1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
use crate::annotation;
use crate::component::*;
use crate::core::Producers;
use crate::kw;
use crate::parser::{Parse, Parser, Result};
use crate::token::Index;
use crate::token::{Id, NameAnnotation, Span};
/// A parsed WebAssembly component module.
#[derive(Debug)]
pub struct Component<'a> {
/// Where this `component` was defined
pub span: Span,
/// An optional identifier this component is known by
pub id: Option<Id<'a>>,
/// An optional `@name` annotation for this component
pub name: Option<NameAnnotation<'a>>,
/// What kind of component this was parsed as.
pub kind: ComponentKind<'a>,
}
/// The different kinds of ways to define a component.
#[derive(Debug)]
pub enum ComponentKind<'a> {
/// A component defined in the textual s-expression format.
Text(Vec<ComponentField<'a>>),
/// A component that had its raw binary bytes defined via the `binary`
/// directive.
Binary(Vec<&'a [u8]>),
}
impl<'a> Component<'a> {
/// Performs a name resolution pass on this [`Component`], resolving all
/// symbolic names to indices.
///
/// The WAT format contains a number of shorthands to make it easier to
/// write, such as inline exports, inline imports, inline type definitions,
/// etc. Additionally it allows using symbolic names such as `$foo` instead
/// of using indices. This module will postprocess an AST to remove all of
/// this syntactic sugar, preparing the AST for binary emission. This is
/// where expansion and name resolution happens.
///
/// This function will mutate the AST of this [`Component`] and replace all
/// [`Index`](crate::token::Index) arguments with `Index::Num`. This will
/// also expand inline exports/imports listed on fields and handle various
/// other shorthands of the text format.
///
/// If successful the AST was modified to be ready for binary encoding.
///
/// # Errors
///
/// If an error happens during resolution, such a name resolution error or
/// items are found in the wrong order, then an error is returned.
pub fn resolve(&mut self) -> std::result::Result<(), crate::Error> {
match &mut self.kind {
ComponentKind::Text(fields) => {
crate::component::expand::expand(fields);
}
ComponentKind::Binary(_) => {}
}
crate::component::resolve::resolve(self)
}
/// Encodes this [`Component`] to its binary form.
///
/// This function will take the textual representation in [`Component`] and
/// perform all steps necessary to convert it to a binary WebAssembly
/// component, suitable for writing to a `*.wasm` file. This function may
/// internally modify the [`Component`], for example:
///
/// * Name resolution is performed to ensure that `Index::Id` isn't present
/// anywhere in the AST.
///
/// * Inline shorthands such as imports/exports/types are all expanded to be
/// dedicated fields of the component.
///
/// * Component fields may be shuffled around to preserve index ordering from
/// expansions.
///
/// After all of this expansion has happened the component will be converted to
/// its binary form and returned as a `Vec<u8>`. This is then suitable to
/// hand off to other wasm runtimes and such.
///
/// # Errors
///
/// This function can return an error for name resolution errors and other
/// expansion-related errors.
pub fn encode(&mut self) -> std::result::Result<Vec<u8>, crate::Error> {
self.resolve()?;
Ok(crate::component::binary::encode(self))
}
pub(crate) fn validate(&self, parser: Parser<'_>) -> Result<()> {
let mut starts = 0;
if let ComponentKind::Text(fields) = &self.kind {
for item in fields.iter() {
if let ComponentField::Start(_) = item {
starts += 1;
}
}
}
if starts > 1 {
return Err(parser.error("multiple start sections found"));
}
Ok(())
}
}
impl<'a> Parse<'a> for Component<'a> {
fn parse(parser: Parser<'a>) -> Result<Self> {
let _r = parser.register_annotation("custom");
let _r = parser.register_annotation("producers");
let _r = parser.register_annotation("name");
let _r = parser.register_annotation("metadata.code.branch_hint");
let span = parser.parse::<kw::component>()?.0;
let id = parser.parse()?;
let name = parser.parse()?;
let kind = if parser.peek::<kw::binary>()? {
parser.parse::<kw::binary>()?;
let mut data = Vec::new();
while !parser.is_empty() {
data.push(parser.parse()?);
}
ComponentKind::Binary(data)
} else {
ComponentKind::Text(ComponentField::parse_remaining(parser)?)
};
Ok(Component {
span,
id,
name,
kind,
})
}
}
/// A listing of all possible fields that can make up a WebAssembly component.
#[allow(missing_docs)]
#[derive(Debug)]
pub enum ComponentField<'a> {
CoreModule(CoreModule<'a>),
CoreInstance(CoreInstance<'a>),
CoreType(CoreType<'a>),
Component(NestedComponent<'a>),
Instance(Instance<'a>),
Alias(Alias<'a>),
Type(Type<'a>),
CanonicalFunc(CanonicalFunc<'a>),
CoreFunc(CoreFunc<'a>), // Supports inverted forms of other items
Func(Func<'a>), // Supports inverted forms of other items
Start(Start<'a>),
Import(ComponentImport<'a>),
Export(ComponentExport<'a>),
Custom(Custom<'a>),
Producers(Producers<'a>),
}
impl<'a> ComponentField<'a> {
fn parse_remaining(parser: Parser<'a>) -> Result<Vec<ComponentField>> {
let mut fields = Vec::new();
while !parser.is_empty() {
fields.push(parser.parens(ComponentField::parse)?);
}
Ok(fields)
}
}
impl<'a> Parse<'a> for ComponentField<'a> {
fn parse(parser: Parser<'a>) -> Result<Self> {
if parser.peek::<kw::core>()? {
if parser.peek2::<kw::module>()? {
return Ok(Self::CoreModule(parser.parse()?));
}
if parser.peek2::<kw::instance>()? {
return Ok(Self::CoreInstance(parser.parse()?));
}
if parser.peek2::<kw::r#type>()? {
return Ok(Self::CoreType(parser.parse()?));
}
if parser.peek2::<kw::func>()? {
return Ok(Self::CoreFunc(parser.parse()?));
}
} else {
if parser.peek::<kw::component>()? {
return Ok(Self::Component(parser.parse()?));
}
if parser.peek::<kw::instance>()? {
return Ok(Self::Instance(parser.parse()?));
}
if parser.peek::<kw::alias>()? {
return Ok(Self::Alias(parser.parse()?));
}
if parser.peek::<kw::r#type>()? {
return Ok(Self::Type(Type::parse_maybe_with_inline_exports(parser)?));
}
if parser.peek::<kw::import>()? {
return Ok(Self::Import(parser.parse()?));
}
if parser.peek::<kw::func>()? {
return Ok(Self::Func(parser.parse()?));
}
if parser.peek::<kw::export>()? {
return Ok(Self::Export(parser.parse()?));
}
if parser.peek::<kw::start>()? {
return Ok(Self::Start(parser.parse()?));
}
if parser.peek::<annotation::custom>()? {
return Ok(Self::Custom(parser.parse()?));
}
if parser.peek::<annotation::producers>()? {
return Ok(Self::Producers(parser.parse()?));
}
}
Err(parser.error("expected valid component field"))
}
}
/// A function to call at instantiation time.
#[derive(Debug)]
pub struct Start<'a> {
/// The function to call.
pub func: Index<'a>,
/// The arguments to pass to the function.
pub args: Vec<ItemRef<'a, kw::value>>,
/// Names of the result values.
pub results: Vec<Option<Id<'a>>>,
}
impl<'a> Parse<'a> for Start<'a> {
fn parse(parser: Parser<'a>) -> Result<Self> {
parser.parse::<kw::start>()?;
let func = parser.parse()?;
let mut args = Vec::new();
while !parser.is_empty() && !parser.peek2::<kw::result>()? {
args.push(parser.parens(|parser| parser.parse())?);
}
let mut results = Vec::new();
while !parser.is_empty() && parser.peek2::<kw::result>()? {
results.push(parser.parens(|parser| {
parser.parse::<kw::result>()?;
parser.parens(|parser| {
parser.parse::<kw::value>()?;
parser.parse()
})
})?);
}
Ok(Start {
func,
args,
results,
})
}
}
/// A nested WebAssembly component.
#[derive(Debug)]
pub struct NestedComponent<'a> {
/// Where this `component` was defined
pub span: Span,
/// An optional identifier this component is known by
pub id: Option<Id<'a>>,
/// An optional `@name` annotation for this component
pub name: Option<NameAnnotation<'a>>,
/// If present, inline export annotations which indicate names this
/// definition should be exported under.
pub exports: InlineExport<'a>,
/// What kind of component this was parsed as.
pub kind: NestedComponentKind<'a>,
}
/// The different kinds of ways to define a nested component.
#[derive(Debug)]
pub enum NestedComponentKind<'a> {
/// This is actually an inline import of a component
Import {
/// The information about where this is being imported from.
import: InlineImport<'a>,
/// The type of component being imported.
ty: ComponentTypeUse<'a, ComponentType<'a>>,
},
/// The component is defined inline as a local definition with its fields
/// listed here.
Inline(Vec<ComponentField<'a>>),
}
impl<'a> Parse<'a> for NestedComponent<'a> {
fn parse(parser: Parser<'a>) -> Result<Self> {
parser.depth_check()?;
let span = parser.parse::<kw::component>()?.0;
let id = parser.parse()?;
let name = parser.parse()?;
let exports = parser.parse()?;
let kind = if let Some(import) = parser.parse()? {
NestedComponentKind::Import {
import,
ty: parser.parse()?,
}
} else {
let mut fields = Vec::new();
while !parser.is_empty() {
fields.push(parser.parens(|p| p.parse())?);
}
NestedComponentKind::Inline(fields)
};
Ok(NestedComponent {
span,
id,
name,
exports,
kind,
})
}
}
|