1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
|
//! This crate implements various functions that help speed up dynamic
//! programming, most importantly the SMAWK algorithm for finding row
//! or column minima in a totally monotone matrix with *m* rows and
//! *n* columns in time O(*m* + *n*). This is much better than the
//! brute force solution which would take O(*mn*). When *m* and *n*
//! are of the same order, this turns a quadratic function into a
//! linear function.
//!
//! # Examples
//!
//! Computing the column minima of an *m* ✕ *n* Monge matrix can be
//! done efficiently with `smawk::column_minima`:
//!
//! ```
//! use smawk::Matrix;
//!
//! let matrix = vec![
//! vec![3, 2, 4, 5, 6],
//! vec![2, 1, 3, 3, 4],
//! vec![2, 1, 3, 3, 4],
//! vec![3, 2, 4, 3, 4],
//! vec![4, 3, 2, 1, 1],
//! ];
//! let minima = vec![1, 1, 4, 4, 4];
//! assert_eq!(smawk::column_minima(&matrix), minima);
//! ```
//!
//! The `minima` vector gives the index of the minimum value per
//! column, so `minima[0] == 1` since the minimum value in the first
//! column is 2 (row 1). Note that the smallest row index is returned.
//!
//! # Definitions
//!
//! Some of the functions in this crate only work on matrices that are
//! *totally monotone*, which we will define below.
//!
//! ## Monotone Matrices
//!
//! We start with a helper definition. Given an *m* ✕ *n* matrix `M`,
//! we say that `M` is *monotone* when the minimum value of row `i` is
//! found to the left of the minimum value in row `i'` where `i < i'`.
//!
//! More formally, if we let `rm(i)` denote the column index of the
//! left-most minimum value in row `i`, then we have
//!
//! ```text
//! rm(0) ≤ rm(1) ≤ ... ≤ rm(m - 1)
//! ```
//!
//! This means that as you go down the rows from top to bottom, the
//! row-minima proceed from left to right.
//!
//! The algorithms in this crate deal with finding such row- and
//! column-minima.
//!
//! ## Totally Monotone Matrices
//!
//! We say that a matrix `M` is *totally monotone* when every
//! sub-matrix is monotone. A sub-matrix is formed by the intersection
//! of any two rows `i < i'` and any two columns `j < j'`.
//!
//! This is often expressed as via this equivalent condition:
//!
//! ```text
//! M[i, j] > M[i, j'] => M[i', j] > M[i', j']
//! ```
//!
//! for all `i < i'` and `j < j'`.
//!
//! ## Monge Property for Matrices
//!
//! A matrix `M` is said to fulfill the *Monge property* if
//!
//! ```text
//! M[i, j] + M[i', j'] ≤ M[i, j'] + M[i', j]
//! ```
//!
//! for all `i < i'` and `j < j'`. This says that given any rectangle
//! in the matrix, the sum of the top-left and bottom-right corners is
//! less than or equal to the sum of the bottom-left and upper-right
//! corners.
//!
//! All Monge matrices are totally monotone, so it is enough to
//! establish that the Monge property holds in order to use a matrix
//! with the functions in this crate. If your program is dealing with
//! unknown inputs, it can use [`monge::is_monge`] to verify that a
//! matrix is a Monge matrix.
#![doc(html_root_url = "https://docs.rs/smawk/0.3.2")]
// The s! macro from ndarray uses unsafe internally, so we can only
// forbid unsafe code when building with the default features.
#![cfg_attr(not(feature = "ndarray"), forbid(unsafe_code))]
#[cfg(feature = "ndarray")]
pub mod brute_force;
pub mod monge;
#[cfg(feature = "ndarray")]
pub mod recursive;
/// Minimal matrix trait for two-dimensional arrays.
///
/// This provides the functionality needed to represent a read-only
/// numeric matrix. You can query the size of the matrix and access
/// elements. Modeled after [`ndarray::Array2`] from the [ndarray
/// crate](https://crates.io/crates/ndarray).
///
/// Enable the `ndarray` Cargo feature if you want to use it with
/// `ndarray::Array2`.
pub trait Matrix<T: Copy> {
/// Return the number of rows.
fn nrows(&self) -> usize;
/// Return the number of columns.
fn ncols(&self) -> usize;
/// Return a matrix element.
fn index(&self, row: usize, column: usize) -> T;
}
/// Simple and inefficient matrix representation used for doctest
/// examples and simple unit tests.
///
/// You should prefer implementing it yourself, or you can enable the
/// `ndarray` Cargo feature and use the provided implementation for
/// [`ndarray::Array2`].
impl<T: Copy> Matrix<T> for Vec<Vec<T>> {
fn nrows(&self) -> usize {
self.len()
}
fn ncols(&self) -> usize {
self[0].len()
}
fn index(&self, row: usize, column: usize) -> T {
self[row][column]
}
}
/// Adapting [`ndarray::Array2`] to the `Matrix` trait.
///
/// **Note: this implementation is only available if you enable the
/// `ndarray` Cargo feature.**
#[cfg(feature = "ndarray")]
impl<T: Copy> Matrix<T> for ndarray::Array2<T> {
#[inline]
fn nrows(&self) -> usize {
self.nrows()
}
#[inline]
fn ncols(&self) -> usize {
self.ncols()
}
#[inline]
fn index(&self, row: usize, column: usize) -> T {
self[[row, column]]
}
}
/// Compute row minima in O(*m* + *n*) time.
///
/// This implements the [SMAWK algorithm] for efficiently finding row
/// minima in a totally monotone matrix.
///
/// The SMAWK algorithm is from Agarwal, Klawe, Moran, Shor, and
/// Wilbur, *Geometric applications of a matrix searching algorithm*,
/// Algorithmica 2, pp. 195-208 (1987) and the code here is a
/// translation [David Eppstein's Python code][pads].
///
/// Running time on an *m* ✕ *n* matrix: O(*m* + *n*).
///
/// # Examples
///
/// ```
/// use smawk::Matrix;
/// let matrix = vec![vec![4, 2, 4, 3],
/// vec![5, 3, 5, 3],
/// vec![5, 3, 3, 1]];
/// assert_eq!(smawk::row_minima(&matrix),
/// vec![1, 1, 3]);
/// ```
///
/// # Panics
///
/// It is an error to call this on a matrix with zero columns.
///
/// [pads]: https://github.com/jfinkels/PADS/blob/master/pads/smawk.py
/// [SMAWK algorithm]: https://en.wikipedia.org/wiki/SMAWK_algorithm
pub fn row_minima<T: PartialOrd + Copy, M: Matrix<T>>(matrix: &M) -> Vec<usize> {
// Benchmarking shows that SMAWK performs roughly the same on row-
// and column-major matrices.
let mut minima = vec![0; matrix.nrows()];
smawk_inner(
&|j, i| matrix.index(i, j),
&(0..matrix.ncols()).collect::<Vec<_>>(),
&(0..matrix.nrows()).collect::<Vec<_>>(),
&mut minima,
);
minima
}
#[deprecated(since = "0.3.2", note = "Please use `row_minima` instead.")]
pub fn smawk_row_minima<T: PartialOrd + Copy, M: Matrix<T>>(matrix: &M) -> Vec<usize> {
row_minima(matrix)
}
/// Compute column minima in O(*m* + *n*) time.
///
/// This implements the [SMAWK algorithm] for efficiently finding
/// column minima in a totally monotone matrix.
///
/// The SMAWK algorithm is from Agarwal, Klawe, Moran, Shor, and
/// Wilbur, *Geometric applications of a matrix searching algorithm*,
/// Algorithmica 2, pp. 195-208 (1987) and the code here is a
/// translation [David Eppstein's Python code][pads].
///
/// Running time on an *m* ✕ *n* matrix: O(*m* + *n*).
///
/// # Examples
///
/// ```
/// use smawk::Matrix;
/// let matrix = vec![vec![4, 2, 4, 3],
/// vec![5, 3, 5, 3],
/// vec![5, 3, 3, 1]];
/// assert_eq!(smawk::column_minima(&matrix),
/// vec![0, 0, 2, 2]);
/// ```
///
/// # Panics
///
/// It is an error to call this on a matrix with zero rows.
///
/// [SMAWK algorithm]: https://en.wikipedia.org/wiki/SMAWK_algorithm
/// [pads]: https://github.com/jfinkels/PADS/blob/master/pads/smawk.py
pub fn column_minima<T: PartialOrd + Copy, M: Matrix<T>>(matrix: &M) -> Vec<usize> {
let mut minima = vec![0; matrix.ncols()];
smawk_inner(
&|i, j| matrix.index(i, j),
&(0..matrix.nrows()).collect::<Vec<_>>(),
&(0..matrix.ncols()).collect::<Vec<_>>(),
&mut minima,
);
minima
}
#[deprecated(since = "0.3.2", note = "Please use `column_minima` instead.")]
pub fn smawk_column_minima<T: PartialOrd + Copy, M: Matrix<T>>(matrix: &M) -> Vec<usize> {
column_minima(matrix)
}
/// Compute column minima in the given area of the matrix. The
/// `minima` slice is updated inplace.
fn smawk_inner<T: PartialOrd + Copy, M: Fn(usize, usize) -> T>(
matrix: &M,
rows: &[usize],
cols: &[usize],
minima: &mut [usize],
) {
if cols.is_empty() {
return;
}
let mut stack = Vec::with_capacity(cols.len());
for r in rows {
// TODO: use stack.last() instead of stack.is_empty() etc
while !stack.is_empty()
&& matrix(stack[stack.len() - 1], cols[stack.len() - 1])
> matrix(*r, cols[stack.len() - 1])
{
stack.pop();
}
if stack.len() != cols.len() {
stack.push(*r);
}
}
let rows = &stack;
let mut odd_cols = Vec::with_capacity(1 + cols.len() / 2);
for (idx, c) in cols.iter().enumerate() {
if idx % 2 == 1 {
odd_cols.push(*c);
}
}
smawk_inner(matrix, rows, &odd_cols, minima);
let mut r = 0;
for (c, &col) in cols.iter().enumerate().filter(|(c, _)| c % 2 == 0) {
let mut row = rows[r];
let last_row = if c == cols.len() - 1 {
rows[rows.len() - 1]
} else {
minima[cols[c + 1]]
};
let mut pair = (matrix(row, col), row);
while row != last_row {
r += 1;
row = rows[r];
if (matrix(row, col), row) < pair {
pair = (matrix(row, col), row);
}
}
minima[col] = pair.1;
}
}
/// Compute upper-right column minima in O(*m* + *n*) time.
///
/// The input matrix must be totally monotone.
///
/// The function returns a vector of `(usize, T)`. The `usize` in the
/// tuple at index `j` tells you the row of the minimum value in
/// column `j` and the `T` value is minimum value itself.
///
/// The algorithm only considers values above the main diagonal, which
/// means that it computes values `v(j)` where:
///
/// ```text
/// v(0) = initial
/// v(j) = min { M[i, j] | i < j } for j > 0
/// ```
///
/// If we let `r(j)` denote the row index of the minimum value in
/// column `j`, the tuples in the result vector become `(r(j), M[r(j),
/// j])`.
///
/// The algorithm is an *online* algorithm, in the sense that `matrix`
/// function can refer back to previously computed column minima when
/// determining an entry in the matrix. The guarantee is that we only
/// call `matrix(i, j)` after having computed `v(i)`. This is
/// reflected in the `&[(usize, T)]` argument to `matrix`, which grows
/// as more and more values are computed.
pub fn online_column_minima<T: Copy + PartialOrd, M: Fn(&[(usize, T)], usize, usize) -> T>(
initial: T,
size: usize,
matrix: M,
) -> Vec<(usize, T)> {
let mut result = vec![(0, initial)];
// State used by the algorithm.
let mut finished = 0;
let mut base = 0;
let mut tentative = 0;
// Shorthand for evaluating the matrix. We need a macro here since
// we don't want to borrow the result vector.
macro_rules! m {
($i:expr, $j:expr) => {{
assert!($i < $j, "(i, j) not above diagonal: ({}, {})", $i, $j);
assert!(
$i < size && $j < size,
"(i, j) out of bounds: ({}, {}), size: {}",
$i,
$j,
size
);
matrix(&result[..finished + 1], $i, $j)
}};
}
// Keep going until we have finished all size columns. Since the
// columns are zero-indexed, we're done when finished == size - 1.
while finished < size - 1 {
// First case: we have already advanced past the previous
// tentative value. We make a new tentative value by applying
// smawk_inner to the largest square submatrix that fits under
// the base.
let i = finished + 1;
if i > tentative {
let rows = (base..finished + 1).collect::<Vec<_>>();
tentative = std::cmp::min(finished + rows.len(), size - 1);
let cols = (finished + 1..tentative + 1).collect::<Vec<_>>();
let mut minima = vec![0; tentative + 1];
smawk_inner(&|i, j| m![i, j], &rows, &cols, &mut minima);
for col in cols {
let row = minima[col];
let v = m![row, col];
if col >= result.len() {
result.push((row, v));
} else if v < result[col].1 {
result[col] = (row, v);
}
}
finished = i;
continue;
}
// Second case: the new column minimum is on the diagonal. All
// subsequent ones will be at least as low, so we can clear
// out all our work from higher rows. As in the fourth case,
// the loss of tentative is amortized against the increase in
// base.
let diag = m![i - 1, i];
if diag < result[i].1 {
result[i] = (i - 1, diag);
base = i - 1;
tentative = i;
finished = i;
continue;
}
// Third case: row i-1 does not supply a column minimum in any
// column up to tentative. We simply advance finished while
// maintaining the invariant.
if m![i - 1, tentative] >= result[tentative].1 {
finished = i;
continue;
}
// Fourth and final case: a new column minimum at tentative.
// This allows us to make progress by incorporating rows prior
// to finished into the base. The base invariant holds because
// these rows cannot supply any later column minima. The work
// done when we last advanced tentative (and undone by this
// step) can be amortized against the increase in base.
base = i - 1;
tentative = i;
finished = i;
}
result
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn smawk_1x1() {
let matrix = vec![vec![2]];
assert_eq!(row_minima(&matrix), vec![0]);
assert_eq!(column_minima(&matrix), vec![0]);
}
#[test]
fn smawk_2x1() {
let matrix = vec![
vec![3], //
vec![2],
];
assert_eq!(row_minima(&matrix), vec![0, 0]);
assert_eq!(column_minima(&matrix), vec![1]);
}
#[test]
fn smawk_1x2() {
let matrix = vec![vec![2, 1]];
assert_eq!(row_minima(&matrix), vec![1]);
assert_eq!(column_minima(&matrix), vec![0, 0]);
}
#[test]
fn smawk_2x2() {
let matrix = vec![
vec![3, 2], //
vec![2, 1],
];
assert_eq!(row_minima(&matrix), vec![1, 1]);
assert_eq!(column_minima(&matrix), vec![1, 1]);
}
#[test]
fn smawk_3x3() {
let matrix = vec![
vec![3, 4, 4], //
vec![3, 4, 4],
vec![2, 3, 3],
];
assert_eq!(row_minima(&matrix), vec![0, 0, 0]);
assert_eq!(column_minima(&matrix), vec![2, 2, 2]);
}
#[test]
fn smawk_4x4() {
let matrix = vec![
vec![4, 5, 5, 5], //
vec![2, 3, 3, 3],
vec![2, 3, 3, 3],
vec![2, 2, 2, 2],
];
assert_eq!(row_minima(&matrix), vec![0, 0, 0, 0]);
assert_eq!(column_minima(&matrix), vec![1, 3, 3, 3]);
}
#[test]
fn smawk_5x5() {
let matrix = vec![
vec![3, 2, 4, 5, 6],
vec![2, 1, 3, 3, 4],
vec![2, 1, 3, 3, 4],
vec![3, 2, 4, 3, 4],
vec![4, 3, 2, 1, 1],
];
assert_eq!(row_minima(&matrix), vec![1, 1, 1, 1, 3]);
assert_eq!(column_minima(&matrix), vec![1, 1, 4, 4, 4]);
}
#[test]
fn online_1x1() {
let matrix = vec![vec![0]];
let minima = vec![(0, 0)];
assert_eq!(online_column_minima(0, 1, |_, i, j| matrix[i][j]), minima);
}
#[test]
fn online_2x2() {
let matrix = vec![
vec![0, 2], //
vec![0, 0],
];
let minima = vec![(0, 0), (0, 2)];
assert_eq!(online_column_minima(0, 2, |_, i, j| matrix[i][j]), minima);
}
#[test]
fn online_3x3() {
let matrix = vec![
vec![0, 4, 4], //
vec![0, 0, 4],
vec![0, 0, 0],
];
let minima = vec![(0, 0), (0, 4), (0, 4)];
assert_eq!(online_column_minima(0, 3, |_, i, j| matrix[i][j]), minima);
}
#[test]
fn online_4x4() {
let matrix = vec![
vec![0, 5, 5, 5], //
vec![0, 0, 3, 3],
vec![0, 0, 0, 3],
vec![0, 0, 0, 0],
];
let minima = vec![(0, 0), (0, 5), (1, 3), (1, 3)];
assert_eq!(online_column_minima(0, 4, |_, i, j| matrix[i][j]), minima);
}
#[test]
fn online_5x5() {
let matrix = vec![
vec![0, 2, 4, 6, 7],
vec![0, 0, 3, 4, 5],
vec![0, 0, 0, 3, 4],
vec![0, 0, 0, 0, 4],
vec![0, 0, 0, 0, 0],
];
let minima = vec![(0, 0), (0, 2), (1, 3), (2, 3), (2, 4)];
assert_eq!(online_column_minima(0, 5, |_, i, j| matrix[i][j]), minima);
}
#[test]
fn smawk_works_with_partial_ord() {
let matrix = vec![
vec![3.0, 2.0], //
vec![2.0, 1.0],
];
assert_eq!(row_minima(&matrix), vec![1, 1]);
assert_eq!(column_minima(&matrix), vec![1, 1]);
}
#[test]
fn online_works_with_partial_ord() {
let matrix = vec![
vec![0.0, 2.0], //
vec![0.0, 0.0],
];
let minima = vec![(0, 0.0), (0, 2.0)];
assert_eq!(
online_column_minima(0.0, 2, |_, i: usize, j: usize| matrix[i][j]),
minima
);
}
}
|