summaryrefslogtreecommitdiffstats
path: root/third_party/rust/regex-automata/src/meta/strategy.rs
blob: ea6c6ab576fb26add334853e911495f7fc1cb387 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
use core::{
    fmt::Debug,
    panic::{RefUnwindSafe, UnwindSafe},
};

use alloc::sync::Arc;

use regex_syntax::hir::{literal, Hir};

use crate::{
    meta::{
        error::{BuildError, RetryError, RetryFailError, RetryQuadraticError},
        regex::{Cache, RegexInfo},
        reverse_inner, wrappers,
    },
    nfa::thompson::{self, WhichCaptures, NFA},
    util::{
        captures::{Captures, GroupInfo},
        look::LookMatcher,
        prefilter::{self, Prefilter, PrefilterI},
        primitives::{NonMaxUsize, PatternID},
        search::{Anchored, HalfMatch, Input, Match, MatchKind, PatternSet},
    },
};

/// A trait that represents a single meta strategy. Its main utility is in
/// providing a way to do dynamic dispatch over a few choices.
///
/// Why dynamic dispatch? I actually don't have a super compelling reason, and
/// importantly, I have not benchmarked it with the main alternative: an enum.
/// I went with dynamic dispatch initially because the regex engine search code
/// really can't be inlined into caller code in most cases because it's just
/// too big. In other words, it is already expected that every regex search
/// will entail at least the cost of a function call.
///
/// I do wonder whether using enums would result in better codegen overall
/// though. It's a worthwhile experiment to try. Probably the most interesting
/// benchmark to run in such a case would be one with a high match count. That
/// is, a benchmark to test the overall latency of a search call.
pub(super) trait Strategy:
    Debug + Send + Sync + RefUnwindSafe + UnwindSafe + 'static
{
    fn group_info(&self) -> &GroupInfo;

    fn create_cache(&self) -> Cache;

    fn reset_cache(&self, cache: &mut Cache);

    fn is_accelerated(&self) -> bool;

    fn memory_usage(&self) -> usize;

    fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match>;

    fn search_half(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Option<HalfMatch>;

    fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool;

    fn search_slots(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        slots: &mut [Option<NonMaxUsize>],
    ) -> Option<PatternID>;

    fn which_overlapping_matches(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        patset: &mut PatternSet,
    );
}

pub(super) fn new(
    info: &RegexInfo,
    hirs: &[&Hir],
) -> Result<Arc<dyn Strategy>, BuildError> {
    // At this point, we're committed to a regex engine of some kind. So pull
    // out a prefilter if we can, which will feed to each of the constituent
    // regex engines.
    let pre = if info.is_always_anchored_start() {
        // PERF: I'm not sure we necessarily want to do this... We may want to
        // run a prefilter for quickly rejecting in some cases. The problem
        // is that anchored searches overlap quite a bit with the use case
        // of "run a regex on every line to extract data." In that case, the
        // regex always matches, so running a prefilter doesn't really help us
        // there. The main place where a prefilter helps in an anchored search
        // is if the anchored search is not expected to match frequently. That
        // is, the prefilter gives us a way to possibly reject a haystack very
        // quickly.
        //
        // Maybe we should do use a prefilter, but only for longer haystacks?
        // Or maybe we should only use a prefilter when we think it's "fast"?
        //
        // Interestingly, I think we currently lack the infrastructure for
        // disabling a prefilter based on haystack length. That would probably
        // need to be a new 'Input' option. (Interestingly, an 'Input' used to
        // carry a 'Prefilter' with it, but I moved away from that.)
        debug!("skipping literal extraction since regex is anchored");
        None
    } else if let Some(pre) = info.config().get_prefilter() {
        debug!(
            "skipping literal extraction since the caller provided a prefilter"
        );
        Some(pre.clone())
    } else if info.config().get_auto_prefilter() {
        let kind = info.config().get_match_kind();
        let prefixes = crate::util::prefilter::prefixes(kind, hirs);
        // If we can build a full `Strategy` from just the extracted prefixes,
        // then we can short-circuit and avoid building a regex engine at all.
        if let Some(pre) = Pre::from_prefixes(info, &prefixes) {
            debug!(
                "found that the regex can be broken down to a literal \
                 search, avoiding the regex engine entirely",
            );
            return Ok(pre);
        }
        // This now attempts another short-circuit of the regex engine: if we
        // have a huge alternation of just plain literals, then we can just use
        // Aho-Corasick for that and avoid the regex engine entirely.
        //
        // You might think this case would just be handled by
        // `Pre::from_prefixes`, but that technique relies on heuristic literal
        // extraction from the corresponding `Hir`. That works, but part of
        // heuristics limit the size and number of literals returned. This case
        // will specifically handle patterns with very large alternations.
        //
        // One wonders if we should just roll this our heuristic literal
        // extraction, and then I think this case could disappear entirely.
        if let Some(pre) = Pre::from_alternation_literals(info, hirs) {
            debug!(
                "found plain alternation of literals, \
                 avoiding regex engine entirely and using Aho-Corasick"
            );
            return Ok(pre);
        }
        prefixes.literals().and_then(|strings| {
            debug!(
                "creating prefilter from {} literals: {:?}",
                strings.len(),
                strings,
            );
            Prefilter::new(kind, strings)
        })
    } else {
        debug!("skipping literal extraction since prefilters were disabled");
        None
    };
    let mut core = Core::new(info.clone(), pre.clone(), hirs)?;
    // Now that we have our core regex engines built, there are a few cases
    // where we can do a little bit better than just a normal "search forward
    // and maybe use a prefilter when in a start state." However, these cases
    // may not always work or otherwise build on top of the Core searcher.
    // For example, the reverse anchored optimization seems like it might
    // always work, but only the DFAs support reverse searching and the DFAs
    // might give up or quit for reasons. If we had, e.g., a PikeVM that
    // supported reverse searching, then we could avoid building a full Core
    // engine for this case.
    core = match ReverseAnchored::new(core) {
        Err(core) => core,
        Ok(ra) => {
            debug!("using reverse anchored strategy");
            return Ok(Arc::new(ra));
        }
    };
    core = match ReverseSuffix::new(core, hirs) {
        Err(core) => core,
        Ok(rs) => {
            debug!("using reverse suffix strategy");
            return Ok(Arc::new(rs));
        }
    };
    core = match ReverseInner::new(core, hirs) {
        Err(core) => core,
        Ok(ri) => {
            debug!("using reverse inner strategy");
            return Ok(Arc::new(ri));
        }
    };
    debug!("using core strategy");
    Ok(Arc::new(core))
}

#[derive(Clone, Debug)]
struct Pre<P> {
    pre: P,
    group_info: GroupInfo,
}

impl<P: PrefilterI> Pre<P> {
    fn new(pre: P) -> Arc<dyn Strategy> {
        // The only thing we support when we use prefilters directly as a
        // strategy is the start and end of the overall match for a single
        // pattern. In other words, exactly one implicit capturing group. Which
        // is exactly what we use here for a GroupInfo.
        let group_info = GroupInfo::new([[None::<&str>]]).unwrap();
        Arc::new(Pre { pre, group_info })
    }
}

// This is a little weird, but we don't actually care about the type parameter
// here because we're selecting which underlying prefilter to use. So we just
// define it on an arbitrary type.
impl Pre<()> {
    /// Given a sequence of prefixes, attempt to return a full `Strategy` using
    /// just the prefixes.
    ///
    /// Basically, this occurs when the prefixes given not just prefixes,
    /// but an enumeration of the entire language matched by the regular
    /// expression.
    ///
    /// A number of other conditions need to be true too. For example, there
    /// can be only one pattern, the number of explicit capture groups is 0, no
    /// look-around assertions and so on.
    ///
    /// Note that this ignores `Config::get_auto_prefilter` because if this
    /// returns something, then it isn't a prefilter but a matcher itself.
    /// Therefore, it shouldn't suffer from the problems typical to prefilters
    /// (such as a high false positive rate).
    fn from_prefixes(
        info: &RegexInfo,
        prefixes: &literal::Seq,
    ) -> Option<Arc<dyn Strategy>> {
        let kind = info.config().get_match_kind();
        // Check to see if our prefixes are exact, which means we might be
        // able to bypass the regex engine entirely and just rely on literal
        // searches.
        if !prefixes.is_exact() {
            return None;
        }
        // We also require that we have a single regex pattern. Namely,
        // we reuse the prefilter infrastructure to implement search and
        // prefilters only report spans. Prefilters don't know about pattern
        // IDs. The multi-regex case isn't a lost cause, we might still use
        // Aho-Corasick and we might still just use a regular prefilter, but
        // that's done below.
        if info.pattern_len() != 1 {
            return None;
        }
        // We can't have any capture groups either. The literal engines don't
        // know how to deal with things like '(foo)(bar)'. In that case, a
        // prefilter will just be used and then the regex engine will resolve
        // the capture groups.
        if info.props()[0].explicit_captures_len() != 0 {
            return None;
        }
        // We also require that it has zero look-around assertions. Namely,
        // literal extraction treats look-around assertions as if they match
        // *every* empty string. But of course, that isn't true. So for
        // example, 'foo\bquux' never matches anything, but 'fooquux' is
        // extracted from that as an exact literal. Such cases should just run
        // the regex engine. 'fooquux' will be used as a normal prefilter, and
        // then the regex engine will try to look for an actual match.
        if !info.props()[0].look_set().is_empty() {
            return None;
        }
        // Finally, currently, our prefilters are all oriented around
        // leftmost-first match semantics, so don't try to use them if the
        // caller asked for anything else.
        if kind != MatchKind::LeftmostFirst {
            return None;
        }
        // The above seems like a lot of requirements to meet, but it applies
        // to a lot of cases. 'foo', '[abc][123]' and 'foo|bar|quux' all meet
        // the above criteria, for example.
        //
        // Note that this is effectively a latency optimization. If we didn't
        // do this, then the extracted literals would still get bundled into
        // a prefilter, and every regex engine capable of running unanchored
        // searches supports prefilters. So this optimization merely sidesteps
        // having to run the regex engine at all to confirm the match. Thus, it
        // decreases the latency of a match.

        // OK because we know the set is exact and thus finite.
        let prefixes = prefixes.literals().unwrap();
        debug!(
            "trying to bypass regex engine by creating \
             prefilter from {} literals: {:?}",
            prefixes.len(),
            prefixes,
        );
        let choice = match prefilter::Choice::new(kind, prefixes) {
            Some(choice) => choice,
            None => {
                debug!(
                    "regex bypass failed because no prefilter could be built"
                );
                return None;
            }
        };
        let strat: Arc<dyn Strategy> = match choice {
            prefilter::Choice::Memchr(pre) => Pre::new(pre),
            prefilter::Choice::Memchr2(pre) => Pre::new(pre),
            prefilter::Choice::Memchr3(pre) => Pre::new(pre),
            prefilter::Choice::Memmem(pre) => Pre::new(pre),
            prefilter::Choice::Teddy(pre) => Pre::new(pre),
            prefilter::Choice::ByteSet(pre) => Pre::new(pre),
            prefilter::Choice::AhoCorasick(pre) => Pre::new(pre),
        };
        Some(strat)
    }

    /// Attempts to extract an alternation of literals, and if it's deemed
    /// worth doing, returns an Aho-Corasick prefilter as a strategy.
    ///
    /// And currently, this only returns something when 'hirs.len() == 1'. This
    /// could in theory do something if there are multiple HIRs where all of
    /// them are alternation of literals, but I haven't had the time to go down
    /// that path yet.
    fn from_alternation_literals(
        info: &RegexInfo,
        hirs: &[&Hir],
    ) -> Option<Arc<dyn Strategy>> {
        use crate::util::prefilter::AhoCorasick;

        let lits = crate::meta::literal::alternation_literals(info, hirs)?;
        let ac = AhoCorasick::new(MatchKind::LeftmostFirst, &lits)?;
        Some(Pre::new(ac))
    }
}

// This implements Strategy for anything that implements PrefilterI.
//
// Note that this must only be used for regexes of length 1. Multi-regexes
// don't work here. The prefilter interface only provides the span of a match
// and not the pattern ID. (I did consider making it more expressive, but I
// couldn't figure out how to tie everything together elegantly.) Thus, so long
// as the regex only contains one pattern, we can simply assume that a match
// corresponds to PatternID::ZERO. And indeed, that's what we do here.
//
// In practice, since this impl is used to report matches directly and thus
// completely bypasses the regex engine, we only wind up using this under the
// following restrictions:
//
// * There must be only one pattern. As explained above.
// * The literal sequence must be finite and only contain exact literals.
// * There must not be any look-around assertions. If there are, the literals
// extracted might be exact, but a match doesn't necessarily imply an overall
// match. As a trivial example, 'foo\bbar' does not match 'foobar'.
// * The pattern must not have any explicit capturing groups. If it does, the
// caller might expect them to be resolved. e.g., 'foo(bar)'.
//
// So when all of those things are true, we use a prefilter directly as a
// strategy.
//
// In the case where the number of patterns is more than 1, we don't use this
// but do use a special Aho-Corasick strategy if all of the regexes are just
// simple literals or alternations of literals. (We also use the Aho-Corasick
// strategy when len(patterns)==1 if the number of literals is large. In that
// case, literal extraction gives up and will return an infinite set.)
impl<P: PrefilterI> Strategy for Pre<P> {
    fn group_info(&self) -> &GroupInfo {
        &self.group_info
    }

    fn create_cache(&self) -> Cache {
        Cache {
            capmatches: Captures::all(self.group_info().clone()),
            pikevm: wrappers::PikeVMCache::none(),
            backtrack: wrappers::BoundedBacktrackerCache::none(),
            onepass: wrappers::OnePassCache::none(),
            hybrid: wrappers::HybridCache::none(),
            revhybrid: wrappers::ReverseHybridCache::none(),
        }
    }

    fn reset_cache(&self, _cache: &mut Cache) {}

    fn is_accelerated(&self) -> bool {
        self.pre.is_fast()
    }

    fn memory_usage(&self) -> usize {
        self.pre.memory_usage()
    }

    fn search(&self, _cache: &mut Cache, input: &Input<'_>) -> Option<Match> {
        if input.is_done() {
            return None;
        }
        if input.get_anchored().is_anchored() {
            return self
                .pre
                .prefix(input.haystack(), input.get_span())
                .map(|sp| Match::new(PatternID::ZERO, sp));
        }
        self.pre
            .find(input.haystack(), input.get_span())
            .map(|sp| Match::new(PatternID::ZERO, sp))
    }

    fn search_half(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Option<HalfMatch> {
        self.search(cache, input).map(|m| HalfMatch::new(m.pattern(), m.end()))
    }

    fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool {
        self.search(cache, input).is_some()
    }

    fn search_slots(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        slots: &mut [Option<NonMaxUsize>],
    ) -> Option<PatternID> {
        let m = self.search(cache, input)?;
        if let Some(slot) = slots.get_mut(0) {
            *slot = NonMaxUsize::new(m.start());
        }
        if let Some(slot) = slots.get_mut(1) {
            *slot = NonMaxUsize::new(m.end());
        }
        Some(m.pattern())
    }

    fn which_overlapping_matches(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        patset: &mut PatternSet,
    ) {
        if self.search(cache, input).is_some() {
            patset.insert(PatternID::ZERO);
        }
    }
}

#[derive(Debug)]
struct Core {
    info: RegexInfo,
    pre: Option<Prefilter>,
    nfa: NFA,
    nfarev: Option<NFA>,
    pikevm: wrappers::PikeVM,
    backtrack: wrappers::BoundedBacktracker,
    onepass: wrappers::OnePass,
    hybrid: wrappers::Hybrid,
    dfa: wrappers::DFA,
}

impl Core {
    fn new(
        info: RegexInfo,
        pre: Option<Prefilter>,
        hirs: &[&Hir],
    ) -> Result<Core, BuildError> {
        let mut lookm = LookMatcher::new();
        lookm.set_line_terminator(info.config().get_line_terminator());
        let thompson_config = thompson::Config::new()
            .utf8(info.config().get_utf8_empty())
            .nfa_size_limit(info.config().get_nfa_size_limit())
            .shrink(false)
            .which_captures(info.config().get_which_captures())
            .look_matcher(lookm);
        let nfa = thompson::Compiler::new()
            .configure(thompson_config.clone())
            .build_many_from_hir(hirs)
            .map_err(BuildError::nfa)?;
        // It's possible for the PikeVM or the BB to fail to build, even though
        // at this point, we already have a full NFA in hand. They can fail
        // when a Unicode word boundary is used but where Unicode word boundary
        // support is disabled at compile time, thus making it impossible to
        // match. (Construction can also fail if the NFA was compiled without
        // captures, but we always enable that above.)
        let pikevm = wrappers::PikeVM::new(&info, pre.clone(), &nfa)?;
        let backtrack =
            wrappers::BoundedBacktracker::new(&info, pre.clone(), &nfa)?;
        // The onepass engine can of course fail to build, but we expect it to
        // fail in many cases because it is an optimization that doesn't apply
        // to all regexes. The 'OnePass' wrapper encapsulates this failure (and
        // logs a message if it occurs).
        let onepass = wrappers::OnePass::new(&info, &nfa);
        // We try to encapsulate whether a particular regex engine should be
        // used within each respective wrapper, but the DFAs need a reverse NFA
        // to build itself, and we really do not want to build a reverse NFA if
        // we know we aren't going to use the lazy DFA. So we do a config check
        // up front, which is in practice the only way we won't try to use the
        // DFA.
        let (nfarev, hybrid, dfa) =
            if !info.config().get_hybrid() && !info.config().get_dfa() {
                (None, wrappers::Hybrid::none(), wrappers::DFA::none())
            } else {
                // FIXME: Technically, we don't quite yet KNOW that we need
                // a reverse NFA. It's possible for the DFAs below to both
                // fail to build just based on the forward NFA. In which case,
                // building the reverse NFA was totally wasted work. But...
                // fixing this requires breaking DFA construction apart into
                // two pieces: one for the forward part and another for the
                // reverse part. Quite annoying. Making it worse, when building
                // both DFAs fails, it's quite likely that the NFA is large and
                // that it will take quite some time to build the reverse NFA
                // too. So... it's really probably worth it to do this!
                let nfarev = thompson::Compiler::new()
                    // Currently, reverse NFAs don't support capturing groups,
                    // so we MUST disable them. But even if we didn't have to,
                    // we would, because nothing in this crate does anything
                    // useful with capturing groups in reverse. And of course,
                    // the lazy DFA ignores capturing groups in all cases.
                    .configure(
                        thompson_config
                            .clone()
                            .which_captures(WhichCaptures::None)
                            .reverse(true),
                    )
                    .build_many_from_hir(hirs)
                    .map_err(BuildError::nfa)?;
                let dfa = if !info.config().get_dfa() {
                    wrappers::DFA::none()
                } else {
                    wrappers::DFA::new(&info, pre.clone(), &nfa, &nfarev)
                };
                let hybrid = if !info.config().get_hybrid() {
                    wrappers::Hybrid::none()
                } else if dfa.is_some() {
                    debug!("skipping lazy DFA because we have a full DFA");
                    wrappers::Hybrid::none()
                } else {
                    wrappers::Hybrid::new(&info, pre.clone(), &nfa, &nfarev)
                };
                (Some(nfarev), hybrid, dfa)
            };
        Ok(Core {
            info,
            pre,
            nfa,
            nfarev,
            pikevm,
            backtrack,
            onepass,
            hybrid,
            dfa,
        })
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn try_search_mayfail(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Option<Result<Option<Match>, RetryFailError>> {
        if let Some(e) = self.dfa.get(input) {
            trace!("using full DFA for search at {:?}", input.get_span());
            Some(e.try_search(input))
        } else if let Some(e) = self.hybrid.get(input) {
            trace!("using lazy DFA for search at {:?}", input.get_span());
            Some(e.try_search(&mut cache.hybrid, input))
        } else {
            None
        }
    }

    fn search_nofail(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Option<Match> {
        let caps = &mut cache.capmatches;
        caps.set_pattern(None);
        // We manually inline 'try_search_slots_nofail' here because we need to
        // borrow from 'cache.capmatches' in this method, but if we do, then
        // we can't pass 'cache' wholesale to to 'try_slots_no_hybrid'. It's a
        // classic example of how the borrow checker inhibits decomposition.
        // There are of course work-arounds (more types and/or interior
        // mutability), but that's more annoying than this IMO.
        let pid = if let Some(ref e) = self.onepass.get(input) {
            trace!("using OnePass for search at {:?}", input.get_span());
            e.search_slots(&mut cache.onepass, input, caps.slots_mut())
        } else if let Some(ref e) = self.backtrack.get(input) {
            trace!(
                "using BoundedBacktracker for search at {:?}",
                input.get_span()
            );
            e.search_slots(&mut cache.backtrack, input, caps.slots_mut())
        } else {
            trace!("using PikeVM for search at {:?}", input.get_span());
            let e = self.pikevm.get();
            e.search_slots(&mut cache.pikevm, input, caps.slots_mut())
        };
        caps.set_pattern(pid);
        caps.get_match()
    }

    fn search_half_nofail(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Option<HalfMatch> {
        // Only the lazy/full DFA returns half-matches, since the DFA requires
        // a reverse scan to find the start position. These fallback regex
        // engines can find the start and end in a single pass, so we just do
        // that and throw away the start offset to conform to the API.
        let m = self.search_nofail(cache, input)?;
        Some(HalfMatch::new(m.pattern(), m.end()))
    }

    fn search_slots_nofail(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        slots: &mut [Option<NonMaxUsize>],
    ) -> Option<PatternID> {
        if let Some(ref e) = self.onepass.get(input) {
            trace!(
                "using OnePass for capture search at {:?}",
                input.get_span()
            );
            e.search_slots(&mut cache.onepass, input, slots)
        } else if let Some(ref e) = self.backtrack.get(input) {
            trace!(
                "using BoundedBacktracker for capture search at {:?}",
                input.get_span()
            );
            e.search_slots(&mut cache.backtrack, input, slots)
        } else {
            trace!(
                "using PikeVM for capture search at {:?}",
                input.get_span()
            );
            let e = self.pikevm.get();
            e.search_slots(&mut cache.pikevm, input, slots)
        }
    }

    fn is_match_nofail(&self, cache: &mut Cache, input: &Input<'_>) -> bool {
        if let Some(ref e) = self.onepass.get(input) {
            trace!(
                "using OnePass for is-match search at {:?}",
                input.get_span()
            );
            e.search_slots(&mut cache.onepass, input, &mut []).is_some()
        } else if let Some(ref e) = self.backtrack.get(input) {
            trace!(
                "using BoundedBacktracker for is-match search at {:?}",
                input.get_span()
            );
            e.is_match(&mut cache.backtrack, input)
        } else {
            trace!(
                "using PikeVM for is-match search at {:?}",
                input.get_span()
            );
            let e = self.pikevm.get();
            e.is_match(&mut cache.pikevm, input)
        }
    }

    fn is_capture_search_needed(&self, slots_len: usize) -> bool {
        slots_len > self.nfa.group_info().implicit_slot_len()
    }
}

impl Strategy for Core {
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn group_info(&self) -> &GroupInfo {
        self.nfa.group_info()
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn create_cache(&self) -> Cache {
        Cache {
            capmatches: Captures::all(self.group_info().clone()),
            pikevm: self.pikevm.create_cache(),
            backtrack: self.backtrack.create_cache(),
            onepass: self.onepass.create_cache(),
            hybrid: self.hybrid.create_cache(),
            revhybrid: wrappers::ReverseHybridCache::none(),
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn reset_cache(&self, cache: &mut Cache) {
        cache.pikevm.reset(&self.pikevm);
        cache.backtrack.reset(&self.backtrack);
        cache.onepass.reset(&self.onepass);
        cache.hybrid.reset(&self.hybrid);
    }

    fn is_accelerated(&self) -> bool {
        self.pre.as_ref().map_or(false, |pre| pre.is_fast())
    }

    fn memory_usage(&self) -> usize {
        self.info.memory_usage()
            + self.pre.as_ref().map_or(0, |pre| pre.memory_usage())
            + self.nfa.memory_usage()
            + self.nfarev.as_ref().map_or(0, |nfa| nfa.memory_usage())
            + self.onepass.memory_usage()
            + self.dfa.memory_usage()
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match> {
        // We manually inline try_search_mayfail here because letting the
        // compiler do it seems to produce pretty crappy codegen.
        return if let Some(e) = self.dfa.get(input) {
            trace!("using full DFA for full search at {:?}", input.get_span());
            match e.try_search(input) {
                Ok(x) => x,
                Err(_err) => {
                    trace!("full DFA search failed: {}", _err);
                    self.search_nofail(cache, input)
                }
            }
        } else if let Some(e) = self.hybrid.get(input) {
            trace!("using lazy DFA for full search at {:?}", input.get_span());
            match e.try_search(&mut cache.hybrid, input) {
                Ok(x) => x,
                Err(_err) => {
                    trace!("lazy DFA search failed: {}", _err);
                    self.search_nofail(cache, input)
                }
            }
        } else {
            self.search_nofail(cache, input)
        };
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn search_half(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Option<HalfMatch> {
        // The main difference with 'search' is that if we're using a DFA, we
        // can use a single forward scan without needing to run the reverse
        // DFA.
        if let Some(e) = self.dfa.get(input) {
            trace!("using full DFA for half search at {:?}", input.get_span());
            match e.try_search_half_fwd(input) {
                Ok(x) => x,
                Err(_err) => {
                    trace!("full DFA half search failed: {}", _err);
                    self.search_half_nofail(cache, input)
                }
            }
        } else if let Some(e) = self.hybrid.get(input) {
            trace!("using lazy DFA for half search at {:?}", input.get_span());
            match e.try_search_half_fwd(&mut cache.hybrid, input) {
                Ok(x) => x,
                Err(_err) => {
                    trace!("lazy DFA half search failed: {}", _err);
                    self.search_half_nofail(cache, input)
                }
            }
        } else {
            self.search_half_nofail(cache, input)
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool {
        if let Some(e) = self.dfa.get(input) {
            trace!(
                "using full DFA for is-match search at {:?}",
                input.get_span()
            );
            match e.try_search_half_fwd(input) {
                Ok(x) => x.is_some(),
                Err(_err) => {
                    trace!("full DFA half search failed: {}", _err);
                    self.is_match_nofail(cache, input)
                }
            }
        } else if let Some(e) = self.hybrid.get(input) {
            trace!(
                "using lazy DFA for is-match search at {:?}",
                input.get_span()
            );
            match e.try_search_half_fwd(&mut cache.hybrid, input) {
                Ok(x) => x.is_some(),
                Err(_err) => {
                    trace!("lazy DFA half search failed: {}", _err);
                    self.is_match_nofail(cache, input)
                }
            }
        } else {
            self.is_match_nofail(cache, input)
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn search_slots(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        slots: &mut [Option<NonMaxUsize>],
    ) -> Option<PatternID> {
        // Even if the regex has explicit capture groups, if the caller didn't
        // provide any explicit slots, then it doesn't make sense to try and do
        // extra work to get offsets for those slots. Ideally the caller should
        // realize this and not call this routine in the first place, but alas,
        // we try to save the caller from themselves if they do.
        if !self.is_capture_search_needed(slots.len()) {
            trace!("asked for slots unnecessarily, trying fast path");
            let m = self.search(cache, input)?;
            copy_match_to_slots(m, slots);
            return Some(m.pattern());
        }
        // If the onepass DFA is available for this search (which only happens
        // when it's anchored), then skip running a fallible DFA. The onepass
        // DFA isn't as fast as a full or lazy DFA, but it is typically quite
        // a bit faster than the backtracker or the PikeVM. So it isn't as
        // advantageous to try and do a full/lazy DFA scan first.
        //
        // We still theorize that it's better to do a full/lazy DFA scan, even
        // when it's anchored, because it's usually much faster and permits us
        // to say "no match" much more quickly. This does hurt the case of,
        // say, parsing each line in a log file into capture groups, because
        // in that case, the line always matches. So the lazy DFA scan is
        // usually just wasted work. But, the lazy DFA is usually quite fast
        // and doesn't cost too much here.
        if self.onepass.get(&input).is_some() {
            return self.search_slots_nofail(cache, &input, slots);
        }
        let m = match self.try_search_mayfail(cache, input) {
            Some(Ok(Some(m))) => m,
            Some(Ok(None)) => return None,
            Some(Err(_err)) => {
                trace!("fast capture search failed: {}", _err);
                return self.search_slots_nofail(cache, input, slots);
            }
            None => {
                return self.search_slots_nofail(cache, input, slots);
            }
        };
        // At this point, now that we've found the bounds of the
        // match, we need to re-run something that can resolve
        // capturing groups. But we only need to run on it on the
        // match bounds and not the entire haystack.
        trace!(
            "match found at {}..{} in capture search, \
		  	 using another engine to find captures",
            m.start(),
            m.end(),
        );
        let input = input
            .clone()
            .span(m.start()..m.end())
            .anchored(Anchored::Pattern(m.pattern()));
        Some(
            self.search_slots_nofail(cache, &input, slots)
                .expect("should find a match"),
        )
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn which_overlapping_matches(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        patset: &mut PatternSet,
    ) {
        if let Some(e) = self.dfa.get(input) {
            trace!(
                "using full DFA for overlapping search at {:?}",
                input.get_span()
            );
            let _err = match e.try_which_overlapping_matches(input, patset) {
                Ok(()) => return,
                Err(err) => err,
            };
            trace!("fast overlapping search failed: {}", _err);
        } else if let Some(e) = self.hybrid.get(input) {
            trace!(
                "using lazy DFA for overlapping search at {:?}",
                input.get_span()
            );
            let _err = match e.try_which_overlapping_matches(
                &mut cache.hybrid,
                input,
                patset,
            ) {
                Ok(()) => {
                    return;
                }
                Err(err) => err,
            };
            trace!("fast overlapping search failed: {}", _err);
        }
        trace!(
            "using PikeVM for overlapping search at {:?}",
            input.get_span()
        );
        let e = self.pikevm.get();
        e.which_overlapping_matches(&mut cache.pikevm, input, patset)
    }
}

#[derive(Debug)]
struct ReverseAnchored {
    core: Core,
}

impl ReverseAnchored {
    fn new(core: Core) -> Result<ReverseAnchored, Core> {
        if !core.info.is_always_anchored_end() {
            debug!(
                "skipping reverse anchored optimization because \
				 the regex is not always anchored at the end"
            );
            return Err(core);
        }
        // Note that the caller can still request an anchored search even when
        // the regex isn't anchored at the start. We detect that case in the
        // search routines below and just fallback to the core engine. This
        // is fine because both searches are anchored. It's just a matter of
        // picking one. Falling back to the core engine is a little simpler,
        // since if we used the reverse anchored approach, we'd have to add an
        // extra check to ensure the match reported starts at the place where
        // the caller requested the search to start.
        if core.info.is_always_anchored_start() {
            debug!(
                "skipping reverse anchored optimization because \
				 the regex is also anchored at the start"
            );
            return Err(core);
        }
        // Only DFAs can do reverse searches (currently), so we need one of
        // them in order to do this optimization. It's possible (although
        // pretty unlikely) that we have neither and need to give up.
        if !core.hybrid.is_some() && !core.dfa.is_some() {
            debug!(
                "skipping reverse anchored optimization because \
				 we don't have a lazy DFA or a full DFA"
            );
            return Err(core);
        }
        Ok(ReverseAnchored { core })
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn try_search_half_anchored_rev(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Result<Option<HalfMatch>, RetryFailError> {
        // We of course always want an anchored search. In theory, the
        // underlying regex engines should automatically enable anchored
        // searches since the regex is itself anchored, but this more clearly
        // expresses intent and is always correct.
        let input = input.clone().anchored(Anchored::Yes);
        if let Some(e) = self.core.dfa.get(&input) {
            trace!(
                "using full DFA for reverse anchored search at {:?}",
                input.get_span()
            );
            e.try_search_half_rev(&input)
        } else if let Some(e) = self.core.hybrid.get(&input) {
            trace!(
                "using lazy DFA for reverse anchored search at {:?}",
                input.get_span()
            );
            e.try_search_half_rev(&mut cache.hybrid, &input)
        } else {
            unreachable!("ReverseAnchored always has a DFA")
        }
    }
}

// Note that in this impl, we don't check that 'input.end() ==
// input.haystack().len()'. In particular, when that condition is false, a
// match is always impossible because we know that the regex is always anchored
// at the end (or else 'ReverseAnchored' won't be built). We don't check that
// here because the 'Regex' wrapper actually does that for us in all cases.
// Thus, in this impl, we can actually assume that the end position in 'input'
// is equivalent to the length of the haystack.
impl Strategy for ReverseAnchored {
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn group_info(&self) -> &GroupInfo {
        self.core.group_info()
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn create_cache(&self) -> Cache {
        self.core.create_cache()
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn reset_cache(&self, cache: &mut Cache) {
        self.core.reset_cache(cache);
    }

    fn is_accelerated(&self) -> bool {
        // Since this is anchored at the end, a reverse anchored search is
        // almost certainly guaranteed to result in a much faster search than
        // a standard forward search.
        true
    }

    fn memory_usage(&self) -> usize {
        self.core.memory_usage()
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match> {
        if input.get_anchored().is_anchored() {
            return self.core.search(cache, input);
        }
        match self.try_search_half_anchored_rev(cache, input) {
            Err(_err) => {
                trace!("fast reverse anchored search failed: {}", _err);
                self.core.search_nofail(cache, input)
            }
            Ok(None) => None,
            Ok(Some(hm)) => {
                Some(Match::new(hm.pattern(), hm.offset()..input.end()))
            }
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn search_half(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Option<HalfMatch> {
        if input.get_anchored().is_anchored() {
            return self.core.search_half(cache, input);
        }
        match self.try_search_half_anchored_rev(cache, input) {
            Err(_err) => {
                trace!("fast reverse anchored search failed: {}", _err);
                self.core.search_half_nofail(cache, input)
            }
            Ok(None) => None,
            Ok(Some(hm)) => {
                // Careful here! 'try_search_half' is a *forward* search that
                // only cares about the *end* position of a match. But
                // 'hm.offset()' is actually the start of the match. So we
                // actually just throw that away here and, since we know we
                // have a match, return the only possible position at which a
                // match can occur: input.end().
                Some(HalfMatch::new(hm.pattern(), input.end()))
            }
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool {
        if input.get_anchored().is_anchored() {
            return self.core.is_match(cache, input);
        }
        match self.try_search_half_anchored_rev(cache, input) {
            Err(_err) => {
                trace!("fast reverse anchored search failed: {}", _err);
                self.core.is_match_nofail(cache, input)
            }
            Ok(None) => false,
            Ok(Some(_)) => true,
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn search_slots(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        slots: &mut [Option<NonMaxUsize>],
    ) -> Option<PatternID> {
        if input.get_anchored().is_anchored() {
            return self.core.search_slots(cache, input, slots);
        }
        match self.try_search_half_anchored_rev(cache, input) {
            Err(_err) => {
                trace!("fast reverse anchored search failed: {}", _err);
                self.core.search_slots_nofail(cache, input, slots)
            }
            Ok(None) => None,
            Ok(Some(hm)) => {
                if !self.core.is_capture_search_needed(slots.len()) {
                    trace!("asked for slots unnecessarily, skipping captures");
                    let m = Match::new(hm.pattern(), hm.offset()..input.end());
                    copy_match_to_slots(m, slots);
                    return Some(m.pattern());
                }
                let start = hm.offset();
                let input = input
                    .clone()
                    .span(start..input.end())
                    .anchored(Anchored::Pattern(hm.pattern()));
                self.core.search_slots_nofail(cache, &input, slots)
            }
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn which_overlapping_matches(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        patset: &mut PatternSet,
    ) {
        // It seems like this could probably benefit from a reverse anchored
        // optimization, perhaps by doing an overlapping reverse search (which
        // the DFAs do support). I haven't given it much thought though, and
        // I'm currently focus more on the single pattern case.
        self.core.which_overlapping_matches(cache, input, patset)
    }
}

#[derive(Debug)]
struct ReverseSuffix {
    core: Core,
    pre: Prefilter,
}

impl ReverseSuffix {
    fn new(core: Core, hirs: &[&Hir]) -> Result<ReverseSuffix, Core> {
        if !core.info.config().get_auto_prefilter() {
            debug!(
                "skipping reverse suffix optimization because \
                 automatic prefilters are disabled"
            );
            return Err(core);
        }
        // Like the reverse inner optimization, we don't do this for regexes
        // that are always anchored. It could lead to scanning too much, but
        // could say "no match" much more quickly than running the regex
        // engine if the initial literal scan doesn't match. With that said,
        // the reverse suffix optimization has lower overhead, since it only
        // requires a reverse scan after a literal match to confirm or reject
        // the match. (Although, in the case of confirmation, it then needs to
        // do another forward scan to find the end position.)
        //
        // Note that the caller can still request an anchored search even
        // when the regex isn't anchored. We detect that case in the search
        // routines below and just fallback to the core engine. Currently this
        // optimization assumes all searches are unanchored, so if we do want
        // to enable this optimization for anchored searches, it will need a
        // little work to support it.
        if core.info.is_always_anchored_start() {
            debug!(
                "skipping reverse suffix optimization because \
				 the regex is always anchored at the start",
            );
            return Err(core);
        }
        // Only DFAs can do reverse searches (currently), so we need one of
        // them in order to do this optimization. It's possible (although
        // pretty unlikely) that we have neither and need to give up.
        if !core.hybrid.is_some() && !core.dfa.is_some() {
            debug!(
                "skipping reverse suffix optimization because \
				 we don't have a lazy DFA or a full DFA"
            );
            return Err(core);
        }
        if core.pre.as_ref().map_or(false, |p| p.is_fast()) {
            debug!(
                "skipping reverse suffix optimization because \
				 we already have a prefilter that we think is fast"
            );
            return Err(core);
        }
        let kind = core.info.config().get_match_kind();
        let suffixes = crate::util::prefilter::suffixes(kind, hirs);
        let lcs = match suffixes.longest_common_suffix() {
            None => {
                debug!(
                    "skipping reverse suffix optimization because \
                     a longest common suffix could not be found",
                );
                return Err(core);
            }
            Some(lcs) if lcs.is_empty() => {
                debug!(
                    "skipping reverse suffix optimization because \
                     the longest common suffix is the empty string",
                );
                return Err(core);
            }
            Some(lcs) => lcs,
        };
        let pre = match Prefilter::new(kind, &[lcs]) {
            Some(pre) => pre,
            None => {
                debug!(
                    "skipping reverse suffix optimization because \
                     a prefilter could not be constructed from the \
                     longest common suffix",
                );
                return Err(core);
            }
        };
        if !pre.is_fast() {
            debug!(
                "skipping reverse suffix optimization because \
				 while we have a suffix prefilter, it is not \
				 believed to be 'fast'"
            );
            return Err(core);
        }
        Ok(ReverseSuffix { core, pre })
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn try_search_half_start(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Result<Option<HalfMatch>, RetryError> {
        let mut span = input.get_span();
        let mut min_start = 0;
        loop {
            let litmatch = match self.pre.find(input.haystack(), span) {
                None => return Ok(None),
                Some(span) => span,
            };
            trace!("reverse suffix scan found suffix match at {:?}", litmatch);
            let revinput = input
                .clone()
                .anchored(Anchored::Yes)
                .span(input.start()..litmatch.end);
            match self
                .try_search_half_rev_limited(cache, &revinput, min_start)?
            {
                None => {
                    if span.start >= span.end {
                        break;
                    }
                    span.start = litmatch.start.checked_add(1).unwrap();
                }
                Some(hm) => return Ok(Some(hm)),
            }
            min_start = litmatch.end;
        }
        Ok(None)
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn try_search_half_fwd(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Result<Option<HalfMatch>, RetryFailError> {
        if let Some(e) = self.core.dfa.get(&input) {
            trace!(
                "using full DFA for forward reverse suffix search at {:?}",
                input.get_span()
            );
            e.try_search_half_fwd(&input)
        } else if let Some(e) = self.core.hybrid.get(&input) {
            trace!(
                "using lazy DFA for forward reverse suffix search at {:?}",
                input.get_span()
            );
            e.try_search_half_fwd(&mut cache.hybrid, &input)
        } else {
            unreachable!("ReverseSuffix always has a DFA")
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn try_search_half_rev_limited(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        min_start: usize,
    ) -> Result<Option<HalfMatch>, RetryError> {
        if let Some(e) = self.core.dfa.get(&input) {
            trace!(
                "using full DFA for reverse suffix search at {:?}, \
                 but will be stopped at {} to avoid quadratic behavior",
                input.get_span(),
                min_start,
            );
            e.try_search_half_rev_limited(&input, min_start)
        } else if let Some(e) = self.core.hybrid.get(&input) {
            trace!(
                "using lazy DFA for reverse inner search at {:?}, \
                 but will be stopped at {} to avoid quadratic behavior",
                input.get_span(),
                min_start,
            );
            e.try_search_half_rev_limited(&mut cache.hybrid, &input, min_start)
        } else {
            unreachable!("ReverseSuffix always has a DFA")
        }
    }
}

impl Strategy for ReverseSuffix {
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn group_info(&self) -> &GroupInfo {
        self.core.group_info()
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn create_cache(&self) -> Cache {
        self.core.create_cache()
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn reset_cache(&self, cache: &mut Cache) {
        self.core.reset_cache(cache);
    }

    fn is_accelerated(&self) -> bool {
        self.pre.is_fast()
    }

    fn memory_usage(&self) -> usize {
        self.core.memory_usage() + self.pre.memory_usage()
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match> {
        if input.get_anchored().is_anchored() {
            return self.core.search(cache, input);
        }
        match self.try_search_half_start(cache, input) {
            Err(RetryError::Quadratic(_err)) => {
                trace!("reverse suffix optimization failed: {}", _err);
                self.core.search(cache, input)
            }
            Err(RetryError::Fail(_err)) => {
                trace!("reverse suffix reverse fast search failed: {}", _err);
                self.core.search_nofail(cache, input)
            }
            Ok(None) => None,
            Ok(Some(hm_start)) => {
                let fwdinput = input
                    .clone()
                    .anchored(Anchored::Pattern(hm_start.pattern()))
                    .span(hm_start.offset()..input.end());
                match self.try_search_half_fwd(cache, &fwdinput) {
                    Err(_err) => {
                        trace!(
                            "reverse suffix forward fast search failed: {}",
                            _err
                        );
                        self.core.search_nofail(cache, input)
                    }
                    Ok(None) => {
                        unreachable!(
                            "suffix match plus reverse match implies \
						     there must be a match",
                        )
                    }
                    Ok(Some(hm_end)) => Some(Match::new(
                        hm_start.pattern(),
                        hm_start.offset()..hm_end.offset(),
                    )),
                }
            }
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn search_half(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Option<HalfMatch> {
        if input.get_anchored().is_anchored() {
            return self.core.search_half(cache, input);
        }
        match self.try_search_half_start(cache, input) {
            Err(RetryError::Quadratic(_err)) => {
                trace!("reverse suffix half optimization failed: {}", _err);
                self.core.search_half(cache, input)
            }
            Err(RetryError::Fail(_err)) => {
                trace!(
                    "reverse suffix reverse fast half search failed: {}",
                    _err
                );
                self.core.search_half_nofail(cache, input)
            }
            Ok(None) => None,
            Ok(Some(hm_start)) => {
                // This is a bit subtle. It is tempting to just stop searching
                // at this point and return a half-match with an offset
                // corresponding to where the suffix was found. But the suffix
                // match does not necessarily correspond to the end of the
                // proper leftmost-first match. Consider /[a-z]+ing/ against
                // 'tingling'. The first suffix match is the first 'ing', and
                // the /[a-z]+/ matches the 't'. So if we stopped here, then
                // we'd report 'ting' as the match. But 'tingling' is the
                // correct match because of greediness.
                let fwdinput = input
                    .clone()
                    .anchored(Anchored::Pattern(hm_start.pattern()))
                    .span(hm_start.offset()..input.end());
                match self.try_search_half_fwd(cache, &fwdinput) {
                    Err(_err) => {
                        trace!(
                            "reverse suffix forward fast search failed: {}",
                            _err
                        );
                        self.core.search_half_nofail(cache, input)
                    }
                    Ok(None) => {
                        unreachable!(
                            "suffix match plus reverse match implies \
						     there must be a match",
                        )
                    }
                    Ok(Some(hm_end)) => Some(hm_end),
                }
            }
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool {
        if input.get_anchored().is_anchored() {
            return self.core.is_match(cache, input);
        }
        match self.try_search_half_start(cache, input) {
            Err(RetryError::Quadratic(_err)) => {
                trace!("reverse suffix half optimization failed: {}", _err);
                self.core.is_match_nofail(cache, input)
            }
            Err(RetryError::Fail(_err)) => {
                trace!(
                    "reverse suffix reverse fast half search failed: {}",
                    _err
                );
                self.core.is_match_nofail(cache, input)
            }
            Ok(None) => false,
            Ok(Some(_)) => true,
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn search_slots(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        slots: &mut [Option<NonMaxUsize>],
    ) -> Option<PatternID> {
        if input.get_anchored().is_anchored() {
            return self.core.search_slots(cache, input, slots);
        }
        if !self.core.is_capture_search_needed(slots.len()) {
            trace!("asked for slots unnecessarily, trying fast path");
            let m = self.search(cache, input)?;
            copy_match_to_slots(m, slots);
            return Some(m.pattern());
        }
        let hm_start = match self.try_search_half_start(cache, input) {
            Err(RetryError::Quadratic(_err)) => {
                trace!(
                    "reverse suffix captures optimization failed: {}",
                    _err
                );
                return self.core.search_slots(cache, input, slots);
            }
            Err(RetryError::Fail(_err)) => {
                trace!(
                    "reverse suffix reverse fast captures search failed: {}",
                    _err
                );
                return self.core.search_slots_nofail(cache, input, slots);
            }
            Ok(None) => return None,
            Ok(Some(hm_start)) => hm_start,
        };
        trace!(
            "match found at {}..{} in capture search, \
		  	 using another engine to find captures",
            hm_start.offset(),
            input.end(),
        );
        let start = hm_start.offset();
        let input = input
            .clone()
            .span(start..input.end())
            .anchored(Anchored::Pattern(hm_start.pattern()));
        self.core.search_slots_nofail(cache, &input, slots)
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn which_overlapping_matches(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        patset: &mut PatternSet,
    ) {
        self.core.which_overlapping_matches(cache, input, patset)
    }
}

#[derive(Debug)]
struct ReverseInner {
    core: Core,
    preinner: Prefilter,
    nfarev: NFA,
    hybrid: wrappers::ReverseHybrid,
    dfa: wrappers::ReverseDFA,
}

impl ReverseInner {
    fn new(core: Core, hirs: &[&Hir]) -> Result<ReverseInner, Core> {
        if !core.info.config().get_auto_prefilter() {
            debug!(
                "skipping reverse inner optimization because \
                 automatic prefilters are disabled"
            );
            return Err(core);
        }
        // Currently we hard-code the assumption of leftmost-first match
        // semantics. This isn't a huge deal because 'all' semantics tend to
        // only be used for forward overlapping searches with multiple regexes,
        // and this optimization only supports a single pattern at the moment.
        if core.info.config().get_match_kind() != MatchKind::LeftmostFirst {
            debug!(
                "skipping reverse inner optimization because \
				 match kind is {:?} but this only supports leftmost-first",
                core.info.config().get_match_kind(),
            );
            return Err(core);
        }
        // It's likely that a reverse inner scan has too much overhead for it
        // to be worth it when the regex is anchored at the start. It is
        // possible for it to be quite a bit faster if the initial literal
        // scan fails to detect a match, in which case, we can say "no match"
        // very quickly. But this could be undesirable, e.g., scanning too far
        // or when the literal scan matches. If it matches, then confirming the
        // match requires a reverse scan followed by a forward scan to confirm
        // or reject, which is a fair bit of work.
        //
        // Note that the caller can still request an anchored search even
        // when the regex isn't anchored. We detect that case in the search
        // routines below and just fallback to the core engine. Currently this
        // optimization assumes all searches are unanchored, so if we do want
        // to enable this optimization for anchored searches, it will need a
        // little work to support it.
        if core.info.is_always_anchored_start() {
            debug!(
                "skipping reverse inner optimization because \
				 the regex is always anchored at the start",
            );
            return Err(core);
        }
        // Only DFAs can do reverse searches (currently), so we need one of
        // them in order to do this optimization. It's possible (although
        // pretty unlikely) that we have neither and need to give up.
        if !core.hybrid.is_some() && !core.dfa.is_some() {
            debug!(
                "skipping reverse inner optimization because \
				 we don't have a lazy DFA or a full DFA"
            );
            return Err(core);
        }
        if core.pre.as_ref().map_or(false, |p| p.is_fast()) {
            debug!(
                "skipping reverse inner optimization because \
				 we already have a prefilter that we think is fast"
            );
            return Err(core);
        } else if core.pre.is_some() {
            debug!(
                "core engine has a prefix prefilter, but it is \
                 probably not fast, so continuing with attempt to \
                 use reverse inner prefilter"
            );
        }
        let (concat_prefix, preinner) = match reverse_inner::extract(hirs) {
            Some(x) => x,
            // N.B. the 'extract' function emits debug messages explaining
            // why we bailed out here.
            None => return Err(core),
        };
        debug!("building reverse NFA for prefix before inner literal");
        let mut lookm = LookMatcher::new();
        lookm.set_line_terminator(core.info.config().get_line_terminator());
        let thompson_config = thompson::Config::new()
            .reverse(true)
            .utf8(core.info.config().get_utf8_empty())
            .nfa_size_limit(core.info.config().get_nfa_size_limit())
            .shrink(false)
            .which_captures(WhichCaptures::None)
            .look_matcher(lookm);
        let result = thompson::Compiler::new()
            .configure(thompson_config)
            .build_from_hir(&concat_prefix);
        let nfarev = match result {
            Ok(nfarev) => nfarev,
            Err(_err) => {
                debug!(
                    "skipping reverse inner optimization because the \
					 reverse NFA failed to build: {}",
                    _err,
                );
                return Err(core);
            }
        };
        debug!("building reverse DFA for prefix before inner literal");
        let dfa = if !core.info.config().get_dfa() {
            wrappers::ReverseDFA::none()
        } else {
            wrappers::ReverseDFA::new(&core.info, &nfarev)
        };
        let hybrid = if !core.info.config().get_hybrid() {
            wrappers::ReverseHybrid::none()
        } else if dfa.is_some() {
            debug!(
                "skipping lazy DFA for reverse inner optimization \
				 because we have a full DFA"
            );
            wrappers::ReverseHybrid::none()
        } else {
            wrappers::ReverseHybrid::new(&core.info, &nfarev)
        };
        Ok(ReverseInner { core, preinner, nfarev, hybrid, dfa })
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn try_search_full(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Result<Option<Match>, RetryError> {
        let mut span = input.get_span();
        let mut min_match_start = 0;
        let mut min_pre_start = 0;
        loop {
            let litmatch = match self.preinner.find(input.haystack(), span) {
                None => return Ok(None),
                Some(span) => span,
            };
            if litmatch.start < min_pre_start {
                trace!(
                    "found inner prefilter match at {:?}, which starts \
					 before the end of the last forward scan at {}, \
					 quitting to avoid quadratic behavior",
                    litmatch,
                    min_pre_start,
                );
                return Err(RetryError::Quadratic(RetryQuadraticError::new()));
            }
            trace!("reverse inner scan found inner match at {:?}", litmatch);
            let revinput = input
                .clone()
                .anchored(Anchored::Yes)
                .span(input.start()..litmatch.start);
            // Note that in addition to the literal search above scanning past
            // our minimum start point, this routine can also return an error
            // as a result of detecting possible quadratic behavior if the
            // reverse scan goes past the minimum start point. That is, the
            // literal search might not, but the reverse regex search for the
            // prefix might!
            match self.try_search_half_rev_limited(
                cache,
                &revinput,
                min_match_start,
            )? {
                None => {
                    if span.start >= span.end {
                        break;
                    }
                    span.start = litmatch.start.checked_add(1).unwrap();
                }
                Some(hm_start) => {
                    let fwdinput = input
                        .clone()
                        .anchored(Anchored::Pattern(hm_start.pattern()))
                        .span(hm_start.offset()..input.end());
                    match self.try_search_half_fwd_stopat(cache, &fwdinput)? {
                        Err(stopat) => {
                            min_pre_start = stopat;
                            span.start =
                                litmatch.start.checked_add(1).unwrap();
                        }
                        Ok(hm_end) => {
                            return Ok(Some(Match::new(
                                hm_start.pattern(),
                                hm_start.offset()..hm_end.offset(),
                            )))
                        }
                    }
                }
            }
            min_match_start = litmatch.end;
        }
        Ok(None)
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn try_search_half_fwd_stopat(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Result<Result<HalfMatch, usize>, RetryFailError> {
        if let Some(e) = self.core.dfa.get(&input) {
            trace!(
                "using full DFA for forward reverse inner search at {:?}",
                input.get_span()
            );
            e.try_search_half_fwd_stopat(&input)
        } else if let Some(e) = self.core.hybrid.get(&input) {
            trace!(
                "using lazy DFA for forward reverse inner search at {:?}",
                input.get_span()
            );
            e.try_search_half_fwd_stopat(&mut cache.hybrid, &input)
        } else {
            unreachable!("ReverseInner always has a DFA")
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn try_search_half_rev_limited(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        min_start: usize,
    ) -> Result<Option<HalfMatch>, RetryError> {
        if let Some(e) = self.dfa.get(&input) {
            trace!(
                "using full DFA for reverse inner search at {:?}, \
                 but will be stopped at {} to avoid quadratic behavior",
                input.get_span(),
                min_start,
            );
            e.try_search_half_rev_limited(&input, min_start)
        } else if let Some(e) = self.hybrid.get(&input) {
            trace!(
                "using lazy DFA for reverse inner search at {:?}, \
                 but will be stopped at {} to avoid quadratic behavior",
                input.get_span(),
                min_start,
            );
            e.try_search_half_rev_limited(
                &mut cache.revhybrid,
                &input,
                min_start,
            )
        } else {
            unreachable!("ReverseInner always has a DFA")
        }
    }
}

impl Strategy for ReverseInner {
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn group_info(&self) -> &GroupInfo {
        self.core.group_info()
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn create_cache(&self) -> Cache {
        let mut cache = self.core.create_cache();
        cache.revhybrid = self.hybrid.create_cache();
        cache
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn reset_cache(&self, cache: &mut Cache) {
        self.core.reset_cache(cache);
        cache.revhybrid.reset(&self.hybrid);
    }

    fn is_accelerated(&self) -> bool {
        self.preinner.is_fast()
    }

    fn memory_usage(&self) -> usize {
        self.core.memory_usage()
            + self.preinner.memory_usage()
            + self.nfarev.memory_usage()
            + self.dfa.memory_usage()
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match> {
        if input.get_anchored().is_anchored() {
            return self.core.search(cache, input);
        }
        match self.try_search_full(cache, input) {
            Err(RetryError::Quadratic(_err)) => {
                trace!("reverse inner optimization failed: {}", _err);
                self.core.search(cache, input)
            }
            Err(RetryError::Fail(_err)) => {
                trace!("reverse inner fast search failed: {}", _err);
                self.core.search_nofail(cache, input)
            }
            Ok(matornot) => matornot,
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn search_half(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Option<HalfMatch> {
        if input.get_anchored().is_anchored() {
            return self.core.search_half(cache, input);
        }
        match self.try_search_full(cache, input) {
            Err(RetryError::Quadratic(_err)) => {
                trace!("reverse inner half optimization failed: {}", _err);
                self.core.search_half(cache, input)
            }
            Err(RetryError::Fail(_err)) => {
                trace!("reverse inner fast half search failed: {}", _err);
                self.core.search_half_nofail(cache, input)
            }
            Ok(None) => None,
            Ok(Some(m)) => Some(HalfMatch::new(m.pattern(), m.end())),
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool {
        if input.get_anchored().is_anchored() {
            return self.core.is_match(cache, input);
        }
        match self.try_search_full(cache, input) {
            Err(RetryError::Quadratic(_err)) => {
                trace!("reverse inner half optimization failed: {}", _err);
                self.core.is_match_nofail(cache, input)
            }
            Err(RetryError::Fail(_err)) => {
                trace!("reverse inner fast half search failed: {}", _err);
                self.core.is_match_nofail(cache, input)
            }
            Ok(None) => false,
            Ok(Some(_)) => true,
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn search_slots(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        slots: &mut [Option<NonMaxUsize>],
    ) -> Option<PatternID> {
        if input.get_anchored().is_anchored() {
            return self.core.search_slots(cache, input, slots);
        }
        if !self.core.is_capture_search_needed(slots.len()) {
            trace!("asked for slots unnecessarily, trying fast path");
            let m = self.search(cache, input)?;
            copy_match_to_slots(m, slots);
            return Some(m.pattern());
        }
        let m = match self.try_search_full(cache, input) {
            Err(RetryError::Quadratic(_err)) => {
                trace!("reverse inner captures optimization failed: {}", _err);
                return self.core.search_slots(cache, input, slots);
            }
            Err(RetryError::Fail(_err)) => {
                trace!("reverse inner fast captures search failed: {}", _err);
                return self.core.search_slots_nofail(cache, input, slots);
            }
            Ok(None) => return None,
            Ok(Some(m)) => m,
        };
        trace!(
            "match found at {}..{} in capture search, \
		  	 using another engine to find captures",
            m.start(),
            m.end(),
        );
        let input = input
            .clone()
            .span(m.start()..m.end())
            .anchored(Anchored::Pattern(m.pattern()));
        self.core.search_slots_nofail(cache, &input, slots)
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn which_overlapping_matches(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        patset: &mut PatternSet,
    ) {
        self.core.which_overlapping_matches(cache, input, patset)
    }
}

/// Copies the offsets in the given match to the corresponding positions in
/// `slots`.
///
/// In effect, this sets the slots corresponding to the implicit group for the
/// pattern in the given match. If the indices for the corresponding slots do
/// not exist, then no slots are set.
///
/// This is useful when the caller provides slots (or captures), but you use a
/// regex engine that doesn't operate on slots (like a lazy DFA). This function
/// lets you map the match you get back to the slots provided by the caller.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn copy_match_to_slots(m: Match, slots: &mut [Option<NonMaxUsize>]) {
    let slot_start = m.pattern().as_usize() * 2;
    let slot_end = slot_start + 1;
    if let Some(slot) = slots.get_mut(slot_start) {
        *slot = NonMaxUsize::new(m.start());
    }
    if let Some(slot) = slots.get_mut(slot_end) {
        *slot = NonMaxUsize::new(m.end());
    }
}