1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
|
/*!
A lazy DFA backed `Regex`.
This module provides a [`Regex`] backed by a lazy DFA. A `Regex` implements
convenience routines you might have come to expect, such as finding a match
and iterating over all non-overlapping matches. This `Regex` type is limited
in its capabilities to what a lazy DFA can provide. Therefore, APIs involving
capturing groups, for example, are not provided.
Internally, a `Regex` is composed of two DFAs. One is a "forward" DFA that
finds the end offset of a match, where as the other is a "reverse" DFA that
find the start offset of a match.
See the [parent module](crate::hybrid) for examples.
*/
use crate::{
hybrid::{
dfa::{self, DFA},
error::BuildError,
},
nfa::thompson,
util::{
iter,
search::{Anchored, Input, Match, MatchError, MatchKind},
},
};
/// A regular expression that uses hybrid NFA/DFAs (also called "lazy DFAs")
/// for searching.
///
/// A regular expression is comprised of two lazy DFAs, a "forward" DFA and a
/// "reverse" DFA. The forward DFA is responsible for detecting the end of
/// a match while the reverse DFA is responsible for detecting the start
/// of a match. Thus, in order to find the bounds of any given match, a
/// forward search must first be run followed by a reverse search. A match
/// found by the forward DFA guarantees that the reverse DFA will also find
/// a match.
///
/// # Fallibility
///
/// Most of the search routines defined on this type will _panic_ when the
/// underlying search fails. This might be because the DFA gave up because it
/// saw a quit byte, whether configured explicitly or via heuristic Unicode
/// word boundary support, although neither are enabled by default. It might
/// also fail if the underlying DFA determines it isn't making effective use of
/// the cache (which also never happens by default). Or it might fail because
/// an invalid `Input` configuration is given, for example, with an unsupported
/// [`Anchored`] mode.
///
/// If you need to handle these error cases instead of allowing them to trigger
/// a panic, then the lower level [`Regex::try_search`] provides a fallible API
/// that never panics.
///
/// # Example
///
/// This example shows how to cause a search to terminate if it sees a
/// `\n` byte, and handle the error returned. This could be useful if, for
/// example, you wanted to prevent a user supplied pattern from matching
/// across a line boundary.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::{dfa, regex::Regex}, Input, MatchError};
///
/// let re = Regex::builder()
/// .dfa(dfa::Config::new().quit(b'\n', true))
/// .build(r"foo\p{any}+bar")?;
/// let mut cache = re.create_cache();
///
/// let input = Input::new("foo\nbar");
/// // Normally this would produce a match, since \p{any} contains '\n'.
/// // But since we instructed the automaton to enter a quit state if a
/// // '\n' is observed, this produces a match error instead.
/// let expected = MatchError::quit(b'\n', 3);
/// let got = re.try_search(&mut cache, &input).unwrap_err();
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Debug)]
pub struct Regex {
/// The forward lazy DFA. This can only find the end of a match.
forward: DFA,
/// The reverse lazy DFA. This can only find the start of a match.
///
/// This is built with 'all' match semantics (instead of leftmost-first)
/// so that it always finds the longest possible match (which corresponds
/// to the leftmost starting position). It is also compiled as an anchored
/// matcher and has 'starts_for_each_pattern' enabled. Including starting
/// states for each pattern is necessary to ensure that we only look for
/// matches of a pattern that matched in the forward direction. Otherwise,
/// we might wind up finding the "leftmost" starting position of a totally
/// different pattern!
reverse: DFA,
}
/// Convenience routines for regex and cache construction.
impl Regex {
/// Parse the given regular expression using the default configuration and
/// return the corresponding regex.
///
/// If you want a non-default configuration, then use the [`Builder`] to
/// set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{hybrid::regex::Regex, Match};
///
/// let re = Regex::new("foo[0-9]+bar")?;
/// let mut cache = re.create_cache();
/// assert_eq!(
/// Some(Match::must(0, 3..14)),
/// re.find(&mut cache, "zzzfoo12345barzzz"),
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new(pattern: &str) -> Result<Regex, BuildError> {
Regex::builder().build(pattern)
}
/// Like `new`, but parses multiple patterns into a single "multi regex."
/// This similarly uses the default regex configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{hybrid::regex::Regex, Match};
///
/// let re = Regex::new_many(&["[a-z]+", "[0-9]+"])?;
/// let mut cache = re.create_cache();
///
/// let mut it = re.find_iter(&mut cache, "abc 1 foo 4567 0 quux");
/// assert_eq!(Some(Match::must(0, 0..3)), it.next());
/// assert_eq!(Some(Match::must(1, 4..5)), it.next());
/// assert_eq!(Some(Match::must(0, 6..9)), it.next());
/// assert_eq!(Some(Match::must(1, 10..14)), it.next());
/// assert_eq!(Some(Match::must(1, 15..16)), it.next());
/// assert_eq!(Some(Match::must(0, 17..21)), it.next());
/// assert_eq!(None, it.next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new_many<P: AsRef<str>>(
patterns: &[P],
) -> Result<Regex, BuildError> {
Regex::builder().build_many(patterns)
}
/// Return a builder for configuring the construction of a `Regex`.
///
/// This is a convenience routine to avoid needing to import the
/// [`Builder`] type in common cases.
///
/// # Example
///
/// This example shows how to use the builder to disable UTF-8 mode
/// everywhere.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// hybrid::regex::Regex, nfa::thompson, util::syntax, Match,
/// };
///
/// let re = Regex::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let mut cache = re.create_cache();
///
/// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
/// let expected = Some(Match::must(0, 1..9));
/// let got = re.find(&mut cache, haystack);
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn builder() -> Builder {
Builder::new()
}
/// Create a new cache for this `Regex`.
///
/// The cache returned should only be used for searches for this
/// `Regex`. If you want to reuse the cache for another `Regex`, then
/// you must call [`Cache::reset`] with that `Regex` (or, equivalently,
/// [`Regex::reset_cache`]).
pub fn create_cache(&self) -> Cache {
Cache::new(self)
}
/// Reset the given cache such that it can be used for searching with the
/// this `Regex` (and only this `Regex`).
///
/// A cache reset permits reusing memory already allocated in this cache
/// with a different `Regex`.
///
/// Resetting a cache sets its "clear count" to 0. This is relevant if the
/// `Regex` has been configured to "give up" after it has cleared the cache
/// a certain number of times.
///
/// # Example
///
/// This shows how to re-purpose a cache for use with a different `Regex`.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::regex::Regex, Match};
///
/// let re1 = Regex::new(r"\w")?;
/// let re2 = Regex::new(r"\W")?;
///
/// let mut cache = re1.create_cache();
/// assert_eq!(
/// Some(Match::must(0, 0..2)),
/// re1.find(&mut cache, "Δ"),
/// );
///
/// // Using 'cache' with re2 is not allowed. It may result in panics or
/// // incorrect results. In order to re-purpose the cache, we must reset
/// // it with the Regex we'd like to use it with.
/// //
/// // Similarly, after this reset, using the cache with 're1' is also not
/// // allowed.
/// re2.reset_cache(&mut cache);
/// assert_eq!(
/// Some(Match::must(0, 0..3)),
/// re2.find(&mut cache, "☃"),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn reset_cache(&self, cache: &mut Cache) {
self.forward().reset_cache(&mut cache.forward);
self.reverse().reset_cache(&mut cache.reverse);
}
}
/// Standard infallible search routines for finding and iterating over matches.
impl Regex {
/// Returns true if and only if this regex matches the given haystack.
///
/// This routine may short circuit if it knows that scanning future input
/// will never lead to a different result. In particular, if the underlying
/// DFA enters a match state or a dead state, then this routine will return
/// `true` or `false`, respectively, without inspecting any future input.
///
/// # Panics
///
/// This routine panics if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the lazy DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the lazy DFA quitting.
/// * The configuration of the lazy DFA may also permit it to "give up"
/// on a search if it makes ineffective use of its transition table
/// cache. The default configuration does not enable this by default,
/// although it is typically a good idea to.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search panics, callers cannot know whether a match exists or
/// not.
///
/// Use [`Regex::try_search`] if you want to handle these error conditions.
///
/// # Example
///
/// ```
/// use regex_automata::hybrid::regex::Regex;
///
/// let re = Regex::new("foo[0-9]+bar")?;
/// let mut cache = re.create_cache();
///
/// assert!(re.is_match(&mut cache, "foo12345bar"));
/// assert!(!re.is_match(&mut cache, "foobar"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn is_match<'h, I: Into<Input<'h>>>(
&self,
cache: &mut Cache,
input: I,
) -> bool {
// Not only can we do an "earliest" search, but we can avoid doing a
// reverse scan too.
self.forward()
.try_search_fwd(&mut cache.forward, &input.into().earliest(true))
.unwrap()
.is_some()
}
/// Returns the start and end offset of the leftmost match. If no match
/// exists, then `None` is returned.
///
/// # Panics
///
/// This routine panics if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the lazy DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the lazy DFA quitting.
/// * The configuration of the lazy DFA may also permit it to "give up"
/// on a search if it makes ineffective use of its transition table
/// cache. The default configuration does not enable this by default,
/// although it is typically a good idea to.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search panics, callers cannot know whether a match exists or
/// not.
///
/// Use [`Regex::try_search`] if you want to handle these error conditions.
///
/// # Example
///
/// ```
/// use regex_automata::{Match, hybrid::regex::Regex};
///
/// let re = Regex::new("foo[0-9]+")?;
/// let mut cache = re.create_cache();
/// assert_eq!(
/// Some(Match::must(0, 3..11)),
/// re.find(&mut cache, "zzzfoo12345zzz"),
/// );
///
/// // Even though a match is found after reading the first byte (`a`),
/// // the default leftmost-first match semantics demand that we find the
/// // earliest match that prefers earlier parts of the pattern over latter
/// // parts.
/// let re = Regex::new("abc|a")?;
/// let mut cache = re.create_cache();
/// assert_eq!(Some(Match::must(0, 0..3)), re.find(&mut cache, "abc"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn find<'h, I: Into<Input<'h>>>(
&self,
cache: &mut Cache,
input: I,
) -> Option<Match> {
self.try_search(cache, &input.into()).unwrap()
}
/// Returns an iterator over all non-overlapping leftmost matches in the
/// given bytes. If no match exists, then the iterator yields no elements.
///
/// # Panics
///
/// This routine panics if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the lazy DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the lazy DFA quitting.
/// * The configuration of the lazy DFA may also permit it to "give up"
/// on a search if it makes ineffective use of its transition table
/// cache. The default configuration does not enable this by default,
/// although it is typically a good idea to.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search panics, callers cannot know whether a match exists or
/// not.
///
/// The above conditions also apply to the iterator returned as well. For
/// example, if the lazy DFA gives up or quits during a search using this
/// method, then a panic will occur during iteration.
///
/// Use [`Regex::try_search`] with [`util::iter::Searcher`](iter::Searcher)
/// if you want to handle these error conditions.
///
/// # Example
///
/// ```
/// use regex_automata::{hybrid::regex::Regex, Match};
///
/// let re = Regex::new("foo[0-9]+")?;
/// let mut cache = re.create_cache();
///
/// let text = "foo1 foo12 foo123";
/// let matches: Vec<Match> = re.find_iter(&mut cache, text).collect();
/// assert_eq!(matches, vec![
/// Match::must(0, 0..4),
/// Match::must(0, 5..10),
/// Match::must(0, 11..17),
/// ]);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn find_iter<'r, 'c, 'h, I: Into<Input<'h>>>(
&'r self,
cache: &'c mut Cache,
input: I,
) -> FindMatches<'r, 'c, 'h> {
let it = iter::Searcher::new(input.into());
FindMatches { re: self, cache, it }
}
}
/// Lower level "search" primitives that accept a `&Input` for cheap reuse
/// and return an error if one occurs instead of panicking.
impl Regex {
/// Returns the start and end offset of the leftmost match. If no match
/// exists, then `None` is returned.
///
/// This is like [`Regex::find`] but with two differences:
///
/// 1. It is not generic over `Into<Input>` and instead accepts a
/// `&Input`. This permits reusing the same `Input` for multiple searches
/// without needing to create a new one. This _may_ help with latency.
/// 2. It returns an error if the search could not complete where as
/// [`Regex::find`] will panic.
///
/// # Errors
///
/// This routine errors if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the lazy DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the lazy DFA quitting.
/// * The configuration of the lazy DFA may also permit it to "give up"
/// on a search if it makes ineffective use of its transition table
/// cache. The default configuration does not enable this by default,
/// although it is typically a good idea to.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search returns an error, callers cannot know whether a match
/// exists or not.
#[inline]
pub fn try_search(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<Option<Match>, MatchError> {
let (fcache, rcache) = (&mut cache.forward, &mut cache.reverse);
let end = match self.forward().try_search_fwd(fcache, input)? {
None => return Ok(None),
Some(end) => end,
};
// This special cases an empty match at the beginning of the search. If
// our end matches our start, then since a reverse DFA can't match past
// the start, it must follow that our starting position is also our end
// position. So short circuit and skip the reverse search.
if input.start() == end.offset() {
return Ok(Some(Match::new(
end.pattern(),
end.offset()..end.offset(),
)));
}
// We can also skip the reverse search if we know our search was
// anchored. This occurs either when the input config is anchored or
// when we know the regex itself is anchored. In this case, we know the
// start of the match, if one is found, must be the start of the
// search.
if self.is_anchored(input) {
return Ok(Some(Match::new(
end.pattern(),
input.start()..end.offset(),
)));
}
// N.B. I have tentatively convinced myself that it isn't necessary
// to specify the specific pattern for the reverse search since the
// reverse search will always find the same pattern to match as the
// forward search. But I lack a rigorous proof. Why not just provide
// the pattern anyway? Well, if it is needed, then leaving it out
// gives us a chance to find a witness. (Also, if we don't need to
// specify the pattern, then we don't need to build the reverse DFA
// with 'starts_for_each_pattern' enabled. It doesn't matter too much
// for the lazy DFA, but does make the overall DFA bigger.)
//
// We also need to be careful to disable 'earliest' for the reverse
// search, since it could be enabled for the forward search. In the
// reverse case, to satisfy "leftmost" criteria, we need to match as
// much as we can. We also need to be careful to make the search
// anchored. We don't want the reverse search to report any matches
// other than the one beginning at the end of our forward search.
let revsearch = input
.clone()
.span(input.start()..end.offset())
.anchored(Anchored::Yes)
.earliest(false);
let start = self
.reverse()
.try_search_rev(rcache, &revsearch)?
.expect("reverse search must match if forward search does");
debug_assert_eq!(
start.pattern(),
end.pattern(),
"forward and reverse search must match same pattern",
);
debug_assert!(start.offset() <= end.offset());
Ok(Some(Match::new(end.pattern(), start.offset()..end.offset())))
}
/// Returns true if either the given input specifies an anchored search
/// or if the underlying NFA is always anchored.
fn is_anchored(&self, input: &Input<'_>) -> bool {
match input.get_anchored() {
Anchored::No => {
self.forward().get_nfa().is_always_start_anchored()
}
Anchored::Yes | Anchored::Pattern(_) => true,
}
}
}
/// Non-search APIs for querying information about the regex and setting a
/// prefilter.
impl Regex {
/// Return the underlying lazy DFA responsible for forward matching.
///
/// This is useful for accessing the underlying lazy DFA and using it
/// directly if the situation calls for it.
pub fn forward(&self) -> &DFA {
&self.forward
}
/// Return the underlying lazy DFA responsible for reverse matching.
///
/// This is useful for accessing the underlying lazy DFA and using it
/// directly if the situation calls for it.
pub fn reverse(&self) -> &DFA {
&self.reverse
}
/// Returns the total number of patterns matched by this regex.
///
/// # Example
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::hybrid::regex::Regex;
///
/// let re = Regex::new_many(&[r"[a-z]+", r"[0-9]+", r"\w+"])?;
/// assert_eq!(3, re.pattern_len());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn pattern_len(&self) -> usize {
assert_eq!(self.forward().pattern_len(), self.reverse().pattern_len());
self.forward().pattern_len()
}
}
/// An iterator over all non-overlapping matches for an infallible search.
///
/// The iterator yields a [`Match`] value until no more matches could be found.
/// If the underlying regex engine returns an error, then a panic occurs.
///
/// The lifetime parameters are as follows:
///
/// * `'r` represents the lifetime of the regex object.
/// * `'h` represents the lifetime of the haystack being searched.
/// * `'c` represents the lifetime of the regex cache.
///
/// This iterator can be created with the [`Regex::find_iter`] method.
#[derive(Debug)]
pub struct FindMatches<'r, 'c, 'h> {
re: &'r Regex,
cache: &'c mut Cache,
it: iter::Searcher<'h>,
}
impl<'r, 'c, 'h> Iterator for FindMatches<'r, 'c, 'h> {
type Item = Match;
#[inline]
fn next(&mut self) -> Option<Match> {
let FindMatches { re, ref mut cache, ref mut it } = *self;
it.advance(|input| re.try_search(cache, input))
}
}
/// A cache represents a partially computed forward and reverse DFA.
///
/// A cache is the key component that differentiates a classical DFA and a
/// hybrid NFA/DFA (also called a "lazy DFA"). Where a classical DFA builds a
/// complete transition table that can handle all possible inputs, a hybrid
/// NFA/DFA starts with an empty transition table and builds only the parts
/// required during search. The parts that are built are stored in a cache. For
/// this reason, a cache is a required parameter for nearly every operation on
/// a [`Regex`].
///
/// Caches can be created from their corresponding `Regex` via
/// [`Regex::create_cache`]. A cache can only be used with either the `Regex`
/// that created it, or the `Regex` that was most recently used to reset it
/// with [`Cache::reset`]. Using a cache with any other `Regex` may result in
/// panics or incorrect results.
#[derive(Debug, Clone)]
pub struct Cache {
forward: dfa::Cache,
reverse: dfa::Cache,
}
impl Cache {
/// Create a new cache for the given `Regex`.
///
/// The cache returned should only be used for searches for the given
/// `Regex`. If you want to reuse the cache for another `Regex`, then you
/// must call [`Cache::reset`] with that `Regex`.
pub fn new(re: &Regex) -> Cache {
let forward = dfa::Cache::new(re.forward());
let reverse = dfa::Cache::new(re.reverse());
Cache { forward, reverse }
}
/// Reset this cache such that it can be used for searching with the given
/// `Regex` (and only that `Regex`).
///
/// A cache reset permits reusing memory already allocated in this cache
/// with a different `Regex`.
///
/// Resetting a cache sets its "clear count" to 0. This is relevant if the
/// `Regex` has been configured to "give up" after it has cleared the cache
/// a certain number of times.
///
/// # Example
///
/// This shows how to re-purpose a cache for use with a different `Regex`.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::regex::Regex, Match};
///
/// let re1 = Regex::new(r"\w")?;
/// let re2 = Regex::new(r"\W")?;
///
/// let mut cache = re1.create_cache();
/// assert_eq!(
/// Some(Match::must(0, 0..2)),
/// re1.find(&mut cache, "Δ"),
/// );
///
/// // Using 'cache' with re2 is not allowed. It may result in panics or
/// // incorrect results. In order to re-purpose the cache, we must reset
/// // it with the Regex we'd like to use it with.
/// //
/// // Similarly, after this reset, using the cache with 're1' is also not
/// // allowed.
/// cache.reset(&re2);
/// assert_eq!(
/// Some(Match::must(0, 0..3)),
/// re2.find(&mut cache, "☃"),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn reset(&mut self, re: &Regex) {
self.forward.reset(re.forward());
self.reverse.reset(re.reverse());
}
/// Return a reference to the forward cache.
pub fn forward(&mut self) -> &dfa::Cache {
&self.forward
}
/// Return a reference to the reverse cache.
pub fn reverse(&mut self) -> &dfa::Cache {
&self.reverse
}
/// Return a mutable reference to the forward cache.
///
/// If you need mutable references to both the forward and reverse caches,
/// then use [`Cache::as_parts_mut`].
pub fn forward_mut(&mut self) -> &mut dfa::Cache {
&mut self.forward
}
/// Return a mutable reference to the reverse cache.
///
/// If you need mutable references to both the forward and reverse caches,
/// then use [`Cache::as_parts_mut`].
pub fn reverse_mut(&mut self) -> &mut dfa::Cache {
&mut self.reverse
}
/// Return references to the forward and reverse caches, respectively.
pub fn as_parts(&self) -> (&dfa::Cache, &dfa::Cache) {
(&self.forward, &self.reverse)
}
/// Return mutable references to the forward and reverse caches,
/// respectively.
pub fn as_parts_mut(&mut self) -> (&mut dfa::Cache, &mut dfa::Cache) {
(&mut self.forward, &mut self.reverse)
}
/// Returns the heap memory usage, in bytes, as a sum of the forward and
/// reverse lazy DFA caches.
///
/// This does **not** include the stack size used up by this cache. To
/// compute that, use `std::mem::size_of::<Cache>()`.
pub fn memory_usage(&self) -> usize {
self.forward.memory_usage() + self.reverse.memory_usage()
}
}
/// A builder for a regex based on a hybrid NFA/DFA.
///
/// This builder permits configuring options for the syntax of a pattern, the
/// NFA construction, the lazy DFA construction and finally the regex searching
/// itself. This builder is different from a general purpose regex builder
/// in that it permits fine grain configuration of the construction process.
/// The trade off for this is complexity, and the possibility of setting a
/// configuration that might not make sense. For example, there are two
/// different UTF-8 modes:
///
/// * [`syntax::Config::utf8`](crate::util::syntax::Config::utf8) controls
/// whether the pattern itself can contain sub-expressions that match invalid
/// UTF-8.
/// * [`thompson::Config::utf8`] controls how the regex iterators themselves
/// advance the starting position of the next search when a match with zero
/// length is found.
///
/// Generally speaking, callers will want to either enable all of these or
/// disable all of these.
///
/// Internally, building a regex requires building two hybrid NFA/DFAs,
/// where one is responsible for finding the end of a match and the other is
/// responsible for finding the start of a match. If you only need to detect
/// whether something matched, or only the end of a match, then you should use
/// a [`dfa::Builder`] to construct a single hybrid NFA/DFA, which is cheaper
/// than building two of them.
///
/// # Example
///
/// This example shows how to disable UTF-8 mode in the syntax and the regex
/// itself. This is generally what you want for matching on arbitrary bytes.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// hybrid::regex::Regex, nfa::thompson, util::syntax, Match,
/// };
///
/// let re = Regex::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let mut cache = re.create_cache();
///
/// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
/// let expected = Some(Match::must(0, 1..9));
/// let got = re.find(&mut cache, haystack);
/// assert_eq!(expected, got);
/// // Notice that `(?-u:[^b])` matches invalid UTF-8,
/// // but the subsequent `.*` does not! Disabling UTF-8
/// // on the syntax permits this.
/// assert_eq!(b"foo\xFFarzz", &haystack[got.unwrap().range()]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Builder {
dfa: dfa::Builder,
}
impl Builder {
/// Create a new regex builder with the default configuration.
pub fn new() -> Builder {
Builder { dfa: DFA::builder() }
}
/// Build a regex from the given pattern.
///
/// If there was a problem parsing or compiling the pattern, then an error
/// is returned.
#[cfg(feature = "syntax")]
pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> {
self.build_many(&[pattern])
}
/// Build a regex from the given patterns.
#[cfg(feature = "syntax")]
pub fn build_many<P: AsRef<str>>(
&self,
patterns: &[P],
) -> Result<Regex, BuildError> {
let forward = self.dfa.build_many(patterns)?;
let reverse = self
.dfa
.clone()
.configure(
DFA::config()
.prefilter(None)
.specialize_start_states(false)
.match_kind(MatchKind::All),
)
.thompson(thompson::Config::new().reverse(true))
.build_many(patterns)?;
Ok(self.build_from_dfas(forward, reverse))
}
/// Build a regex from its component forward and reverse hybrid NFA/DFAs.
///
/// This is useful when you've built a forward and reverse lazy DFA
/// separately, and want to combine them into a single regex. Once build,
/// the individual DFAs given can still be accessed via [`Regex::forward`]
/// and [`Regex::reverse`].
///
/// It is important that the reverse lazy DFA be compiled under the
/// following conditions:
///
/// * It should use [`MatchKind::All`] semantics.
/// * It should match in reverse.
/// * Otherwise, its configuration should match the forward DFA.
///
/// If these conditions aren't satisfied, then the behavior of searches is
/// unspecified.
///
/// Note that when using this constructor, no configuration is applied.
/// Since this routine provides the DFAs to the builder, there is no
/// opportunity to apply other configuration options.
///
/// # Example
///
/// This shows how to build individual lazy forward and reverse DFAs, and
/// then combine them into a single `Regex`.
///
/// ```
/// use regex_automata::{
/// hybrid::{dfa::DFA, regex::Regex},
/// nfa::thompson,
/// MatchKind,
/// };
///
/// let fwd = DFA::new(r"foo[0-9]+")?;
/// let rev = DFA::builder()
/// .configure(DFA::config().match_kind(MatchKind::All))
/// .thompson(thompson::Config::new().reverse(true))
/// .build(r"foo[0-9]+")?;
///
/// let re = Regex::builder().build_from_dfas(fwd, rev);
/// let mut cache = re.create_cache();
/// assert_eq!(true, re.is_match(&mut cache, "foo123"));
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn build_from_dfas(&self, forward: DFA, reverse: DFA) -> Regex {
Regex { forward, reverse }
}
/// Set the syntax configuration for this builder using
/// [`syntax::Config`](crate::util::syntax::Config).
///
/// This permits setting things like case insensitivity, Unicode and multi
/// line mode.
#[cfg(feature = "syntax")]
pub fn syntax(
&mut self,
config: crate::util::syntax::Config,
) -> &mut Builder {
self.dfa.syntax(config);
self
}
/// Set the Thompson NFA configuration for this builder using
/// [`nfa::thompson::Config`](thompson::Config).
///
/// This permits setting things like whether additional time should be
/// spent shrinking the size of the NFA.
#[cfg(feature = "syntax")]
pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
self.dfa.thompson(config);
self
}
/// Set the lazy DFA compilation configuration for this builder using
/// [`dfa::Config`](dfa::Config).
///
/// This permits setting things like whether Unicode word boundaries should
/// be heuristically supported or settings how the behavior of the cache.
pub fn dfa(&mut self, config: dfa::Config) -> &mut Builder {
self.dfa.configure(config);
self
}
}
impl Default for Builder {
fn default() -> Builder {
Builder::new()
}
}
|