summaryrefslogtreecommitdiffstats
path: root/third_party/rust/wast/src/core/resolve/names.rs
blob: 05894e9a1ead3314c6b3ff7475472f989fd203fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
use crate::core::resolve::Ns;
use crate::core::*;
use crate::names::{resolve_error, Namespace};
use crate::token::{Id, Index};
use crate::Error;
use std::collections::HashMap;

pub fn resolve<'a>(fields: &mut Vec<ModuleField<'a>>) -> Result<Resolver<'a>, Error> {
    let mut resolver = Resolver::default();
    resolver.process(fields)?;
    Ok(resolver)
}

/// Context structure used to perform name resolution.
#[derive(Default)]
pub struct Resolver<'a> {
    // Namespaces within each module. Note that each namespace carries with it
    // information about the signature of the item in that namespace. The
    // signature is later used to synthesize the type of a module and inject
    // type annotations if necessary.
    funcs: Namespace<'a>,
    globals: Namespace<'a>,
    tables: Namespace<'a>,
    memories: Namespace<'a>,
    types: Namespace<'a>,
    tags: Namespace<'a>,
    datas: Namespace<'a>,
    elems: Namespace<'a>,
    fields: HashMap<u32, Namespace<'a>>,
    type_info: Vec<TypeInfo<'a>>,
}

impl<'a> Resolver<'a> {
    fn process(&mut self, fields: &mut Vec<ModuleField<'a>>) -> Result<(), Error> {
        // Number everything in the module, recording what names correspond to
        // what indices.
        for field in fields.iter_mut() {
            self.register(field)?;
        }

        // Then we can replace all our `Index::Id` instances with `Index::Num`
        // in the AST. Note that this also recurses into nested modules.
        for field in fields.iter_mut() {
            self.resolve_field(field)?;
        }
        Ok(())
    }

    fn register_type(&mut self, ty: &Type<'a>) -> Result<(), Error> {
        let type_index = self.types.register(ty.id, "type")?;

        match &ty.def {
            // For GC structure types we need to be sure to populate the
            // field namespace here as well.
            //
            // The field namespace is relative to the struct fields are defined in
            TypeDef::Struct(r#struct) => {
                for (i, field) in r#struct.fields.iter().enumerate() {
                    if let Some(id) = field.id {
                        self.fields
                            .entry(type_index)
                            .or_insert(Namespace::default())
                            .register_specific(id, i as u32, "field")?;
                    }
                }
            }

            TypeDef::Array(_) | TypeDef::Func(_) => {}
        }

        // Record function signatures as we see them to so we can
        // generate errors for mismatches in references such as
        // `call_indirect`.
        match &ty.def {
            TypeDef::Func(f) => {
                let params = f.params.iter().map(|p| p.2).collect();
                let results = f.results.clone();
                self.type_info.push(TypeInfo::Func { params, results });
            }
            _ => self.type_info.push(TypeInfo::Other),
        }

        Ok(())
    }

    fn register(&mut self, item: &ModuleField<'a>) -> Result<(), Error> {
        match item {
            ModuleField::Import(i) => match &i.item.kind {
                ItemKind::Func(_) => self.funcs.register(i.item.id, "func")?,
                ItemKind::Memory(_) => self.memories.register(i.item.id, "memory")?,
                ItemKind::Table(_) => self.tables.register(i.item.id, "table")?,
                ItemKind::Global(_) => self.globals.register(i.item.id, "global")?,
                ItemKind::Tag(_) => self.tags.register(i.item.id, "tag")?,
            },
            ModuleField::Global(i) => self.globals.register(i.id, "global")?,
            ModuleField::Memory(i) => self.memories.register(i.id, "memory")?,
            ModuleField::Func(i) => self.funcs.register(i.id, "func")?,
            ModuleField::Table(i) => self.tables.register(i.id, "table")?,

            ModuleField::Type(i) => {
                return self.register_type(i);
            }
            ModuleField::Rec(i) => {
                for ty in &i.types {
                    self.register_type(ty)?;
                }
                return Ok(());
            }
            ModuleField::Elem(e) => self.elems.register(e.id, "elem")?,
            ModuleField::Data(d) => self.datas.register(d.id, "data")?,
            ModuleField::Tag(t) => self.tags.register(t.id, "tag")?,

            // These fields don't define any items in any index space.
            ModuleField::Export(_) | ModuleField::Start(_) | ModuleField::Custom(_) => {
                return Ok(())
            }
        };

        Ok(())
    }

    fn resolve_type(&self, ty: &mut Type<'a>) -> Result<(), Error> {
        match &mut ty.def {
            TypeDef::Func(func) => func.resolve(self)?,
            TypeDef::Struct(struct_) => {
                for field in &mut struct_.fields {
                    self.resolve_storagetype(&mut field.ty)?;
                }
            }
            TypeDef::Array(array) => self.resolve_storagetype(&mut array.ty)?,
        }
        if let Some(parent) = &mut ty.parent {
            self.resolve(parent, Ns::Type)?;
        }
        Ok(())
    }

    fn resolve_field(&self, field: &mut ModuleField<'a>) -> Result<(), Error> {
        match field {
            ModuleField::Import(i) => {
                self.resolve_item_sig(&mut i.item)?;
                Ok(())
            }

            ModuleField::Type(ty) => self.resolve_type(ty),
            ModuleField::Rec(rec) => {
                for ty in &mut rec.types {
                    self.resolve_type(ty)?;
                }
                Ok(())
            }

            ModuleField::Func(f) => {
                let (idx, inline) = self.resolve_type_use(&mut f.ty)?;
                let n = match idx {
                    Index::Num(n, _) => *n,
                    Index::Id(_) => panic!("expected `Num`"),
                };
                if let FuncKind::Inline { locals, expression } = &mut f.kind {
                    // Resolve (ref T) in locals
                    for local in locals.iter_mut() {
                        self.resolve_valtype(&mut local.ty)?;
                    }

                    // Build a scope with a local namespace for the function
                    // body
                    let mut scope = Namespace::default();

                    // Parameters come first in the scope...
                    if let Some(inline) = &inline {
                        for (id, _, _) in inline.params.iter() {
                            scope.register(*id, "local")?;
                        }
                    } else if let Some(TypeInfo::Func { params, .. }) =
                        self.type_info.get(n as usize)
                    {
                        for _ in 0..params.len() {
                            scope.register(None, "local")?;
                        }
                    }

                    // .. followed by locals themselves
                    for local in locals.iter() {
                        scope.register(local.id, "local")?;
                    }

                    // Initialize the expression resolver with this scope
                    let mut resolver = ExprResolver::new(self, scope);

                    // and then we can resolve the expression!
                    resolver.resolve(expression)?;

                    // specifically save the original `sig`, if it was present,
                    // because that's what we're using for local names.
                    f.ty.inline = inline;
                }
                Ok(())
            }

            ModuleField::Elem(e) => {
                match &mut e.kind {
                    ElemKind::Active { table, offset } => {
                        self.resolve(table, Ns::Table)?;
                        self.resolve_expr(offset)?;
                    }
                    ElemKind::Passive { .. } | ElemKind::Declared { .. } => {}
                }
                match &mut e.payload {
                    ElemPayload::Indices(elems) => {
                        for idx in elems {
                            self.resolve(idx, Ns::Func)?;
                        }
                    }
                    ElemPayload::Exprs { exprs, ty } => {
                        for expr in exprs {
                            self.resolve_expr(expr)?;
                        }
                        self.resolve_heaptype(&mut ty.heap)?;
                    }
                }
                Ok(())
            }

            ModuleField::Data(d) => {
                if let DataKind::Active { memory, offset } = &mut d.kind {
                    self.resolve(memory, Ns::Memory)?;
                    self.resolve_expr(offset)?;
                }
                Ok(())
            }

            ModuleField::Start(i) => {
                self.resolve(i, Ns::Func)?;
                Ok(())
            }

            ModuleField::Export(e) => {
                self.resolve(
                    &mut e.item,
                    match e.kind {
                        ExportKind::Func => Ns::Func,
                        ExportKind::Table => Ns::Table,
                        ExportKind::Memory => Ns::Memory,
                        ExportKind::Global => Ns::Global,
                        ExportKind::Tag => Ns::Tag,
                    },
                )?;
                Ok(())
            }

            ModuleField::Global(g) => {
                self.resolve_valtype(&mut g.ty.ty)?;
                if let GlobalKind::Inline(expr) = &mut g.kind {
                    self.resolve_expr(expr)?;
                }
                Ok(())
            }

            ModuleField::Tag(t) => {
                match &mut t.ty {
                    TagType::Exception(ty) => {
                        self.resolve_type_use(ty)?;
                    }
                }
                Ok(())
            }

            ModuleField::Table(t) => {
                if let TableKind::Normal { ty, init_expr } = &mut t.kind {
                    self.resolve_heaptype(&mut ty.elem.heap)?;
                    if let Some(init_expr) = init_expr {
                        self.resolve_expr(init_expr)?;
                    }
                }
                Ok(())
            }

            ModuleField::Memory(_) | ModuleField::Custom(_) => Ok(()),
        }
    }

    fn resolve_valtype(&self, ty: &mut ValType<'a>) -> Result<(), Error> {
        match ty {
            ValType::Ref(ty) => self.resolve_heaptype(&mut ty.heap)?,
            _ => {}
        }
        Ok(())
    }

    fn resolve_reftype(&self, ty: &mut RefType<'a>) -> Result<(), Error> {
        self.resolve_heaptype(&mut ty.heap)
    }

    fn resolve_heaptype(&self, ty: &mut HeapType<'a>) -> Result<(), Error> {
        match ty {
            HeapType::Concrete(i) => {
                self.resolve(i, Ns::Type)?;
            }
            _ => {}
        }
        Ok(())
    }

    fn resolve_storagetype(&self, ty: &mut StorageType<'a>) -> Result<(), Error> {
        match ty {
            StorageType::Val(ty) => self.resolve_valtype(ty)?,
            _ => {}
        }
        Ok(())
    }

    fn resolve_item_sig(&self, item: &mut ItemSig<'a>) -> Result<(), Error> {
        match &mut item.kind {
            ItemKind::Func(t) | ItemKind::Tag(TagType::Exception(t)) => {
                self.resolve_type_use(t)?;
            }
            ItemKind::Global(t) => self.resolve_valtype(&mut t.ty)?,
            ItemKind::Table(t) => {
                self.resolve_heaptype(&mut t.elem.heap)?;
            }
            ItemKind::Memory(_) => {}
        }
        Ok(())
    }

    fn resolve_type_use<'b, T>(
        &self,
        ty: &'b mut TypeUse<'a, T>,
    ) -> Result<(&'b Index<'a>, Option<T>), Error>
    where
        T: TypeReference<'a>,
    {
        let idx = ty.index.as_mut().unwrap();
        self.resolve(idx, Ns::Type)?;

        // If the type was listed inline *and* it was specified via a type index
        // we need to assert they're the same.
        //
        // Note that we resolve the type first to transform all names to
        // indices to ensure that all the indices line up.
        if let Some(inline) = &mut ty.inline {
            inline.resolve(self)?;
            inline.check_matches(idx, self)?;
        }

        Ok((idx, ty.inline.take()))
    }

    fn resolve_expr(&self, expr: &mut Expression<'a>) -> Result<(), Error> {
        ExprResolver::new(self, Namespace::default()).resolve(expr)
    }

    pub fn resolve(&self, idx: &mut Index<'a>, ns: Ns) -> Result<u32, Error> {
        match ns {
            Ns::Func => self.funcs.resolve(idx, "func"),
            Ns::Table => self.tables.resolve(idx, "table"),
            Ns::Global => self.globals.resolve(idx, "global"),
            Ns::Memory => self.memories.resolve(idx, "memory"),
            Ns::Tag => self.tags.resolve(idx, "tag"),
            Ns::Type => self.types.resolve(idx, "type"),
        }
    }
}

#[derive(Debug, Clone)]
struct ExprBlock<'a> {
    // The label of the block
    label: Option<Id<'a>>,
    // Whether this block pushed a new scope for resolving locals
    pushed_scope: bool,
}

struct ExprResolver<'a, 'b> {
    resolver: &'b Resolver<'a>,
    // Scopes tracks the local namespace and dynamically grows as we enter/exit
    // `let` blocks
    scopes: Vec<Namespace<'a>>,
    blocks: Vec<ExprBlock<'a>>,
}

impl<'a, 'b> ExprResolver<'a, 'b> {
    fn new(resolver: &'b Resolver<'a>, initial_scope: Namespace<'a>) -> ExprResolver<'a, 'b> {
        ExprResolver {
            resolver,
            scopes: vec![initial_scope],
            blocks: Vec::new(),
        }
    }

    fn resolve(&mut self, expr: &mut Expression<'a>) -> Result<(), Error> {
        for instr in expr.instrs.iter_mut() {
            self.resolve_instr(instr)?;
        }
        Ok(())
    }

    fn resolve_block_type(&mut self, bt: &mut BlockType<'a>) -> Result<(), Error> {
        // If the index is specified on this block type then that's the source
        // of resolution and the resolver step here will verify the inline type
        // matches. Note that indexes may come from the source text itself but
        // may also come from being injected as part of the type expansion phase
        // of resolution.
        //
        // If no type is present then that means that the inline type is not
        // present or has 0-1 results. In that case the nested value types are
        // resolved, if they're there, to get encoded later on.
        if bt.ty.index.is_some() {
            self.resolver.resolve_type_use(&mut bt.ty)?;
        } else if let Some(inline) = &mut bt.ty.inline {
            inline.resolve(self.resolver)?;
        }

        Ok(())
    }

    fn resolve_instr(&mut self, instr: &mut Instruction<'a>) -> Result<(), Error> {
        use Instruction::*;

        if let Some(m) = instr.memarg_mut() {
            self.resolver.resolve(&mut m.memory, Ns::Memory)?;
        }

        match instr {
            MemorySize(i) | MemoryGrow(i) | MemoryFill(i) | MemoryDiscard(i) => {
                self.resolver.resolve(&mut i.mem, Ns::Memory)?;
            }
            MemoryInit(i) => {
                self.resolver.datas.resolve(&mut i.data, "data")?;
                self.resolver.resolve(&mut i.mem, Ns::Memory)?;
            }
            MemoryCopy(i) => {
                self.resolver.resolve(&mut i.src, Ns::Memory)?;
                self.resolver.resolve(&mut i.dst, Ns::Memory)?;
            }
            DataDrop(i) => {
                self.resolver.datas.resolve(i, "data")?;
            }

            TableInit(i) => {
                self.resolver.elems.resolve(&mut i.elem, "elem")?;
                self.resolver.resolve(&mut i.table, Ns::Table)?;
            }
            ElemDrop(i) => {
                self.resolver.elems.resolve(i, "elem")?;
            }

            TableCopy(i) => {
                self.resolver.resolve(&mut i.dst, Ns::Table)?;
                self.resolver.resolve(&mut i.src, Ns::Table)?;
            }

            TableFill(i) | TableSet(i) | TableGet(i) | TableSize(i) | TableGrow(i) => {
                self.resolver.resolve(&mut i.dst, Ns::Table)?;
            }

            GlobalSet(i) | GlobalGet(i) => {
                self.resolver.resolve(i, Ns::Global)?;
            }

            LocalSet(i) | LocalGet(i) | LocalTee(i) => {
                assert!(self.scopes.len() > 0);
                // Resolve a local by iterating over scopes from most recent
                // to less recent. This allows locals added by `let` blocks to
                // shadow less recent locals.
                for (depth, scope) in self.scopes.iter().enumerate().rev() {
                    if let Err(e) = scope.resolve(i, "local") {
                        if depth == 0 {
                            // There are no more scopes left, report this as
                            // the result
                            return Err(e);
                        }
                    } else {
                        break;
                    }
                }
                // We must have taken the `break` and resolved the local
                assert!(i.is_resolved());
            }

            Call(i) | RefFunc(i) | ReturnCall(i) => {
                self.resolver.resolve(i, Ns::Func)?;
            }

            CallIndirect(c) | ReturnCallIndirect(c) => {
                self.resolver.resolve(&mut c.table, Ns::Table)?;
                self.resolver.resolve_type_use(&mut c.ty)?;
            }

            CallRef(i) | ReturnCallRef(i) => {
                self.resolver.resolve(i, Ns::Type)?;
            }

            FuncBind(b) => {
                self.resolver.resolve_type_use(&mut b.ty)?;
            }

            Let(t) => {
                // Resolve (ref T) in locals
                for local in t.locals.iter_mut() {
                    self.resolver.resolve_valtype(&mut local.ty)?;
                }

                // Register all locals defined in this let
                let mut scope = Namespace::default();
                for local in t.locals.iter() {
                    scope.register(local.id, "local")?;
                }
                self.scopes.push(scope);
                self.blocks.push(ExprBlock {
                    label: t.block.label,
                    pushed_scope: true,
                });

                self.resolve_block_type(&mut t.block)?;
            }

            Block(bt) | If(bt) | Loop(bt) | Try(bt) => {
                self.blocks.push(ExprBlock {
                    label: bt.label,
                    pushed_scope: false,
                });
                self.resolve_block_type(bt)?;
            }
            TryTable(try_table) => {
                self.resolve_block_type(&mut try_table.block)?;
                for catch in &mut try_table.catches {
                    if let Some(tag) = catch.kind.tag_index_mut() {
                        self.resolver.resolve(tag, Ns::Tag)?;
                    }
                    self.resolve_label(&mut catch.label)?;
                }
                self.blocks.push(ExprBlock {
                    label: try_table.block.label,
                    pushed_scope: false,
                });
            }

            // On `End` instructions we pop a label from the stack, and for both
            // `End` and `Else` instructions if they have labels listed we
            // verify that they match the label at the beginning of the block.
            Else(_) | End(_) => {
                let (matching_block, label) = match &instr {
                    Else(label) => (self.blocks.last().cloned(), label),
                    End(label) => (self.blocks.pop(), label),
                    _ => unreachable!(),
                };
                let matching_block = match matching_block {
                    Some(l) => l,
                    None => return Ok(()),
                };

                // Reset the local scopes to before this block was entered
                if matching_block.pushed_scope {
                    if let End(_) = instr {
                        self.scopes.pop();
                    }
                }

                let label = match label {
                    Some(l) => l,
                    None => return Ok(()),
                };
                if Some(*label) == matching_block.label {
                    return Ok(());
                }
                return Err(Error::new(
                    label.span(),
                    "mismatching labels between end and block".to_string(),
                ));
            }

            Br(i) | BrIf(i) | BrOnNull(i) | BrOnNonNull(i) => {
                self.resolve_label(i)?;
            }

            BrTable(i) => {
                for label in i.labels.iter_mut() {
                    self.resolve_label(label)?;
                }
                self.resolve_label(&mut i.default)?;
            }

            Throw(i) | Catch(i) => {
                self.resolver.resolve(i, Ns::Tag)?;
            }

            Rethrow(i) => {
                self.resolve_label(i)?;
            }

            Delegate(i) => {
                // Since a delegate starts counting one layer out from the
                // current try-delegate block, we pop before we resolve labels.
                self.blocks.pop();
                self.resolve_label(i)?;
            }

            Select(s) => {
                if let Some(list) = &mut s.tys {
                    for ty in list {
                        self.resolver.resolve_valtype(ty)?;
                    }
                }
            }

            RefTest(i) => {
                self.resolver.resolve_reftype(&mut i.r#type)?;
            }
            RefCast(i) => {
                self.resolver.resolve_reftype(&mut i.r#type)?;
            }
            BrOnCast(i) => {
                self.resolve_label(&mut i.label)?;
                self.resolver.resolve_reftype(&mut i.to_type)?;
                self.resolver.resolve_reftype(&mut i.from_type)?;
            }
            BrOnCastFail(i) => {
                self.resolve_label(&mut i.label)?;
                self.resolver.resolve_reftype(&mut i.to_type)?;
                self.resolver.resolve_reftype(&mut i.from_type)?;
            }

            StructNew(i) | StructNewDefault(i) | ArrayNew(i) | ArrayNewDefault(i) | ArrayGet(i)
            | ArrayGetS(i) | ArrayGetU(i) | ArraySet(i) => {
                self.resolver.resolve(i, Ns::Type)?;
            }

            StructSet(s) | StructGet(s) | StructGetS(s) | StructGetU(s) => {
                let type_index = self.resolver.resolve(&mut s.r#struct, Ns::Type)?;
                if let Index::Id(field_id) = s.field {
                    self.resolver
                        .fields
                        .get(&type_index)
                        .ok_or(Error::new(field_id.span(), format!("accessing a named field `{}` in a struct without named fields, type index {}", field_id.name(), type_index)))?
                        .resolve(&mut s.field, "field")?;
                }
            }

            ArrayNewFixed(a) => {
                self.resolver.resolve(&mut a.array, Ns::Type)?;
            }
            ArrayNewData(a) => {
                self.resolver.resolve(&mut a.array, Ns::Type)?;
                self.resolver.datas.resolve(&mut a.data_idx, "data")?;
            }
            ArrayNewElem(a) => {
                self.resolver.resolve(&mut a.array, Ns::Type)?;
                self.resolver.elems.resolve(&mut a.elem_idx, "elem")?;
            }
            ArrayFill(a) => {
                self.resolver.resolve(&mut a.array, Ns::Type)?;
            }
            ArrayCopy(a) => {
                self.resolver.resolve(&mut a.dest_array, Ns::Type)?;
                self.resolver.resolve(&mut a.src_array, Ns::Type)?;
            }
            ArrayInitData(a) => {
                self.resolver.resolve(&mut a.array, Ns::Type)?;
                self.resolver.datas.resolve(&mut a.segment, "data")?;
            }
            ArrayInitElem(a) => {
                self.resolver.resolve(&mut a.array, Ns::Type)?;
                self.resolver.elems.resolve(&mut a.segment, "elem")?;
            }

            RefNull(ty) => self.resolver.resolve_heaptype(ty)?,

            _ => {}
        }
        Ok(())
    }

    fn resolve_label(&self, label: &mut Index<'a>) -> Result<(), Error> {
        let id = match label {
            Index::Num(..) => return Ok(()),
            Index::Id(id) => *id,
        };
        let idx = self
            .blocks
            .iter()
            .rev()
            .enumerate()
            .filter_map(|(i, b)| b.label.map(|l| (i, l)))
            .find(|(_, l)| *l == id);
        match idx {
            Some((idx, _)) => {
                *label = Index::Num(idx as u32, id.span());
                Ok(())
            }
            None => Err(resolve_error(id, "label")),
        }
    }
}

enum TypeInfo<'a> {
    Func {
        params: Box<[ValType<'a>]>,
        results: Box<[ValType<'a>]>,
    },
    Other,
}

trait TypeReference<'a> {
    fn check_matches(&mut self, idx: &Index<'a>, cx: &Resolver<'a>) -> Result<(), Error>;
    fn resolve(&mut self, cx: &Resolver<'a>) -> Result<(), Error>;
}

impl<'a> TypeReference<'a> for FunctionType<'a> {
    fn check_matches(&mut self, idx: &Index<'a>, cx: &Resolver<'a>) -> Result<(), Error> {
        let n = match idx {
            Index::Num(n, _) => *n,
            Index::Id(_) => panic!("expected `Num`"),
        };
        let (params, results) = match cx.type_info.get(n as usize) {
            Some(TypeInfo::Func { params, results }) => (params, results),
            _ => return Ok(()),
        };

        // Here we need to check that the inline type listed (ourselves) matches
        // what was listed in the module itself (the `params` and `results`
        // above). The listed values in `types` are not resolved yet, although
        // we should be resolved. In any case we do name resolution
        // opportunistically here to see if the values are equal.

        let types_not_equal = |a: &ValType, b: &ValType| {
            let mut a = a.clone();
            let mut b = b.clone();
            drop(cx.resolve_valtype(&mut a));
            drop(cx.resolve_valtype(&mut b));
            a != b
        };

        let not_equal = params.len() != self.params.len()
            || results.len() != self.results.len()
            || params
                .iter()
                .zip(self.params.iter())
                .any(|(a, (_, _, b))| types_not_equal(a, b))
            || results
                .iter()
                .zip(self.results.iter())
                .any(|(a, b)| types_not_equal(a, b));
        if not_equal {
            return Err(Error::new(
                idx.span(),
                format!("inline function type doesn't match type reference"),
            ));
        }

        Ok(())
    }

    fn resolve(&mut self, cx: &Resolver<'a>) -> Result<(), Error> {
        // Resolve the (ref T) value types in the final function type
        for param in self.params.iter_mut() {
            cx.resolve_valtype(&mut param.2)?;
        }
        for result in self.results.iter_mut() {
            cx.resolve_valtype(result)?;
        }
        Ok(())
    }
}