#[non_exhaustive]
pub enum PingPongError {
/// Error running prepare_init
#[error("vdaf.prepare_init: {0}")]
VdafPrepareInit(VdafError),
/// Error running prepare_shares_to_prepare_message
#[error("vdaf.prepare_shares_to_prepare_message {0}")]
VdafPrepareSharesToPrepareMessage(VdafError),
/// Error running prepare_next
#[error("vdaf.prepare_next {0}")]
VdafPrepareNext(VdafError),
/// Error encoding or decoding a prepare share
#[error("encode/decode prep share {0}")]
CodecPrepShare(CodecError),
/// Error encoding or decoding a prepare message
#[error("encode/decode prep message {0}")]
CodecPrepMessage(CodecError),
/// Host is in an unexpected state
#[error("host state mismatch: in {found} expected {expected}")]
HostStateMismatch {
/// The state the host is in.
found: &'static str,
/// The state the host expected to be in.
expected: &'static str,
},
/// Message from peer indicates it is in an unexpected state
#[error("peer message mismatch: message is {found} expected {expected}")]
PeerMessageMismatch {
/// The state in the message from the peer.
found: &'static str,
/// The message expected from the peer.
expected: &'static str,
},
/// Internal error
#[error("internal error: {0}")]
InternalError(&'static str),
}
/// Corresponds to `struct Message` in [VDAF's Ping-Pong Topology][VDAF]. All of the fields of the
/// variants are opaque byte buffers. This is because the ping-pong routines take responsibility for
/// decoding preparation shares and messages, which usually requires having the preparation state.
///
/// [VDAF]: https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vdaf-08#section-5.8
#[derive(Clone, PartialEq, Eq)]
pub enum PingPongMessage {
/// Corresponds to MessageType.initialize.
Initialize {
/// The leader's initial preparation share.
prep_share: Vec<u8>,
},
/// Corresponds to MessageType.continue.
Continue {
/// The current round's preparation message.
prep_msg: Vec<u8>,
/// The next round's preparation share.
prep_share: Vec<u8>,
},
/// Corresponds to MessageType.finish.
Finish {
/// The current round's preparation message.
prep_msg: Vec<u8>,
},
}
impl PingPongMessage {
fn variant(&self) -> &'static str {
match self {
Self::Initialize { .. } => "Initialize",
Self::Continue { .. } => "Continue",
Self::Finish { .. } => "Finish",
}
}
}
impl Debug for PingPongMessage {
// We want `PingPongMessage` to implement `Debug`, but we don't want that impl to print out
// prepare shares or messages, because (1) their contents are sensitive and (2) their contents
// are long and not intelligible to humans. For both reasons they generally shouldn't get
// logged. Normally, we'd use the `derivative` crate to customize a derived `Debug`, but that
// crate has not been audited (in the `cargo vet` sense) so we can't use it here unless we audit
// 8,000+ lines of proc macros.
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_tuple(self.variant()).finish()
}
}
impl Encode for PingPongMessage {
fn encode(&self, bytes: &mut Vec<u8>) -> Result<(), CodecError> {
// The encoding includes an implicit discriminator byte, called MessageType in the VDAF
// spec.
match self {
Self::Initialize { prep_share } => {
0u8.encode(bytes)?;
encode_u32_items(bytes, &(), prep_share)?;
}
Self::Continue {
prep_msg,
prep_share,
} => {
1u8.encode(bytes)?;
encode_u32_items(bytes, &(), prep_msg)?;
encode_u32_items(bytes, &(), prep_share)?;
}
Self::Finish { prep_msg } => {
2u8.encode(bytes)?;
encode_u32_items(bytes, &(), prep_msg)?;
}
}
Ok(())
}
fn encoded_len(&self) -> Option<usize> {
match self {
Self::Initialize { prep_share } => Some(1 + 4 + prep_share.len()),
Self::Continue {
prep_msg,
prep_share,
} => Some(1 + 4 + prep_msg.len() + 4 + prep_share.len()),
Self::Finish { prep_msg } => Some(1 + 4 + prep_msg.len()),
}
}
}
impl Decode for PingPongMessage {
fn decode(bytes: &mut std::io::Cursor<&[u8]>) -> Result<Self, CodecError> {
let message_type = u8::decode(bytes)?;
Ok(match message_type {
0 => {
let prep_share = decode_u32_items(&(), bytes)?;
Self::Initialize { prep_share }
}
1 => {
let prep_msg = decode_u32_items(&(), bytes)?;
let prep_share = decode_u32_items(&(), bytes)?;
Self::Continue {
prep_msg,
prep_share,
}
}
2 => {
let prep_msg = decode_u32_items(&(), bytes)?;
Self::Finish { prep_msg }
}
_ => return Err(CodecError::UnexpectedValue),
})
}
}
/// A transition in the pong-pong topology. This represents the `ping_pong_transition` function
/// defined in [VDAF].
///
/// # Discussion
///
/// The obvious implementation of `ping_pong_transition` would be a method on trait
/// [`PingPongTopology`] that returns `(State, Message)`, and then `ContinuedValue::WithMessage`
/// would contain those values. But then DAP implementations would have to store relatively large
/// VDAF prepare shares between rounds of input preparation.
///
/// Instead, this structure stores just the previous round's prepare state and the current round's
/// preprocessed prepare message. Their encoding is much smaller than the `(State, Message)` tuple,
/// which can always be recomputed with [`Self::evaluate`].
///
/// [VDAF]: https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vdaf-08#section-5.8
#[derive(Clone, Debug, Eq)]
pub struct PingPongTransition<
const VERIFY_KEY_SIZE: usize,
const NONCE_SIZE: usize,
A: Aggregator<VERIFY_KEY_SIZE, NONCE_SIZE>,
> {
previous_prepare_state: A::PrepareState,
current_prepare_message: A::PrepareMessage,
}
impl<
const VERIFY_KEY_SIZE: usize,
const NONCE_SIZE: usize,
A: Aggregator<VERIFY_KEY_SIZE, NONCE_SIZE>,
> PingPongTransition<VERIFY_KEY_SIZE, NONCE_SIZE, A>
{
/// Evaluate this transition to obtain a new [`PingPongState`] and a [`PingPongMessage`] which
/// should be transmitted to the peer.
#[allow(clippy::type_complexity)]
pub fn evaluate(
&self,
vdaf: &A,
) -> Result<
(
PingPongState<VERIFY_KEY_SIZE, NONCE_SIZE, A>,
PingPongMessage,
),
PingPongError,
> {
let prep_msg = self
.current_prepare_message
.get_encoded()
.map_err(PingPongError::CodecPrepMessage)?;
vdaf.prepare_next(
self.previous_prepare_state.clone(),
self.current_prepare_message.clone(),
)
.map_err(PingPongError::VdafPrepareNext)
.and_then(|transition| match transition {
PrepareTransition::Continue(prep_state, prep_share) => Ok((
PingPongState::Continued(prep_state),
PingPongMessage::Continue {
prep_msg,
prep_share: prep_share
.get_encoded()
.map_err(PingPongError::CodecPrepShare)?,
},
)),
PrepareTransition::Finish(output_share) => Ok((
PingPongState::Finished(output_share),
PingPongMessage::Finish { prep_msg },
)),
})
}
}
impl<
const VERIFY_KEY_SIZE: usize,
const NONCE_SIZE: usize,
A: Aggregator<VERIFY_KEY_SIZE, NONCE_SIZE>,
> PartialEq for PingPongTransition<VERIFY_KEY_SIZE, NONCE_SIZE, A>
{
fn eq(&self, other: &Self) -> bool {
self.previous_prepare_state == other.previous_prepare_state
&& self.current_prepare_message == other.current_prepare_message
}
}
impl<const VERIFY_KEY_SIZE: usize, const NONCE_SIZE: usize, A> Encode
for PingPongTransition<VERIFY_KEY_SIZE, NONCE_SIZE, A>
where
A: Aggregator<VERIFY_KEY_SIZE, NONCE_SIZE>,
A::PrepareState: Encode,
{
fn encode(&self, bytes: &mut Vec<u8>) -> Result<(), CodecError> {
self.previous_prepare_state.encode(bytes)?;
self.current_prepare_message.encode(bytes)
}
fn encoded_len(&self) -> Option<usize> {
Some(
self.previous_prepare_state.encoded_len()?
+ self.current_prepare_message.encoded_len()?,
)
}
}
impl<const VERIFY_KEY_SIZE: usize, const NONCE_SIZE: usize, A, PrepareStateDecode>
ParameterizedDecode<PrepareStateDecode> for PingPongTransition<VERIFY_KEY_SIZE, NONCE_SIZE, A>
where
A: Aggregator<VERIFY_KEY_SIZE, NONCE_SIZE>,
A::PrepareState: ParameterizedDecode<PrepareStateDecode> + PartialEq,
A::PrepareMessage: PartialEq,
{
fn decode_with_param(
decoding_param: &PrepareStateDecode,
bytes: &mut std::io::Cursor<&[u8]>,
) -> Result<Self, CodecError> {
let previous_prepare_state = A::PrepareState::decode_with_param(decoding_param, bytes)?;
let current_prepare_message =
A::PrepareMessage::decode_with_param(&previous_prepare_state, bytes)?;
Ok(Self {
previous_prepare_state,
current_prepare_message,
})
}
}
/// Corresponds to the `State` enumeration implicitly defined in [VDAF's Ping-Pong Topology][VDAF].
/// VDAF describes `Start` and `Rejected` states, but the `Start` state is never instantiated in
/// code, and the `Rejected` state is represented as `std::result::Result::Err`, so this enum does
/// not include those variants.
///
/// [VDAF]: https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vdaf-08#section-5.8
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum PingPongState<
const VERIFY_KEY_SIZE: usize,
const NONCE_SIZE: usize,
A: Aggregator<VERIFY_KEY_SIZE, NONCE_SIZE>,
> {
/// Preparation of the report will continue with the enclosed state.
Continued(A::PrepareState),
/// Preparation of the report is finished and has yielded the enclosed output share.
Finished(A::OutputShare),
}
/// Values returned by [`PingPongTopology::leader_continued`] or
/// [`PingPongTopology::helper_continued`].
#[derive(Clone, Debug)]
pub enum PingPongContinuedValue<
const VERIFY_KEY_SIZE: usize,
const NONCE_SIZE: usize,
A: Aggregator<VERIFY_KEY_SIZE, NONCE_SIZE>,
> {
/// The operation resulted in a new state and a message to transmit to the peer.
WithMessage {
/// The transition that will be executed. Call `PingPongTransition::evaluate` to obtain the
/// next
/// [`PingPongState`] and a [`PingPongMessage`] to transmit to the peer.
transition: PingPongTransition<VERIFY_KEY_SIZE, NONCE_SIZE, A>,
},
/// The operation caused the host to finish preparation of the input share, yielding an output
/// share and no message for the peer.
FinishedNoMessage {
/// The output share which may now be accumulated.
output_share: A::OutputShare,
},
}
/// Extension trait on [`crate::vdaf::Aggregator`] which adds the [VDAF Ping-Pong Topology][VDAF].
///
/// [VDAF]: https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vdaf-08#section-5.8
pub trait PingPongTopology<const VERIFY_KEY_SIZE: usize, const NONCE_SIZE: usize>:
Aggregator<VERIFY_KEY_SIZE, NONCE_SIZE>
{
/// Specialization of [`PingPongState`] for this VDAF.
type State;
/// Specialization of [`PingPongContinuedValue`] for this VDAF.
type ContinuedValue;
/// Specializaton of [`PingPongTransition`] for this VDAF.
type Transition;
/// Initialize leader state using the leader's input share. Corresponds to
/// `ping_pong_leader_init` in [VDAF].
///
/// If successful, the returned [`PingPongMessage`] (which will always be
/// `PingPongMessage::Initialize`) should be transmitted to the helper. The returned
/// [`PingPongState`] (which will always be `PingPongState::Continued`) should be used by the
/// leader along with the next [`PingPongMessage`] received from the helper as input to
/// [`Self::leader_continued`] to advance to the next round.
///
/// [VDAF]: https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vdaf-08#section-5.8
fn leader_initialized(
&self,
verify_key: &[u8; VERIFY_KEY_SIZE],
agg_param: &Self::AggregationParam,
nonce: &[u8; NONCE_SIZE],
public_share: &Self::PublicShare,
input_share: &Self::InputShare,
) -> Result<(Self::State, PingPongMessage), PingPongError>;
/// Initialize helper state using the helper's input share and the leader's first prepare share.
/// Corresponds to `ping_pong_helper_init` in [VDAF].
///
/// If successful, the returned [`PingPongTransition`] should be evaluated, yielding a
/// [`PingPongMessage`], which should be transmitted to the leader, and a [`PingPongState`].
///
/// If the state is `PingPongState::Continued`, then it should be used by the helper along with
/// the next `PingPongMessage` received from the leader as input to [`Self::helper_continued`]
/// to advance to the next round. The helper may store the `PingPongTransition` between rounds
/// of preparation instead of the `PingPongState` and `PingPongMessage`.
///
/// If the state is `PingPongState::Finished`, then preparation is finished and the output share
/// may be accumulated.
///
/// # Errors
///
/// `inbound` must be `PingPongMessage::Initialize` or the function will fail.
///
/// [VDAF]: https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vdaf-08#section-5.8
fn helper_initialized(
&self,
verify_key: &[u8; VERIFY_KEY_SIZE],
agg_param: &Self::AggregationParam,
nonce: &[u8; NONCE_SIZE],
public_share: &Self::PublicShare,
input_share: &Self::InputShare,
inbound: &PingPongMessage,
) -> Result<PingPongTransition<VERIFY_KEY_SIZE, NONCE_SIZE, Self>, PingPongError>;
/// Continue preparation based on the leader's current state and an incoming [`PingPongMessage`]
/// from the helper. Corresponds to `ping_pong_leader_continued` in [VDAF].
///
/// If successful, the returned [`PingPongContinuedValue`] will either be:
///
/// - `PingPongContinuedValue::WithMessage { transition }`: `transition` should be evaluated,
/// yielding a [`PingPongMessage`], which should be transmitted to the helper, and a
/// [`PingPongState`].
///
/// If the state is `PingPongState::Continued`, then it should be used by the leader along
/// with the next `PingPongMessage` received from the helper as input to
/// [`Self::leader_continued`] to advance to the next round. The leader may store the
/// `PingPongTransition` between rounds of preparation instead of of the `PingPongState` and
/// `PingPongMessage`.
///
/// If the state is `PingPongState::Finished`, then preparation is finished and the output
/// share may be accumulated.
///
/// - `PingPongContinuedValue::FinishedNoMessage`: preparation is finished and the output share
/// may be accumulated. No message needs to be sent to the helper.
///
/// # Errors
///
/// `leader_state` must be `PingPongState::Continued` or the function will fail.
///
/// `inbound` must not be `PingPongMessage::Initialize` or the function will fail.
///
/// [VDAF]: https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vdaf-08#section-5.8
fn leader_continued(
&self,
leader_state: Self::State,
agg_param: &Self::AggregationParam,
inbound: &PingPongMessage,
) -> Result<Self::ContinuedValue, PingPongError>;
/// PingPongContinue preparation based on the helper's current state and an incoming
/// [`PingPongMessage`] from the leader. Corresponds to `ping_pong_helper_contnued` in [VDAF].
///
/// If successful, the returned [`PingPongContinuedValue`] will either be:
///
/// - `PingPongContinuedValue::WithMessage { transition }`: `transition` should be evaluated,
/// yielding a [`PingPongMessage`], which should be transmitted to the leader, and a
/// [`PingPongState`].
///
/// If the state is `PingPongState::Continued`, then it should be used by the helper along
/// with the next `PingPongMessage` received from the leader as input to
/// [`Self::helper_continued`] to advance to the next round. The helper may store the
/// `PingPongTransition` between rounds of preparation instead of the `PingPongState` and
/// `PingPongMessage`.
///
/// If the state is `PingPongState::Finished`, then preparation is finished and the output
/// share may be accumulated.
///
/// - `PingPongContinuedValue::FinishedNoMessage`: preparation is finished and the output share
/// may be accumulated. No message needs to be sent to the leader.
///
/// # Errors
///
/// `helper_state` must be `PingPongState::Continued` or the function will fail.
///
/// `inbound` must not be `PingPongMessage::Initialize` or the function will fail.
///
/// [VDAF]: https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vdaf-08#section-5.8
fn helper_continued(
&self,
helper_state: Self::State,
agg_param: &Self::AggregationParam,
inbound: &PingPongMessage,
) -> Result<Self::ContinuedValue, PingPongError>;
}
/// Private interfaces for implementing ping-pong
trait PingPongTopologyPrivate<const VERIFY_KEY_SIZE: usize, const NONCE_SIZE: usize>:
PingPongTopology<VERIFY_KEY_SIZE, NONCE_SIZE>
{
fn continued(
&self,
is_leader: bool,
host_state: Self::State,
agg_param: &Self::AggregationParam,
inbound: &PingPongMessage,
) -> Result<Self::ContinuedValue, PingPongError>;
}
impl<const VERIFY_KEY_SIZE: usize, const NONCE_SIZE: usize, A>
PingPongTopology<VERIFY_KEY_SIZE, NONCE_SIZE> for A
where
A: Aggregator<VERIFY_KEY_SIZE, NONCE_SIZE>,
{
type State = PingPongState<VERIFY_KEY_SIZE, NONCE_SIZE, Self>;
type ContinuedValue = PingPongContinuedValue<VERIFY_KEY_SIZE, NONCE_SIZE, Self>;
type Transition = PingPongTransition<VERIFY_KEY_SIZE, NONCE_SIZE, Self>;
fn leader_initialized(
&self,
verify_key: &[u8; VERIFY_KEY_SIZE],
agg_param: &Self::AggregationParam,
nonce: &[u8; NONCE_SIZE],
public_share: &Self::PublicShare,
input_share: &Self::InputShare,
) -> Result<(Self::State, PingPongMessage), PingPongError> {
self.prepare_init(
verify_key,
/* Leader */ 0,
agg_param,
nonce,
public_share,
input_share,
)
.map_err(PingPongError::VdafPrepareInit)
.and_then(|(prep_state, prep_share)| {
Ok((
PingPongState::Continued(prep_state),
PingPongMessage::Initialize {
prep_share: prep_share
.get_encoded()
.map_err(PingPongError::CodecPrepShare)?,
},
))
})
}
fn helper_initialized(
&self,
verify_key: &[u8; VERIFY_KEY_SIZE],
agg_param: &Self::AggregationParam,
nonce: &[u8; NONCE_SIZE],
public_share: &Self::PublicShare,
input_share: &Self::InputShare,
inbound: &PingPongMessage,
) -> Result<Self::Transition, PingPongError> {
let (prep_state, prep_share) = self
.prepare_init(
verify_key,
/* Helper */ 1,
agg_param,
nonce,
public_share,
input_share,
)
.map_err(PingPongError::VdafPrepareInit)?;
let inbound_prep_share = if let PingPongMessage::Initialize { prep_share } = inbound {
Self::PrepareShare::get_decoded_with_param(&prep_state, prep_share)
.map_err(PingPongError::CodecPrepShare)?
} else {
return Err(PingPongError::PeerMessageMismatch {
found: inbound.variant(),
expected: "initialize",
});
};
let current_prepare_message = self
.prepare_shares_to_prepare_message(agg_param, [inbound_prep_share, prep_share])
.map_err(PingPongError::VdafPrepareSharesToPrepareMessage)?;
Ok(PingPongTransition {
previous_prepare_state: prep_state,
current_prepare_message,
})
}
fn leader_continued(
&self,
leader_state: Self::State,
agg_param: &Self::AggregationParam,
inbound: &PingPongMessage,
) -> Result<Self::ContinuedValue, PingPongError> {
self.continued(true, leader_state, agg_param, inbound)
}
fn helper_continued(
&self,
helper_state: Self::State,
agg_param: &Self::AggregationParam,
inbound: &PingPongMessage,
) -> Result<Self::ContinuedValue, PingPongError> {
self.continued(false, helper_state, agg_param, inbound)
}
}
impl<const VERIFY_KEY_SIZE: usize, const NONCE_SIZE: usize, A>
PingPongTopologyPrivate<VERIFY_KEY_SIZE, NONCE_SIZE> for A
where
A: Aggregator<VERIFY_KEY_SIZE, NONCE_SIZE>,
{
fn continued(
&self,
is_leader: bool,
host_state: Self::State,
agg_param: &Self::AggregationParam,
inbound: &PingPongMessage,
) -> Result<Self::ContinuedValue, PingPongError> {
let host_prep_state = if let PingPongState::Continued(state) = host_state {
state
} else {
return Err(PingPongError::HostStateMismatch {
found: "finished",
expected: "continue",
});
};
let (prep_msg, next_peer_prep_share) = match inbound {
PingPongMessage::Initialize { .. } => {
return Err(PingPongError::PeerMessageMismatch {
found: inbound.variant(),
expected: "continue",
});
}
PingPongMessage::Continue {
prep_msg,
prep_share,
} => (prep_msg, Some(prep_share)),
PingPongMessage::Finish { prep_msg } => (prep_msg, None),
};
let prep_msg = Self::PrepareMessage::get_decoded_with_param(&host_prep_state, prep_msg)
.map_err(PingPongError::CodecPrepMessage)?;
let host_prep_transition = self
.prepare_next(host_prep_state, prep_msg)
.map_err(PingPongError::VdafPrepareNext)?;
match (host_prep_transition, next_peer_prep_share) {
(
PrepareTransition::Continue(next_prep_state, next_host_prep_share),
Some(next_peer_prep_share),
) => {
let next_peer_prep_share = Self::PrepareShare::get_decoded_with_param(
&next_prep_state,
next_peer_prep_share,
)
.map_err(PingPongError::CodecPrepShare)?;
let mut prep_shares = [next_peer_prep_share, next_host_prep_share];
if is_leader {
prep_shares.reverse();
}
let current_prepare_message = self
.prepare_shares_to_prepare_message(agg_param, prep_shares)
.map_err(PingPongError::VdafPrepareSharesToPrepareMessage)?;
Ok(PingPongContinuedValue::WithMessage {
transition: PingPongTransition {
previous_prepare_state: next_prep_state,
current_prepare_message,
},
})
}
(PrepareTransition::Finish(output_share), None) => {
Ok(PingPongContinuedValue::FinishedNoMessage { output_share })
}
(PrepareTransition::Continue(_, _), None) => Err(PingPongError::PeerMessageMismatch {
found: inbound.variant(),
expected: "continue",
}),
(PrepareTransition::Finish(_), Some(_)) => Err(PingPongError::PeerMessageMismatch {
found: inbound.variant(),
expected: "finish",
}),
}
}
}
#[cfg(test)]
mod tests {
use std::io::Cursor;
use super::*;
use crate::vdaf::dummy;
use assert_matches::assert_matches;
#[test]
fn ping_pong_one_round() {
let verify_key = [];
let aggregation_param = dummy::AggregationParam(0);
let nonce = [0; 16];
#[allow(clippy::let_unit_value)]
let public_share = ();
let input_share = dummy::InputShare(0);
let leader = dummy::Vdaf::new(1);
let helper = dummy::Vdaf::new(1);
// Leader inits into round 0
let (leader_state, leader_message) = leader
.leader_initialized(
&verify_key,
&aggregation_param,
&nonce,
&public_share,
&input_share,
)
.unwrap();
// Helper inits into round 1
let (helper_state, helper_message) = helper
.helper_initialized(
&verify_key,
&aggregation_param,
&nonce,
&public_share,
&input_share,
&leader_message,
)
.unwrap()
.evaluate(&helper)
.unwrap();
// 1 round VDAF: helper should finish immediately.
assert_matches!(helper_state, PingPongState::Finished(_));
let leader_state = leader
.leader_continued(leader_state, &aggregation_param, &helper_message)
.unwrap();
// 1 round VDAF: leader should finish when it gets helper message and emit no message.
assert_matches!(
leader_state,
PingPongContinuedValue::FinishedNoMessage { .. }
);
}
#[test]
fn ping_pong_two_rounds() {
let verify_key = [];
let aggregation_param = dummy::AggregationParam(0);
let nonce = [0; 16];
#[allow(clippy::let_unit_value)]
let public_share = ();
let input_share = dummy::InputShare(0);
let leader = dummy::Vdaf::new(2);
let helper = dummy::Vdaf::new(2);
// Leader inits into round 0
let (leader_state, leader_message) = leader
.leader_initialized(
&verify_key,
&aggregation_param,
&nonce,
&public_share,
&input_share,
)
.unwrap();
// Helper inits into round 1
let (helper_state, helper_message) = helper
.helper_initialized(
&verify_key,
&aggregation_param,
&nonce,
&public_share,
&input_share,
&leader_message,
)
.unwrap()
.evaluate(&helper)
.unwrap();
// 2 round VDAF, round 1: helper should continue.
assert_matches!(helper_state, PingPongState::Continued(_));
let leader_state = leader
.leader_continued(leader_state, &aggregation_param, &helper_message)
.unwrap();
// 2 round VDAF, round 1: leader should finish and emit a finish message.
let leader_message = assert_matches!(
leader_state, PingPongContinuedValue::WithMessage { transition } => {
let (state, message) = transition.evaluate(&leader).unwrap();
assert_matches!(state, PingPongState::Finished(_));
message
}
);
let helper_state = helper
.helper_continued(helper_state, &aggregation_param, &leader_message)
.unwrap();
// 2 round vdaf, round 1: helper should finish and emit no message.
assert_matches!(
helper_state,
PingPongContinuedValue::FinishedNoMessage { .. }
);
}
#[test]
fn ping_pong_three_rounds() {
let verify_key = [];
let aggregation_param = dummy::AggregationParam(0);
let nonce = [0; 16];
#[allow(clippy::let_unit_value)]
let public_share = ();
let input_share = dummy::InputShare(0);
let leader = dummy::Vdaf::new(3);
let helper = dummy::Vdaf::new(3);
// Leader inits into round 0
let (leader_state, leader_message) = leader
.leader_initialized(
&verify_key,
&aggregation_param,
&nonce,
&public_share,
&input_share,
)
.unwrap();
// Helper inits into round 1
let (helper_state, helper_message) = helper
.helper_initialized(
&verify_key,
&aggregation_param,
&nonce,
&public_share,
&input_share,
&leader_message,
)
.unwrap()
.evaluate(&helper)
.unwrap();
// 3 round VDAF, round 1: helper should continue.
assert_matches!(helper_state, PingPongState::Continued(_));
let leader_state = leader
.leader_continued(leader_state, &aggregation_param, &helper_message)
.unwrap();
// 3 round VDAF, round 1: leader should continue and emit a continue message.
let (leader_state, leader_message) = assert_matches!(
leader_state, PingPongContinuedValue::WithMessage { transition } => {
let (state, message) = transition.evaluate(&leader).unwrap();
assert_matches!(state, PingPongState::Continued(_));
(state, message)
}
);
let helper_state = helper
.helper_continued(helper_state, &aggregation_param, &leader_message)
.unwrap();
// 3 round vdaf, round 2: helper should finish and emit a finish message.
let helper_message = assert_matches!(
helper_state, PingPongContinuedValue::WithMessage { transition } => {
let (state, message) = transition.evaluate(&helper).unwrap();
assert_matches!(state, PingPongState::Finished(_));
message
}
);
let leader_state = leader
.leader_continued(leader_state, &aggregation_param, &helper_message)
.unwrap();
// 3 round VDAF, round 2: leader should finish and emit no message.
assert_matches!(
leader_state,
PingPongContinuedValue::FinishedNoMessage { .. }
);
}
#[test]
fn roundtrip_message() {
let messages = [
(
PingPongMessage::Initialize {
prep_share: Vec::from("prepare share"),
},
concat!(
"00", // enum discriminant
concat!(
// prep_share
"0000000d", // length
"70726570617265207368617265", // contents
),
),
),
(
PingPongMessage::Continue {
prep_msg: Vec::from("prepare message"),
prep_share: Vec::from("prepare share"),
},
concat!(
"01", // enum discriminant
concat!(
// prep_msg
"0000000f", // length
"70726570617265206d657373616765", // contents
),
concat!(
// prep_share
"0000000d", // length
"70726570617265207368617265", // contents
),
),
),
(
PingPongMessage::Finish {
prep_msg: Vec::from("prepare message"),
},
concat!(
"02", // enum discriminant
concat!(
// prep_msg
"0000000f", // length
"70726570617265206d657373616765", // contents
),
),
),
];
for (message, expected_hex) in messages {
let mut encoded_val = Vec::new();
message.encode(&mut encoded_val).unwrap();
let got_hex = hex::encode(&encoded_val);
assert_eq!(
&got_hex, expected_hex,
"Couldn't roundtrip (encoded value differs): {message:?}",
);
let decoded_val = PingPongMessage::decode(&mut Cursor::new(&encoded_val)).unwrap();
assert_eq!(
decoded_val, message,
"Couldn't roundtrip (decoded value differs): {message:?}"
);
assert_eq!(
encoded_val.len(),
message.encoded_len().expect("No encoded length hint"),
"Encoded length hint is incorrect: {message:?}"
)
}
}
#[test]
fn roundtrip_transition() {
// VDAF implementations have tests for encoding/decoding their respective PrepareShare and
// PrepareMessage types, so we test here using the dummy VDAF.
let transition = PingPongTransition::<0, 16, dummy::Vdaf> {
previous_prepare_state: dummy::PrepareState::default(),
current_prepare_message: (),
};
let encoded = transition.get_encoded().unwrap();
let hex_encoded = hex::encode(&encoded);
assert_eq!(
hex_encoded,
concat!(
concat!(
// previous_prepare_state
"00", // input_share
"00000000", // current_round
),
// current_prepare_message (0 length encoding)
)
);
let decoded = PingPongTransition::get_decoded_with_param(&(), &encoded).unwrap();
assert_eq!(transition, decoded);
assert_eq!(
encoded.len(),
transition.encoded_len().expect("No encoded length hint"),
);
}
}
|