summaryrefslogtreecommitdiffstats
path: root/third_party/rust/regex-automata/src/util/start.rs
blob: 4e360d083acb718a89b4177ad79640a1fd09f9c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
/*!
Provides some helpers for dealing with start state configurations in DFAs.

[`Start`] represents the possible starting configurations, while
[`StartByteMap`] represents a way to retrieve the `Start` configuration for a
given position in a haystack.
*/

use crate::util::{
    look::LookMatcher,
    search::Input,
    wire::{self, DeserializeError, SerializeError},
};

/// A map from every possible byte value to its corresponding starting
/// configuration.
///
/// This map is used in order to lookup the start configuration for a particular
/// position in a haystack. This start configuration is then used in
/// combination with things like the anchored mode and pattern ID to fully
/// determine the start state.
///
/// Generally speaking, this map is only used for fully compiled DFAs and lazy
/// DFAs. For NFAs (including the one-pass DFA), the start state is generally
/// selected by virtue of traversing the NFA state graph. DFAs do the same
/// thing, but at build time and not search time. (Well, technically the lazy
/// DFA does it at search time, but it does enough work to cache the full
/// result of the epsilon closure that the NFA engines tend to need to do.)
#[derive(Clone)]
pub(crate) struct StartByteMap {
    map: [Start; 256],
}

impl StartByteMap {
    /// Create a new map from byte values to their corresponding starting
    /// configurations. The map is determined, in part, by how look-around
    /// assertions are matched via the matcher given.
    pub(crate) fn new(lookm: &LookMatcher) -> StartByteMap {
        let mut map = [Start::NonWordByte; 256];
        map[usize::from(b'\n')] = Start::LineLF;
        map[usize::from(b'\r')] = Start::LineCR;
        map[usize::from(b'_')] = Start::WordByte;

        let mut byte = b'0';
        while byte <= b'9' {
            map[usize::from(byte)] = Start::WordByte;
            byte += 1;
        }
        byte = b'A';
        while byte <= b'Z' {
            map[usize::from(byte)] = Start::WordByte;
            byte += 1;
        }
        byte = b'a';
        while byte <= b'z' {
            map[usize::from(byte)] = Start::WordByte;
            byte += 1;
        }

        let lineterm = lookm.get_line_terminator();
        // If our line terminator is normal, then it is already handled by
        // the LineLF and LineCR configurations. But if it's weird, then we
        // overwrite whatever was there before for that terminator with a
        // special configuration. The trick here is that if the terminator
        // is, say, a word byte like `a`, then callers seeing this start
        // configuration need to account for that and build their DFA state as
        // if it *also* came from a word byte.
        if lineterm != b'\r' && lineterm != b'\n' {
            map[usize::from(lineterm)] = Start::CustomLineTerminator;
        }
        StartByteMap { map }
    }

    /// Return the forward starting configuration for the given `input`.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn fwd(&self, input: &Input) -> Start {
        match input
            .start()
            .checked_sub(1)
            .and_then(|i| input.haystack().get(i))
        {
            None => Start::Text,
            Some(&byte) => self.get(byte),
        }
    }

    /// Return the reverse starting configuration for the given `input`.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn rev(&self, input: &Input) -> Start {
        match input.haystack().get(input.end()) {
            None => Start::Text,
            Some(&byte) => self.get(byte),
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn get(&self, byte: u8) -> Start {
        self.map[usize::from(byte)]
    }

    /// Deserializes a byte class map from the given slice. If the slice is of
    /// insufficient length or otherwise contains an impossible mapping, then
    /// an error is returned. Upon success, the number of bytes read along with
    /// the map are returned. The number of bytes read is always a multiple of
    /// 8.
    pub(crate) fn from_bytes(
        slice: &[u8],
    ) -> Result<(StartByteMap, usize), DeserializeError> {
        wire::check_slice_len(slice, 256, "start byte map")?;
        let mut map = [Start::NonWordByte; 256];
        for (i, &repr) in slice[..256].iter().enumerate() {
            map[i] = match Start::from_usize(usize::from(repr)) {
                Some(start) => start,
                None => {
                    return Err(DeserializeError::generic(
                        "found invalid starting configuration",
                    ))
                }
            };
        }
        Ok((StartByteMap { map }, 256))
    }

    /// Writes this map to the given byte buffer. if the given buffer is too
    /// small, then an error is returned. Upon success, the total number of
    /// bytes written is returned. The number of bytes written is guaranteed to
    /// be a multiple of 8.
    pub(crate) fn write_to(
        &self,
        dst: &mut [u8],
    ) -> Result<usize, SerializeError> {
        let nwrite = self.write_to_len();
        if dst.len() < nwrite {
            return Err(SerializeError::buffer_too_small("start byte map"));
        }
        for (i, &start) in self.map.iter().enumerate() {
            dst[i] = start.as_u8();
        }
        Ok(nwrite)
    }

    /// Returns the total number of bytes written by `write_to`.
    pub(crate) fn write_to_len(&self) -> usize {
        256
    }
}

impl core::fmt::Debug for StartByteMap {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        use crate::util::escape::DebugByte;

        write!(f, "StartByteMap{{")?;
        for byte in 0..=255 {
            if byte > 0 {
                write!(f, ", ")?;
            }
            let start = self.map[usize::from(byte)];
            write!(f, "{:?} => {:?}", DebugByte(byte), start)?;
        }
        write!(f, "}}")?;
        Ok(())
    }
}

/// Represents the six possible starting configurations of a DFA search.
///
/// The starting configuration is determined by inspecting the the beginning
/// of the haystack (up to 1 byte). Ultimately, this along with a pattern ID
/// (if specified) and the type of search (anchored or not) is what selects the
/// start state to use in a DFA.
///
/// As one example, if a DFA only supports unanchored searches and does not
/// support anchored searches for each pattern, then it will have at most 6
/// distinct start states. (Some start states may be reused if determinization
/// can determine that they will be equivalent.) If the DFA supports both
/// anchored and unanchored searches, then it will have a maximum of 12
/// distinct start states. Finally, if the DFA also supports anchored searches
/// for each pattern, then it can have up to `12 + (N * 6)` start states, where
/// `N` is the number of patterns.
///
/// Handling each of these starting configurations in the context of DFA
/// determinization can be *quite* tricky and subtle. But the code is small
/// and can be found at `crate::util::determinize::set_lookbehind_from_start`.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub(crate) enum Start {
    /// This occurs when the starting position is not any of the ones below.
    NonWordByte = 0,
    /// This occurs when the byte immediately preceding the start of the search
    /// is an ASCII word byte.
    WordByte = 1,
    /// This occurs when the starting position of the search corresponds to the
    /// beginning of the haystack.
    Text = 2,
    /// This occurs when the byte immediately preceding the start of the search
    /// is a line terminator. Specifically, `\n`.
    LineLF = 3,
    /// This occurs when the byte immediately preceding the start of the search
    /// is a line terminator. Specifically, `\r`.
    LineCR = 4,
    /// This occurs when a custom line terminator has been set via a
    /// `LookMatcher`, and when that line terminator is neither a `\r` or a
    /// `\n`.
    ///
    /// If the custom line terminator is a word byte, then this start
    /// configuration is still selected. DFAs that implement word boundary
    /// assertions will likely need to check whether the custom line terminator
    /// is a word byte, in which case, it should behave as if the byte
    /// satisfies `\b` in addition to multi-line anchors.
    CustomLineTerminator = 5,
}

impl Start {
    /// Return the starting state corresponding to the given integer. If no
    /// starting state exists for the given integer, then None is returned.
    pub(crate) fn from_usize(n: usize) -> Option<Start> {
        match n {
            0 => Some(Start::NonWordByte),
            1 => Some(Start::WordByte),
            2 => Some(Start::Text),
            3 => Some(Start::LineLF),
            4 => Some(Start::LineCR),
            5 => Some(Start::CustomLineTerminator),
            _ => None,
        }
    }

    /// Returns the total number of starting state configurations.
    pub(crate) fn len() -> usize {
        6
    }

    /// Return this starting configuration as `u8` integer. It is guaranteed to
    /// be less than `Start::len()`.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn as_u8(&self) -> u8 {
        // AFAIK, 'as' is the only way to zero-cost convert an int enum to an
        // actual int.
        *self as u8
    }

    /// Return this starting configuration as a `usize` integer. It is
    /// guaranteed to be less than `Start::len()`.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn as_usize(&self) -> usize {
        usize::from(self.as_u8())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn start_fwd_done_range() {
        let smap = StartByteMap::new(&LookMatcher::default());
        assert_eq!(Start::Text, smap.fwd(&Input::new("").range(1..0)));
    }

    #[test]
    fn start_rev_done_range() {
        let smap = StartByteMap::new(&LookMatcher::default());
        assert_eq!(Start::Text, smap.rev(&Input::new("").range(1..0)));
    }

    #[test]
    fn start_fwd() {
        let f = |haystack, start, end| {
            let smap = StartByteMap::new(&LookMatcher::default());
            let input = &Input::new(haystack).range(start..end);
            smap.fwd(input)
        };

        assert_eq!(Start::Text, f("", 0, 0));
        assert_eq!(Start::Text, f("abc", 0, 3));
        assert_eq!(Start::Text, f("\nabc", 0, 3));

        assert_eq!(Start::LineLF, f("\nabc", 1, 3));

        assert_eq!(Start::LineCR, f("\rabc", 1, 3));

        assert_eq!(Start::WordByte, f("abc", 1, 3));

        assert_eq!(Start::NonWordByte, f(" abc", 1, 3));
    }

    #[test]
    fn start_rev() {
        let f = |haystack, start, end| {
            let smap = StartByteMap::new(&LookMatcher::default());
            let input = &Input::new(haystack).range(start..end);
            smap.rev(input)
        };

        assert_eq!(Start::Text, f("", 0, 0));
        assert_eq!(Start::Text, f("abc", 0, 3));
        assert_eq!(Start::Text, f("abc\n", 0, 4));

        assert_eq!(Start::LineLF, f("abc\nz", 0, 3));

        assert_eq!(Start::LineCR, f("abc\rz", 0, 3));

        assert_eq!(Start::WordByte, f("abc", 0, 2));

        assert_eq!(Start::NonWordByte, f("abc ", 0, 3));
    }
}