1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
use core::{cell::RefCell, fmt, mem};
use alloc::{collections::BTreeMap, rc::Rc, vec, vec::Vec};
use crate::{
dfa::{automaton::Automaton, dense, DEAD},
util::{
alphabet,
primitives::{PatternID, StateID},
},
};
/// An implementation of Hopcroft's algorithm for minimizing DFAs.
///
/// The algorithm implemented here is mostly taken from Wikipedia:
/// https://en.wikipedia.org/wiki/DFA_minimization#Hopcroft's_algorithm
///
/// This code has had some light optimization attention paid to it,
/// particularly in the form of reducing allocation as much as possible.
/// However, it is still generally slow. Future optimization work should
/// probably focus on the bigger picture rather than micro-optimizations. For
/// example:
///
/// 1. Figure out how to more intelligently create initial partitions. That is,
/// Hopcroft's algorithm starts by creating two partitions of DFA states
/// that are known to NOT be equivalent: match states and non-match states.
/// The algorithm proceeds by progressively refining these partitions into
/// smaller partitions. If we could start with more partitions, then we
/// could reduce the amount of work that Hopcroft's algorithm needs to do.
/// 2. For every partition that we visit, we find all incoming transitions to
/// every state in the partition for *every* element in the alphabet. (This
/// is why using byte classes can significantly decrease minimization times,
/// since byte classes shrink the alphabet.) This is quite costly and there
/// is perhaps some redundant work being performed depending on the specific
/// states in the set. For example, we might be able to only visit some
/// elements of the alphabet based on the transitions.
/// 3. Move parts of minimization into determinization. If minimization has
/// fewer states to deal with, then it should run faster. A prime example
/// of this might be large Unicode classes, which are generated in way that
/// can create a lot of redundant states. (Some work has been done on this
/// point during NFA compilation via the algorithm described in the
/// "Incremental Construction of MinimalAcyclic Finite-State Automata"
/// paper.)
pub(crate) struct Minimizer<'a> {
dfa: &'a mut dense::OwnedDFA,
in_transitions: Vec<Vec<Vec<StateID>>>,
partitions: Vec<StateSet>,
waiting: Vec<StateSet>,
}
impl<'a> fmt::Debug for Minimizer<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Minimizer")
.field("dfa", &self.dfa)
.field("in_transitions", &self.in_transitions)
.field("partitions", &self.partitions)
.field("waiting", &self.waiting)
.finish()
}
}
/// A set of states. A state set makes up a single partition in Hopcroft's
/// algorithm.
///
/// It is represented by an ordered set of state identifiers. We use shared
/// ownership so that a single state set can be in both the set of partitions
/// and in the set of waiting sets simultaneously without an additional
/// allocation. Generally, once a state set is built, it becomes immutable.
///
/// We use this representation because it avoids the overhead of more
/// traditional set data structures (HashSet/BTreeSet), and also because
/// computing intersection/subtraction on this representation is especially
/// fast.
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
struct StateSet {
ids: Rc<RefCell<Vec<StateID>>>,
}
impl<'a> Minimizer<'a> {
pub fn new(dfa: &'a mut dense::OwnedDFA) -> Minimizer<'a> {
let in_transitions = Minimizer::incoming_transitions(dfa);
let partitions = Minimizer::initial_partitions(dfa);
let waiting = partitions.clone();
Minimizer { dfa, in_transitions, partitions, waiting }
}
pub fn run(mut self) {
let stride2 = self.dfa.stride2();
let as_state_id = |index: usize| -> StateID {
StateID::new(index << stride2).unwrap()
};
let as_index = |id: StateID| -> usize { id.as_usize() >> stride2 };
let mut incoming = StateSet::empty();
let mut scratch1 = StateSet::empty();
let mut scratch2 = StateSet::empty();
let mut newparts = vec![];
// This loop is basically Hopcroft's algorithm. Everything else is just
// shuffling data around to fit our representation.
while let Some(set) = self.waiting.pop() {
for b in self.dfa.byte_classes().iter() {
self.find_incoming_to(b, &set, &mut incoming);
// If incoming is empty, then the intersection with any other
// set must also be empty. So 'newparts' just ends up being
// 'self.partitions'. So there's no need to go through the loop
// below.
//
// This actually turns out to be rather large optimization. On
// the order of making minimization 4-5x faster. It's likely
// that the vast majority of all states have very few incoming
// transitions.
if incoming.is_empty() {
continue;
}
for p in 0..self.partitions.len() {
self.partitions[p].intersection(&incoming, &mut scratch1);
if scratch1.is_empty() {
newparts.push(self.partitions[p].clone());
continue;
}
self.partitions[p].subtract(&incoming, &mut scratch2);
if scratch2.is_empty() {
newparts.push(self.partitions[p].clone());
continue;
}
let (x, y) =
(scratch1.deep_clone(), scratch2.deep_clone());
newparts.push(x.clone());
newparts.push(y.clone());
match self.find_waiting(&self.partitions[p]) {
Some(i) => {
self.waiting[i] = x;
self.waiting.push(y);
}
None => {
if x.len() <= y.len() {
self.waiting.push(x);
} else {
self.waiting.push(y);
}
}
}
}
newparts = mem::replace(&mut self.partitions, newparts);
newparts.clear();
}
}
// At this point, we now have a minimal partitioning of states, where
// each partition is an equivalence class of DFA states. Now we need to
// use this partitioning to update the DFA to only contain one state for
// each partition.
// Create a map from DFA state ID to the representative ID of the
// equivalence class to which it belongs. The representative ID of an
// equivalence class of states is the minimum ID in that class.
let mut state_to_part = vec![DEAD; self.dfa.state_len()];
for p in &self.partitions {
p.iter(|id| state_to_part[as_index(id)] = p.min());
}
// Generate a new contiguous sequence of IDs for minimal states, and
// create a map from equivalence IDs to the new IDs. Thus, the new
// minimal ID of *any* state in the unminimized DFA can be obtained
// with minimals_ids[state_to_part[old_id]].
let mut minimal_ids = vec![DEAD; self.dfa.state_len()];
let mut new_index = 0;
for state in self.dfa.states() {
if state_to_part[as_index(state.id())] == state.id() {
minimal_ids[as_index(state.id())] = as_state_id(new_index);
new_index += 1;
}
}
// The total number of states in the minimal DFA.
let minimal_count = new_index;
// Convenience function for remapping state IDs. This takes an old ID,
// looks up its Hopcroft partition and then maps that to the new ID
// range.
let remap = |old| minimal_ids[as_index(state_to_part[as_index(old)])];
// Re-map this DFA in place such that the only states remaining
// correspond to the representative states of every equivalence class.
for id in (0..self.dfa.state_len()).map(as_state_id) {
// If this state isn't a representative for an equivalence class,
// then we skip it since it won't appear in the minimal DFA.
if state_to_part[as_index(id)] != id {
continue;
}
self.dfa.remap_state(id, remap);
self.dfa.swap_states(id, minimal_ids[as_index(id)]);
}
// Trim off all unused states from the pre-minimized DFA. This
// represents all states that were merged into a non-singleton
// equivalence class of states, and appeared after the first state
// in each such class. (Because the state with the smallest ID in each
// equivalence class is its representative ID.)
self.dfa.truncate_states(minimal_count);
// Update the new start states, which is now just the minimal ID of
// whatever state the old start state was collapsed into. Also, we
// collect everything before-hand to work around the borrow checker.
// We're already allocating so much that this is probably fine. If this
// turns out to be costly, then I guess add a `starts_mut` iterator.
let starts: Vec<_> = self.dfa.starts().collect();
for (old_start_id, anchored, start_type) in starts {
self.dfa.set_start_state(
anchored,
start_type,
remap(old_start_id),
);
}
// Update the match state pattern ID list for multi-regexes. All we
// need to do is remap the match state IDs. The pattern ID lists are
// always the same as they were since match states with distinct
// pattern ID lists are always considered distinct states.
let mut pmap = BTreeMap::new();
for (match_id, pattern_ids) in self.dfa.pattern_map() {
let new_id = remap(match_id);
pmap.insert(new_id, pattern_ids);
}
// This unwrap is OK because minimization never increases the number of
// match states or patterns in those match states. Since minimization
// runs after the pattern map has already been set at least once, we
// know that our match states cannot error.
self.dfa.set_pattern_map(&pmap).unwrap();
// In order to update the ID of the maximum match state, we need to
// find the maximum ID among all of the match states in the minimized
// DFA. This is not necessarily the new ID of the unminimized maximum
// match state, since that could have been collapsed with a much
// earlier match state. Therefore, to find the new max match state,
// we iterate over all previous match states, find their corresponding
// new minimal ID, and take the maximum of those.
let old = self.dfa.special().clone();
let new = self.dfa.special_mut();
// ... but only remap if we had match states.
if old.matches() {
new.min_match = StateID::MAX;
new.max_match = StateID::ZERO;
for i in as_index(old.min_match)..=as_index(old.max_match) {
let new_id = remap(as_state_id(i));
if new_id < new.min_match {
new.min_match = new_id;
}
if new_id > new.max_match {
new.max_match = new_id;
}
}
}
// ... same, but for start states.
if old.starts() {
new.min_start = StateID::MAX;
new.max_start = StateID::ZERO;
for i in as_index(old.min_start)..=as_index(old.max_start) {
let new_id = remap(as_state_id(i));
if new_id == DEAD {
continue;
}
if new_id < new.min_start {
new.min_start = new_id;
}
if new_id > new.max_start {
new.max_start = new_id;
}
}
if new.max_start == DEAD {
new.min_start = DEAD;
}
}
new.quit_id = remap(new.quit_id);
new.set_max();
}
fn find_waiting(&self, set: &StateSet) -> Option<usize> {
self.waiting.iter().position(|s| s == set)
}
fn find_incoming_to(
&self,
b: alphabet::Unit,
set: &StateSet,
incoming: &mut StateSet,
) {
incoming.clear();
set.iter(|id| {
for &inid in
&self.in_transitions[self.dfa.to_index(id)][b.as_usize()]
{
incoming.add(inid);
}
});
incoming.canonicalize();
}
fn initial_partitions(dfa: &dense::OwnedDFA) -> Vec<StateSet> {
// For match states, we know that two match states with different
// pattern ID lists will *always* be distinct, so we can partition them
// initially based on that.
let mut matching: BTreeMap<Vec<PatternID>, StateSet> = BTreeMap::new();
let mut is_quit = StateSet::empty();
let mut no_match = StateSet::empty();
for state in dfa.states() {
if dfa.is_match_state(state.id()) {
let mut pids = vec![];
for i in 0..dfa.match_len(state.id()) {
pids.push(dfa.match_pattern(state.id(), i));
}
matching
.entry(pids)
.or_insert(StateSet::empty())
.add(state.id());
} else if dfa.is_quit_state(state.id()) {
is_quit.add(state.id());
} else {
no_match.add(state.id());
}
}
let mut sets: Vec<StateSet> =
matching.into_iter().map(|(_, set)| set).collect();
sets.push(no_match);
sets.push(is_quit);
sets
}
fn incoming_transitions(dfa: &dense::OwnedDFA) -> Vec<Vec<Vec<StateID>>> {
let mut incoming = vec![];
for _ in dfa.states() {
incoming.push(vec![vec![]; dfa.alphabet_len()]);
}
for state in dfa.states() {
for (b, next) in state.transitions() {
incoming[dfa.to_index(next)][b.as_usize()].push(state.id());
}
}
incoming
}
}
impl StateSet {
fn empty() -> StateSet {
StateSet { ids: Rc::new(RefCell::new(vec![])) }
}
fn add(&mut self, id: StateID) {
self.ids.borrow_mut().push(id);
}
fn min(&self) -> StateID {
self.ids.borrow()[0]
}
fn canonicalize(&mut self) {
self.ids.borrow_mut().sort();
self.ids.borrow_mut().dedup();
}
fn clear(&mut self) {
self.ids.borrow_mut().clear();
}
fn len(&self) -> usize {
self.ids.borrow().len()
}
fn is_empty(&self) -> bool {
self.len() == 0
}
fn deep_clone(&self) -> StateSet {
let ids = self.ids.borrow().iter().cloned().collect();
StateSet { ids: Rc::new(RefCell::new(ids)) }
}
fn iter<F: FnMut(StateID)>(&self, mut f: F) {
for &id in self.ids.borrow().iter() {
f(id);
}
}
fn intersection(&self, other: &StateSet, dest: &mut StateSet) {
dest.clear();
if self.is_empty() || other.is_empty() {
return;
}
let (seta, setb) = (self.ids.borrow(), other.ids.borrow());
let (mut ita, mut itb) = (seta.iter().cloned(), setb.iter().cloned());
let (mut a, mut b) = (ita.next().unwrap(), itb.next().unwrap());
loop {
if a == b {
dest.add(a);
a = match ita.next() {
None => break,
Some(a) => a,
};
b = match itb.next() {
None => break,
Some(b) => b,
};
} else if a < b {
a = match ita.next() {
None => break,
Some(a) => a,
};
} else {
b = match itb.next() {
None => break,
Some(b) => b,
};
}
}
}
fn subtract(&self, other: &StateSet, dest: &mut StateSet) {
dest.clear();
if self.is_empty() || other.is_empty() {
self.iter(|s| dest.add(s));
return;
}
let (seta, setb) = (self.ids.borrow(), other.ids.borrow());
let (mut ita, mut itb) = (seta.iter().cloned(), setb.iter().cloned());
let (mut a, mut b) = (ita.next().unwrap(), itb.next().unwrap());
loop {
if a == b {
a = match ita.next() {
None => break,
Some(a) => a,
};
b = match itb.next() {
None => {
dest.add(a);
break;
}
Some(b) => b,
};
} else if a < b {
dest.add(a);
a = match ita.next() {
None => break,
Some(a) => a,
};
} else {
b = match itb.next() {
None => {
dest.add(a);
break;
}
Some(b) => b,
};
}
}
for a in ita {
dest.add(a);
}
}
}
|