summaryrefslogtreecommitdiffstats
path: root/third_party/rust/regex-automata/tests/dfa/suite.rs
blob: f3445e02a4ee243cfa5ecaa71d5df1bae3b6f6ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
use {
    anyhow::Result,
    regex_automata::{
        dfa::{
            self, dense, regex::Regex, sparse, Automaton, OverlappingState,
            StartKind,
        },
        nfa::thompson,
        util::{prefilter::Prefilter, syntax},
        Anchored, Input, PatternSet,
    },
    regex_syntax::hir,
    regex_test::{
        CompiledRegex, Match, RegexTest, SearchKind, Span, TestResult,
        TestRunner,
    },
};

use crate::{create_input, suite, untestify_kind};

const EXPANSIONS: &[&str] = &["is_match", "find", "which"];

/// Runs the test suite with the default configuration.
#[test]
fn unminimized_default() -> Result<()> {
    let builder = Regex::builder();
    TestRunner::new()?
        .expand(EXPANSIONS, |t| t.compiles())
        .blacklist("expensive")
        .test_iter(suite()?.iter(), dense_compiler(builder))
        .assert();
    Ok(())
}

/// Runs the test suite with the default configuration and a prefilter enabled,
/// if one can be built.
#[test]
fn unminimized_prefilter() -> Result<()> {
    let my_compiler = |test: &RegexTest, regexes: &[String]| {
        // Parse regexes as HIRs so we can get literals to build a prefilter.
        let mut hirs = vec![];
        for pattern in regexes.iter() {
            hirs.push(syntax::parse_with(pattern, &config_syntax(test))?);
        }
        let kind = match untestify_kind(test.match_kind()) {
            None => return Ok(CompiledRegex::skip()),
            Some(kind) => kind,
        };
        let pre = Prefilter::from_hirs_prefix(kind, &hirs);
        let mut builder = Regex::builder();
        builder.dense(dense::DFA::config().prefilter(pre));
        compiler(builder, |_, _, re| {
            Ok(CompiledRegex::compiled(move |test| -> TestResult {
                run_test(&re, test)
            }))
        })(test, regexes)
    };
    TestRunner::new()?
        .expand(EXPANSIONS, |t| t.compiles())
        .blacklist("expensive")
        .test_iter(suite()?.iter(), my_compiler)
        .assert();
    Ok(())
}

/// Runs the test suite with start states specialized.
#[test]
fn unminimized_specialized_start_states() -> Result<()> {
    let mut builder = Regex::builder();
    builder.dense(dense::Config::new().specialize_start_states(true));

    TestRunner::new()?
        .expand(EXPANSIONS, |t| t.compiles())
        .blacklist("expensive")
        .test_iter(suite()?.iter(), dense_compiler(builder))
        .assert();
    Ok(())
}

/// Runs the test suite with byte classes disabled.
#[test]
fn unminimized_no_byte_class() -> Result<()> {
    let mut builder = Regex::builder();
    builder.dense(dense::Config::new().byte_classes(false));

    TestRunner::new()?
        .expand(EXPANSIONS, |t| t.compiles())
        .blacklist("expensive")
        .test_iter(suite()?.iter(), dense_compiler(builder))
        .assert();
    Ok(())
}

/// Runs the test suite with NFA shrinking enabled.
#[test]
fn unminimized_nfa_shrink() -> Result<()> {
    let mut builder = Regex::builder();
    builder.thompson(thompson::Config::new().shrink(true));

    TestRunner::new()?
        .expand(EXPANSIONS, |t| t.compiles())
        .blacklist("expensive")
        .test_iter(suite()?.iter(), dense_compiler(builder))
        .assert();
    Ok(())
}

/// Runs the test suite on a minimized DFA with an otherwise default
/// configuration.
#[test]
fn minimized_default() -> Result<()> {
    let mut builder = Regex::builder();
    builder.dense(dense::Config::new().minimize(true));
    TestRunner::new()?
        .expand(EXPANSIONS, |t| t.compiles())
        .blacklist("expensive")
        .test_iter(suite()?.iter(), dense_compiler(builder))
        .assert();
    Ok(())
}

/// Runs the test suite on a minimized DFA with byte classes disabled.
#[test]
fn minimized_no_byte_class() -> Result<()> {
    let mut builder = Regex::builder();
    builder.dense(dense::Config::new().minimize(true).byte_classes(false));

    TestRunner::new()?
        .expand(EXPANSIONS, |t| t.compiles())
        .blacklist("expensive")
        .test_iter(suite()?.iter(), dense_compiler(builder))
        .assert();
    Ok(())
}

/// Runs the test suite on a sparse unminimized DFA.
#[test]
fn sparse_unminimized_default() -> Result<()> {
    let builder = Regex::builder();
    TestRunner::new()?
        .expand(EXPANSIONS, |t| t.compiles())
        .blacklist("expensive")
        .test_iter(suite()?.iter(), sparse_compiler(builder))
        .assert();
    Ok(())
}

/// Runs the test suite on a sparse unminimized DFA with prefilters enabled.
#[test]
fn sparse_unminimized_prefilter() -> Result<()> {
    let my_compiler = |test: &RegexTest, regexes: &[String]| {
        // Parse regexes as HIRs so we can get literals to build a prefilter.
        let mut hirs = vec![];
        for pattern in regexes.iter() {
            hirs.push(syntax::parse_with(pattern, &config_syntax(test))?);
        }
        let kind = match untestify_kind(test.match_kind()) {
            None => return Ok(CompiledRegex::skip()),
            Some(kind) => kind,
        };
        let pre = Prefilter::from_hirs_prefix(kind, &hirs);
        let mut builder = Regex::builder();
        builder.dense(dense::DFA::config().prefilter(pre));
        compiler(builder, |builder, _, re| {
            let fwd = re.forward().to_sparse()?;
            let rev = re.reverse().to_sparse()?;
            let re = builder.build_from_dfas(fwd, rev);
            Ok(CompiledRegex::compiled(move |test| -> TestResult {
                run_test(&re, test)
            }))
        })(test, regexes)
    };
    TestRunner::new()?
        .expand(EXPANSIONS, |t| t.compiles())
        .blacklist("expensive")
        .test_iter(suite()?.iter(), my_compiler)
        .assert();
    Ok(())
}

/// Another basic sanity test that checks we can serialize and then deserialize
/// a regex, and that the resulting regex can be used for searching correctly.
#[test]
fn serialization_unminimized_default() -> Result<()> {
    let builder = Regex::builder();
    let my_compiler = |builder| {
        compiler(builder, |builder, _, re| {
            let builder = builder.clone();
            let (fwd_bytes, _) = re.forward().to_bytes_native_endian();
            let (rev_bytes, _) = re.reverse().to_bytes_native_endian();
            Ok(CompiledRegex::compiled(move |test| -> TestResult {
                let fwd: dense::DFA<&[u32]> =
                    dense::DFA::from_bytes(&fwd_bytes).unwrap().0;
                let rev: dense::DFA<&[u32]> =
                    dense::DFA::from_bytes(&rev_bytes).unwrap().0;
                let re = builder.build_from_dfas(fwd, rev);

                run_test(&re, test)
            }))
        })
    };
    TestRunner::new()?
        .expand(EXPANSIONS, |t| t.compiles())
        .blacklist("expensive")
        .test_iter(suite()?.iter(), my_compiler(builder))
        .assert();
    Ok(())
}

/// A basic sanity test that checks we can serialize and then deserialize a
/// regex using sparse DFAs, and that the resulting regex can be used for
/// searching correctly.
#[test]
fn sparse_serialization_unminimized_default() -> Result<()> {
    let builder = Regex::builder();
    let my_compiler = |builder| {
        compiler(builder, |builder, _, re| {
            let builder = builder.clone();
            let fwd_bytes = re.forward().to_sparse()?.to_bytes_native_endian();
            let rev_bytes = re.reverse().to_sparse()?.to_bytes_native_endian();
            Ok(CompiledRegex::compiled(move |test| -> TestResult {
                let fwd: sparse::DFA<&[u8]> =
                    sparse::DFA::from_bytes(&fwd_bytes).unwrap().0;
                let rev: sparse::DFA<&[u8]> =
                    sparse::DFA::from_bytes(&rev_bytes).unwrap().0;
                let re = builder.build_from_dfas(fwd, rev);
                run_test(&re, test)
            }))
        })
    };
    TestRunner::new()?
        .expand(EXPANSIONS, |t| t.compiles())
        .blacklist("expensive")
        .test_iter(suite()?.iter(), my_compiler(builder))
        .assert();
    Ok(())
}

fn dense_compiler(
    builder: dfa::regex::Builder,
) -> impl FnMut(&RegexTest, &[String]) -> Result<CompiledRegex> {
    compiler(builder, |_, _, re| {
        Ok(CompiledRegex::compiled(move |test| -> TestResult {
            run_test(&re, test)
        }))
    })
}

fn sparse_compiler(
    builder: dfa::regex::Builder,
) -> impl FnMut(&RegexTest, &[String]) -> Result<CompiledRegex> {
    compiler(builder, |builder, _, re| {
        let fwd = re.forward().to_sparse()?;
        let rev = re.reverse().to_sparse()?;
        let re = builder.build_from_dfas(fwd, rev);
        Ok(CompiledRegex::compiled(move |test| -> TestResult {
            run_test(&re, test)
        }))
    })
}

fn compiler(
    mut builder: dfa::regex::Builder,
    mut create_matcher: impl FnMut(
        &dfa::regex::Builder,
        Option<Prefilter>,
        Regex,
    ) -> Result<CompiledRegex>,
) -> impl FnMut(&RegexTest, &[String]) -> Result<CompiledRegex> {
    move |test, regexes| {
        // Parse regexes as HIRs for some analysis below.
        let mut hirs = vec![];
        for pattern in regexes.iter() {
            hirs.push(syntax::parse_with(pattern, &config_syntax(test))?);
        }

        // Get a prefilter in case the test wants it.
        let kind = match untestify_kind(test.match_kind()) {
            None => return Ok(CompiledRegex::skip()),
            Some(kind) => kind,
        };
        let pre = Prefilter::from_hirs_prefix(kind, &hirs);

        // Check if our regex contains things that aren't supported by DFAs.
        // That is, Unicode word boundaries when searching non-ASCII text.
        if !test.haystack().is_ascii() {
            for hir in hirs.iter() {
                let looks = hir.properties().look_set();
                if looks.contains(hir::Look::WordUnicode)
                    || looks.contains(hir::Look::WordUnicodeNegate)
                {
                    return Ok(CompiledRegex::skip());
                }
            }
        }
        if !configure_regex_builder(test, &mut builder) {
            return Ok(CompiledRegex::skip());
        }
        create_matcher(&builder, pre, builder.build_many(&regexes)?)
    }
}

fn run_test<A: Automaton>(re: &Regex<A>, test: &RegexTest) -> TestResult {
    let input = create_input(test);
    match test.additional_name() {
        "is_match" => TestResult::matched(re.is_match(input.earliest(true))),
        "find" => match test.search_kind() {
            SearchKind::Earliest | SearchKind::Leftmost => {
                let input =
                    input.earliest(test.search_kind() == SearchKind::Earliest);
                TestResult::matches(
                    re.find_iter(input)
                        .take(test.match_limit().unwrap_or(std::usize::MAX))
                        .map(|m| Match {
                            id: m.pattern().as_usize(),
                            span: Span { start: m.start(), end: m.end() },
                        }),
                )
            }
            SearchKind::Overlapping => {
                try_search_overlapping(re, &input).unwrap()
            }
        },
        "which" => match test.search_kind() {
            SearchKind::Earliest | SearchKind::Leftmost => {
                // There are no "which" APIs for standard searches.
                TestResult::skip()
            }
            SearchKind::Overlapping => {
                let dfa = re.forward();
                let mut patset = PatternSet::new(dfa.pattern_len());
                dfa.try_which_overlapping_matches(&input, &mut patset)
                    .unwrap();
                TestResult::which(patset.iter().map(|p| p.as_usize()))
            }
        },
        name => TestResult::fail(&format!("unrecognized test name: {}", name)),
    }
}

/// Configures the given regex builder with all relevant settings on the given
/// regex test.
///
/// If the regex test has a setting that is unsupported, then this returns
/// false (implying the test should be skipped).
fn configure_regex_builder(
    test: &RegexTest,
    builder: &mut dfa::regex::Builder,
) -> bool {
    let match_kind = match untestify_kind(test.match_kind()) {
        None => return false,
        Some(k) => k,
    };

    let starts = if test.anchored() {
        StartKind::Anchored
    } else {
        StartKind::Unanchored
    };
    let mut dense_config = dense::Config::new()
        .start_kind(starts)
        .match_kind(match_kind)
        .unicode_word_boundary(true);
    // When doing an overlapping search, we might try to find the start of each
    // match with a custom search routine. In that case, we need to tell the
    // reverse search (for the start offset) which pattern to look for. The
    // only way that API works is when anchored starting states are compiled
    // for each pattern. This does technically also enable it for the forward
    // DFA, but we're okay with that.
    if test.search_kind() == SearchKind::Overlapping {
        dense_config = dense_config.starts_for_each_pattern(true);
    }

    builder
        .syntax(config_syntax(test))
        .thompson(config_thompson(test))
        .dense(dense_config);
    true
}

/// Configuration of a Thompson NFA compiler from a regex test.
fn config_thompson(test: &RegexTest) -> thompson::Config {
    let mut lookm = regex_automata::util::look::LookMatcher::new();
    lookm.set_line_terminator(test.line_terminator());
    thompson::Config::new().utf8(test.utf8()).look_matcher(lookm)
}

/// Configuration of the regex syntax from a regex test.
fn config_syntax(test: &RegexTest) -> syntax::Config {
    syntax::Config::new()
        .case_insensitive(test.case_insensitive())
        .unicode(test.unicode())
        .utf8(test.utf8())
        .line_terminator(test.line_terminator())
}

/// Execute an overlapping search, and for each match found, also find its
/// overlapping starting positions.
///
/// N.B. This routine used to be part of the crate API, but 1) it wasn't clear
/// to me how useful it was and 2) it wasn't clear to me what its semantics
/// should be. In particular, a potentially surprising footgun of this routine
/// that it is worst case *quadratic* in the size of the haystack. Namely, it's
/// possible to report a match at every position, and for every such position,
/// scan all the way to the beginning of the haystack to find the starting
/// position. Typical leftmost non-overlapping searches don't suffer from this
/// because, well, matches can't overlap. So subsequent searches after a match
/// is found don't revisit previously scanned parts of the haystack.
///
/// Its semantics can be strange for other reasons too. For example, given
/// the regex '.*' and the haystack 'zz', the full set of overlapping matches
/// is: [0, 0], [1, 1], [0, 1], [2, 2], [1, 2], [0, 2]. The ordering of
/// those matches is quite strange, but makes sense when you think about the
/// implementation: an end offset is found left-to-right, and then one or more
/// starting offsets are found right-to-left.
///
/// Nevertheless, we provide this routine in our test suite because it's
/// useful to test the low level DFA overlapping search and our test suite
/// is written in a way that requires starting offsets.
fn try_search_overlapping<A: Automaton>(
    re: &Regex<A>,
    input: &Input<'_>,
) -> Result<TestResult> {
    let mut matches = vec![];
    let mut fwd_state = OverlappingState::start();
    let (fwd_dfa, rev_dfa) = (re.forward(), re.reverse());
    while let Some(end) = {
        fwd_dfa.try_search_overlapping_fwd(input, &mut fwd_state)?;
        fwd_state.get_match()
    } {
        let revsearch = input
            .clone()
            .range(input.start()..end.offset())
            .anchored(Anchored::Pattern(end.pattern()))
            .earliest(false);
        let mut rev_state = OverlappingState::start();
        while let Some(start) = {
            rev_dfa.try_search_overlapping_rev(&revsearch, &mut rev_state)?;
            rev_state.get_match()
        } {
            let span = Span { start: start.offset(), end: end.offset() };
            let mat = Match { id: end.pattern().as_usize(), span };
            matches.push(mat);
        }
    }
    Ok(TestResult::matches(matches))
}