1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
|
//! Generating UUIDs from timestamps.
//!
//! Timestamps are used in a few UUID versions as a source of decentralized
//! uniqueness (as in versions 1 and 6), and as a way to enable sorting (as
//! in versions 6 and 7). Timestamps aren't encoded the same way by all UUID
//! versions so this module provides a single [`Timestamp`] type that can
//! convert between them.
//!
//! # Timestamp representations in UUIDs
//!
//! Versions 1 and 6 UUIDs use a bespoke timestamp that consists of the
//! number of 100ns ticks since `1582-10-15 00:00:00`, along with
//! a counter value to avoid duplicates.
//!
//! Version 7 UUIDs use a more standard timestamp that consists of the
//! number of millisecond ticks since the Unix epoch (`1970-01-01 00:00:00`).
//!
//! # References
//!
//! * [Timestamp in RFC4122](https://www.rfc-editor.org/rfc/rfc4122#section-4.1.4)
//! * [Timestamp in Draft RFC: New UUID Formats, Version 4](https://datatracker.ietf.org/doc/html/draft-peabody-dispatch-new-uuid-format-04#section-6.1)
use crate::Uuid;
/// The number of 100 nanosecond ticks between the RFC4122 epoch
/// (`1582-10-15 00:00:00`) and the Unix epoch (`1970-01-01 00:00:00`).
pub const UUID_TICKS_BETWEEN_EPOCHS: u64 = 0x01B2_1DD2_1381_4000;
/// A timestamp that can be encoded into a UUID.
///
/// This type abstracts the specific encoding, so versions 1, 6, and 7
/// UUIDs can both be supported through the same type, even
/// though they have a different representation of a timestamp.
///
/// # References
///
/// * [Timestamp in RFC4122](https://www.rfc-editor.org/rfc/rfc4122#section-4.1.4)
/// * [Timestamp in Draft RFC: New UUID Formats, Version 4](https://datatracker.ietf.org/doc/html/draft-peabody-dispatch-new-uuid-format-04#section-6.1)
/// * [Clock Sequence in RFC4122](https://datatracker.ietf.org/doc/html/rfc4122#section-4.1.5)
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Timestamp {
pub(crate) seconds: u64,
pub(crate) nanos: u32,
#[cfg(any(feature = "v1", feature = "v6"))]
pub(crate) counter: u16,
}
impl Timestamp {
/// Get a timestamp representing the current system time.
///
/// This method defers to the standard library's `SystemTime` type.
///
/// # Panics
///
/// This method will panic if calculating the elapsed time since the Unix epoch fails.
#[cfg(feature = "std")]
pub fn now(context: impl ClockSequence<Output = u16>) -> Self {
#[cfg(not(any(feature = "v1", feature = "v6")))]
{
let _ = context;
}
let (seconds, nanos) = now();
Timestamp {
seconds,
nanos,
#[cfg(any(feature = "v1", feature = "v6"))]
counter: context.generate_sequence(seconds, nanos),
}
}
/// Construct a `Timestamp` from an RFC4122 timestamp and counter, as used
/// in versions 1 and 6 UUIDs.
pub const fn from_rfc4122(ticks: u64, counter: u16) -> Self {
#[cfg(not(any(feature = "v1", feature = "v6")))]
{
let _ = counter;
}
let (seconds, nanos) = Self::rfc4122_to_unix(ticks);
Timestamp {
seconds,
nanos,
#[cfg(any(feature = "v1", feature = "v6"))]
counter,
}
}
/// Construct a `Timestamp` from a Unix timestamp, as used in version 7 UUIDs.
pub fn from_unix(context: impl ClockSequence<Output = u16>, seconds: u64, nanos: u32) -> Self {
#[cfg(not(any(feature = "v1", feature = "v6")))]
{
let _ = context;
Timestamp { seconds, nanos }
}
#[cfg(any(feature = "v1", feature = "v6"))]
{
let counter = context.generate_sequence(seconds, nanos);
Timestamp {
seconds,
nanos,
counter,
}
}
}
/// Get the value of the timestamp as an RFC4122 timestamp and counter,
/// as used in versions 1 and 6 UUIDs.
#[cfg(any(feature = "v1", feature = "v6"))]
pub const fn to_rfc4122(&self) -> (u64, u16) {
(
Self::unix_to_rfc4122_ticks(self.seconds, self.nanos),
self.counter,
)
}
/// Get the value of the timestamp as a Unix timestamp, as used in version 7 UUIDs.
pub const fn to_unix(&self) -> (u64, u32) {
(self.seconds, self.nanos)
}
#[cfg(any(feature = "v1", feature = "v6"))]
const fn unix_to_rfc4122_ticks(seconds: u64, nanos: u32) -> u64 {
let ticks = UUID_TICKS_BETWEEN_EPOCHS + seconds * 10_000_000 + nanos as u64 / 100;
ticks
}
const fn rfc4122_to_unix(ticks: u64) -> (u64, u32) {
(
(ticks - UUID_TICKS_BETWEEN_EPOCHS) / 10_000_000,
((ticks - UUID_TICKS_BETWEEN_EPOCHS) % 10_000_000) as u32 * 100,
)
}
#[deprecated(note = "use `to_unix` instead")]
/// Get the number of fractional nanoseconds in the Unix timestamp.
///
/// This method is deprecated and probably doesn't do what you're expecting it to.
/// It doesn't return the timestamp as nanoseconds since the Unix epoch, it returns
/// the fractional seconds of the timestamp.
pub const fn to_unix_nanos(&self) -> u32 {
// NOTE: This method never did what it said on the tin: instead of
// converting the timestamp into nanos it simply returned the nanoseconds
// part of the timestamp.
//
// We can't fix the behavior because the return type is too small to fit
// a useful value for nanoseconds since the epoch.
self.nanos
}
}
pub(crate) const fn encode_rfc4122_timestamp(ticks: u64, counter: u16, node_id: &[u8; 6]) -> Uuid {
let time_low = (ticks & 0xFFFF_FFFF) as u32;
let time_mid = ((ticks >> 32) & 0xFFFF) as u16;
let time_high_and_version = (((ticks >> 48) & 0x0FFF) as u16) | (1 << 12);
let mut d4 = [0; 8];
d4[0] = (((counter & 0x3F00) >> 8) as u8) | 0x80;
d4[1] = (counter & 0xFF) as u8;
d4[2] = node_id[0];
d4[3] = node_id[1];
d4[4] = node_id[2];
d4[5] = node_id[3];
d4[6] = node_id[4];
d4[7] = node_id[5];
Uuid::from_fields(time_low, time_mid, time_high_and_version, &d4)
}
pub(crate) const fn decode_rfc4122_timestamp(uuid: &Uuid) -> (u64, u16) {
let bytes = uuid.as_bytes();
let ticks: u64 = ((bytes[6] & 0x0F) as u64) << 56
| (bytes[7] as u64) << 48
| (bytes[4] as u64) << 40
| (bytes[5] as u64) << 32
| (bytes[0] as u64) << 24
| (bytes[1] as u64) << 16
| (bytes[2] as u64) << 8
| (bytes[3] as u64);
let counter: u16 = ((bytes[8] & 0x3F) as u16) << 8 | (bytes[9] as u16);
(ticks, counter)
}
#[cfg(uuid_unstable)]
pub(crate) const fn encode_sorted_rfc4122_timestamp(
ticks: u64,
counter: u16,
node_id: &[u8; 6],
) -> Uuid {
let time_high = ((ticks >> 28) & 0xFFFF_FFFF) as u32;
let time_mid = ((ticks >> 12) & 0xFFFF) as u16;
let time_low_and_version = ((ticks & 0x0FFF) as u16) | (0x6 << 12);
let mut d4 = [0; 8];
d4[0] = (((counter & 0x3F00) >> 8) as u8) | 0x80;
d4[1] = (counter & 0xFF) as u8;
d4[2] = node_id[0];
d4[3] = node_id[1];
d4[4] = node_id[2];
d4[5] = node_id[3];
d4[6] = node_id[4];
d4[7] = node_id[5];
Uuid::from_fields(time_high, time_mid, time_low_and_version, &d4)
}
#[cfg(uuid_unstable)]
pub(crate) const fn decode_sorted_rfc4122_timestamp(uuid: &Uuid) -> (u64, u16) {
let bytes = uuid.as_bytes();
let ticks: u64 = ((bytes[0]) as u64) << 52
| (bytes[1] as u64) << 44
| (bytes[2] as u64) << 36
| (bytes[3] as u64) << 28
| (bytes[4] as u64) << 20
| (bytes[5] as u64) << 12
| ((bytes[6] & 0xF) as u64) << 8
| (bytes[7] as u64);
let counter: u16 = ((bytes[8] & 0x3F) as u16) << 8 | (bytes[9] as u16);
(ticks, counter)
}
#[cfg(uuid_unstable)]
pub(crate) const fn encode_unix_timestamp_millis(millis: u64, random_bytes: &[u8; 10]) -> Uuid {
let millis_high = ((millis >> 16) & 0xFFFF_FFFF) as u32;
let millis_low = (millis & 0xFFFF) as u16;
let random_and_version =
(random_bytes[0] as u16 | ((random_bytes[1] as u16) << 8) & 0x0FFF) | (0x7 << 12);
let mut d4 = [0; 8];
d4[0] = (random_bytes[2] & 0x3F) | 0x80;
d4[1] = random_bytes[3];
d4[2] = random_bytes[4];
d4[3] = random_bytes[5];
d4[4] = random_bytes[6];
d4[5] = random_bytes[7];
d4[6] = random_bytes[8];
d4[7] = random_bytes[9];
Uuid::from_fields(millis_high, millis_low, random_and_version, &d4)
}
#[cfg(uuid_unstable)]
pub(crate) const fn decode_unix_timestamp_millis(uuid: &Uuid) -> u64 {
let bytes = uuid.as_bytes();
let millis: u64 = (bytes[0] as u64) << 40
| (bytes[1] as u64) << 32
| (bytes[2] as u64) << 24
| (bytes[3] as u64) << 16
| (bytes[4] as u64) << 8
| (bytes[5] as u64);
millis
}
#[cfg(all(feature = "std", feature = "js", target_arch = "wasm32"))]
fn now() -> (u64, u32) {
use wasm_bindgen::prelude::*;
#[wasm_bindgen]
extern "C" {
#[wasm_bindgen(js_namespace = Date)]
fn now() -> f64;
}
let now = now();
let secs = (now / 1_000.0) as u64;
let nanos = ((now % 1_000.0) * 1_000_000.0) as u32;
dbg!((secs, nanos))
}
#[cfg(all(feature = "std", any(not(feature = "js"), not(target_arch = "wasm32"))))]
fn now() -> (u64, u32) {
let dur = std::time::SystemTime::UNIX_EPOCH
.elapsed()
.expect("Getting elapsed time since UNIX_EPOCH. If this fails, we've somehow violated causality");
(dur.as_secs(), dur.subsec_nanos())
}
/// A counter that can be used by version 1 and version 6 UUIDs to support
/// the uniqueness of timestamps.
///
/// # References
///
/// * [Clock Sequence in RFC4122](https://datatracker.ietf.org/doc/html/rfc4122#section-4.1.5)
pub trait ClockSequence {
/// The type of sequence returned by this counter.
type Output;
/// Get the next value in the sequence to feed into a timestamp.
///
/// This method will be called each time a [`Timestamp`] is constructed.
fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output;
}
impl<'a, T: ClockSequence + ?Sized> ClockSequence for &'a T {
type Output = T::Output;
fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
(**self).generate_sequence(seconds, subsec_nanos)
}
}
/// Default implementations for the [`ClockSequence`] trait.
pub mod context {
use super::ClockSequence;
#[cfg(any(feature = "v1", feature = "v6"))]
use atomic::{Atomic, Ordering};
/// An empty counter that will always return the value `0`.
///
/// This type should be used when constructing timestamps for version 7 UUIDs,
/// since they don't need a counter for uniqueness.
#[derive(Debug, Clone, Copy, Default)]
pub struct NoContext;
impl ClockSequence for NoContext {
type Output = u16;
fn generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output {
0
}
}
#[cfg(all(any(feature = "v1", feature = "v6"), feature = "std", feature = "rng"))]
static CONTEXT: Context = Context {
count: Atomic::new(0),
};
#[cfg(all(any(feature = "v1", feature = "v6"), feature = "std", feature = "rng"))]
static CONTEXT_INITIALIZED: Atomic<bool> = Atomic::new(false);
#[cfg(all(any(feature = "v1", feature = "v6"), feature = "std", feature = "rng"))]
pub(crate) fn shared_context() -> &'static Context {
// If the context is in its initial state then assign it to a random value
// It doesn't matter if multiple threads observe `false` here and initialize the context
if CONTEXT_INITIALIZED
.compare_exchange(false, true, Ordering::Relaxed, Ordering::Relaxed)
.is_ok()
{
CONTEXT.count.store(crate::rng::u16(), Ordering::Release);
}
&CONTEXT
}
/// A thread-safe, wrapping counter that produces 14-bit numbers.
///
/// This type should be used when constructing version 1 and version 6 UUIDs.
#[derive(Debug)]
#[cfg(any(feature = "v1", feature = "v6"))]
pub struct Context {
count: Atomic<u16>,
}
#[cfg(any(feature = "v1", feature = "v6"))]
impl Context {
/// Construct a new context that's initialized with the given value.
///
/// The starting value should be a random number, so that UUIDs from
/// different systems with the same timestamps are less likely to collide.
/// When the `rng` feature is enabled, prefer the [`Context::new_random`] method.
pub const fn new(count: u16) -> Self {
Self {
count: Atomic::<u16>::new(count),
}
}
/// Construct a new context that's initialized with a random value.
#[cfg(feature = "rng")]
pub fn new_random() -> Self {
Self {
count: Atomic::<u16>::new(crate::rng::u16()),
}
}
}
#[cfg(any(feature = "v1", feature = "v6"))]
impl ClockSequence for Context {
type Output = u16;
fn generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output {
// RFC4122 reserves 2 bits of the clock sequence so the actual
// maximum value is smaller than `u16::MAX`. Since we unconditionally
// increment the clock sequence we want to wrap once it becomes larger
// than what we can represent in a "u14". Otherwise there'd be patches
// where the clock sequence doesn't change regardless of the timestamp
self.count.fetch_add(1, Ordering::AcqRel) % (u16::MAX >> 2)
}
}
}
|