1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
|
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
#![allow(unused_parens)]
use crate::aacoverage::{CCoverageBuffer, c_rInvShiftSize, c_antiAliasMode, c_nShift, CCoverageInterval, c_nShiftMask, c_nShiftSize, c_nHalfShiftSize};
use crate::hwvertexbuffer::CHwVertexBufferBuilder;
use crate::matrix::{CMILMatrix, CMatrix};
use crate::nullable_ref::Ref;
use crate::aarasterizer::*;
use crate::geometry_sink::IGeometrySink;
use crate::helpers::Int32x32To64;
use crate::types::*;
use typed_arena_nomut::Arena;
//-----------------------------------------------------------------------------
//
//
// Description:
// Trapezoidal anti-aliasing implementation
//
// >>>> Note that some of this code is duplicated in sw\aarasterizer.cpp,
// >>>> so changes to this file may need to propagate.
//
// pursue reduced code duplication
//
macro_rules! MIL_THR {
($e: expr) => {
$e//assert_eq!($e, S_OK);
}
}
//
// Optimize for speed instead of size for these critical methods
//
//-------------------------------------------------------------------------
//
// Coordinate system encoding
//
// All points/coordinates are named as follows:
//
// <HungarianType><CoordinateSystem>[X|Y][Left|Right|Top|Bottom]VariableName
//
// Common hungarian types:
// n - INT
// u - UINT
// r - FLOAT
//
// Coordinate systems:
// Pixel - Device pixel space assuming integer coordinates in the pixel top left corner.
// Subpixel - Overscaled space.
//
// To convert between Pixel to Subpixel, we have:
// nSubpixelCoordinate = nPixelCoordinate << c_nShift;
// nPixelCoordinate = nSubpixelCoordinate >> c_nShift;
//
// Note that the conversion to nPixelCoordinate needs to also track
// (nSubpixelCoordinate & c_nShiftMask) to maintain the full value.
//
// Note that since trapezoidal only supports 8x8, c_nShiftSize is always equal to 8. So,
// (1, 2) in pixel space would become (8, 16) in subpixel space.
//
// [X|Y]
// Indicates which coordinate is being referred to.
//
// [Left|Right|Top|Bottom]
// When referring to trapezoids or rectangular regions, this
// component indicates which edge is being referred to.
//
// VariableName
// Descriptive portion of the variable name
//
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
//
// Function: IsFractionGreaterThan
//
// Synopsis:
// Determine if nNumeratorA/nDenominatorA > nNumeratorB/nDenominatorB
//
// Note that we assume all denominators are strictly greater than zero.
//
//-------------------------------------------------------------------------
fn IsFractionGreaterThan(
nNumeratorA: INT, // Left hand side numerator
/* __in_range(>=, 1) */ nDenominatorA: INT, // Left hand side denominator
nNumeratorB: INT, // Right hand side numerator
/* __in_range(>=, 1) */ nDenominatorB: INT, // Right hand side denominator
) -> bool
{
//
// nNumeratorA/nDenominatorA > nNumeratorB/nDenominatorB
// iff nNumeratorA*nDenominatorB/nDenominatorA > nNumeratorB, since nDenominatorB > 0
// iff nNumeratorA*nDenominatorB > nNumeratorB*nDenominatorA, since nDenominatorA > 0
//
// Now, all input parameters are 32-bit integers, so we need to use
// a 64-bit result to compute the product.
//
let lNumeratorAxDenominatorB = Int32x32To64(nNumeratorA, nDenominatorB);
let lNumeratorBxDenominatorA = Int32x32To64(nNumeratorB, nDenominatorA);
return (lNumeratorAxDenominatorB > lNumeratorBxDenominatorA);
}
//-------------------------------------------------------------------------
//
// Function: IsFractionLessThan
//
// Synopsis:
// Determine if nNumeratorA/nDenominatorA < nNumeratorB/nDenominatorB
//
// Note that we assume all denominators are strictly greater than zero.
//
//-------------------------------------------------------------------------
fn
IsFractionLessThan(
nNumeratorA: INT, // Left hand side numerator
/* __in_range(>=, 1) */ nDenominatorA: INT, // Left hand side denominator
nNumeratorB: INT, // Right hand side numerator
/* __in_range(>=, 1) */ nDenominatorB: INT, // Right hand side denominator
) -> bool
{
//
// Same check as previous function with less than comparision instead of
// a greater than comparison.
//
let lNumeratorAxDenominatorB = Int32x32To64(nNumeratorA, nDenominatorB);
let lNumeratorBxDenominatorA = Int32x32To64(nNumeratorB, nDenominatorA);
return (lNumeratorAxDenominatorB < lNumeratorBxDenominatorA);
}
//-------------------------------------------------------------------------
//
// Function: AdvanceDDAMultipleSteps
//
// Synopsis:
// Advance the DDA by multiple steps
//
//-------------------------------------------------------------------------
fn
AdvanceDDAMultipleSteps(
pEdgeLeft: &CEdge, // Left edge from active edge list
pEdgeRight: &CEdge, // Right edge from active edge list
nSubpixelYAdvance: INT, // Number of steps to advance the DDA
nSubpixelXLeftBottom: &mut INT, // Resulting left x position
nSubpixelErrorLeftBottom: &mut INT, // Resulting left x position error
nSubpixelXRightBottom: &mut INT, // Resulting right x position
nSubpixelErrorRightBottom: &mut INT // Resulting right x position error
)
{
//
// In this method, we need to be careful of overflow. Expected input ranges for values are:
//
// edge points: x and y subpixel space coordinates are between [-2^26, 2^26]
// since we start with 28.4 space (and are now in subpixel space,
// i.e., no 16x scale) and assume 2 bits of working space.
//
// This assumption is ensured by TransformRasterizerPointsTo28_4.
//
#[cfg(debug_assertions)]
{
let nDbgPixelCoordinateMax = (1 << 26);
let nDbgPixelCoordinateMin = -nDbgPixelCoordinateMax;
assert!(pEdgeLeft.X.get() >= nDbgPixelCoordinateMin && pEdgeLeft.X.get() <= nDbgPixelCoordinateMax);
assert!(pEdgeLeft.EndY >= nDbgPixelCoordinateMin && pEdgeLeft.EndY <= nDbgPixelCoordinateMax);
assert!(pEdgeRight.X.get() >= nDbgPixelCoordinateMin && pEdgeRight.X.get() <= nDbgPixelCoordinateMax);
assert!(pEdgeRight.EndY >= nDbgPixelCoordinateMin && pEdgeRight.EndY <= nDbgPixelCoordinateMax);
//
// errorDown: (0, 2^30)
// Since errorDown is the edge delta y in 28.4 space (not subpixel space
// like the end points), we have a larger range of (0, 2^32) for the positive
// error down. With 2 bits of work space (which TransformRasterizerPointsTo28_4
// ensures), we know we are between (0, 2^30)
//
let nDbgErrorDownMax: INT = (1 << 30);
assert!(pEdgeLeft.ErrorDown > 0 && pEdgeLeft.ErrorDown < nDbgErrorDownMax);
assert!(pEdgeRight.ErrorDown > 0 && pEdgeRight.ErrorDown < nDbgErrorDownMax);
//
// errorUp: [0, errorDown)
//
assert!(pEdgeLeft.ErrorUp >= 0 && pEdgeLeft.ErrorUp < pEdgeLeft.ErrorDown);
assert!(pEdgeRight.ErrorUp >= 0 && pEdgeRight.ErrorUp < pEdgeRight.ErrorDown);
}
//
// Advance the left edge
//
// Since each point on the edge is withing 28.4 space, the following computation can't overflow.
*nSubpixelXLeftBottom = pEdgeLeft.X.get() + nSubpixelYAdvance*pEdgeLeft.Dx;
// Since the error values can be close to 2^30, we can get an overflow by multiplying with yAdvance.
// So, we need to use a 64-bit temporary in this case.
let mut llSubpixelErrorBottom: LONGLONG = pEdgeLeft.Error.get() as LONGLONG + Int32x32To64(nSubpixelYAdvance, pEdgeLeft.ErrorUp);
if (llSubpixelErrorBottom >= 0)
{
let llSubpixelXLeftDelta = llSubpixelErrorBottom / (pEdgeLeft.ErrorDown as LONGLONG);
// The delta should remain in range since it still represents a delta along the edge which
// we know fits entirely in 28.4. Note that we add one here since the error must end up
// less than 0.
assert!(llSubpixelXLeftDelta < INT::MAX as LONGLONG);
let nSubpixelXLeftDelta: INT = (llSubpixelXLeftDelta as INT) + 1;
*nSubpixelXLeftBottom += nSubpixelXLeftDelta;
llSubpixelErrorBottom -= Int32x32To64(pEdgeLeft.ErrorDown, nSubpixelXLeftDelta);
}
// At this point, the subtraction above should have generated an error that is within
// (-pLeft->ErrorDown, 0)
assert!((llSubpixelErrorBottom > -pEdgeLeft.ErrorDown as LONGLONG) && (llSubpixelErrorBottom < 0));
*nSubpixelErrorLeftBottom = (llSubpixelErrorBottom as INT);
//
// Advance the right edge
//
// Since each point on the edge is withing 28.4 space, the following computation can't overflow.
*nSubpixelXRightBottom = pEdgeRight.X.get() + nSubpixelYAdvance*pEdgeRight.Dx;
// Since the error values can be close to 2^30, we can get an overflow by multiplying with yAdvance.
// So, we need to use a 64-bit temporary in this case.
llSubpixelErrorBottom = pEdgeRight.Error.get() as LONGLONG + Int32x32To64(nSubpixelYAdvance, pEdgeRight.ErrorUp);
if (llSubpixelErrorBottom >= 0)
{
let llSubpixelXRightDelta: LONGLONG = llSubpixelErrorBottom / (pEdgeRight.ErrorDown as LONGLONG);
// The delta should remain in range since it still represents a delta along the edge which
// we know fits entirely in 28.4. Note that we add one here since the error must end up
// less than 0.
assert!(llSubpixelXRightDelta < INT::MAX as LONGLONG);
let nSubpixelXRightDelta: INT = (llSubpixelXRightDelta as INT) + 1;
*nSubpixelXRightBottom += nSubpixelXRightDelta;
llSubpixelErrorBottom -= Int32x32To64(pEdgeRight.ErrorDown, nSubpixelXRightDelta);
}
// At this point, the subtraction above should have generated an error that is within
// (-pRight->ErrorDown, 0)
assert!((llSubpixelErrorBottom > -pEdgeRight.ErrorDown as LONGLONG) && (llSubpixelErrorBottom < 0));
*nSubpixelErrorRightBottom = (llSubpixelErrorBottom as INT);
}
//-------------------------------------------------------------------------
//
// Function: ComputeDeltaUpperBound
//
// Synopsis:
// Compute some value that is >= nSubpixelAdvanceY*|1/m| where m is the
// slope defined by the edge below.
//
//-------------------------------------------------------------------------
fn
ComputeDeltaUpperBound(
pEdge: &CEdge, // Edge containing 1/m value used for computation
nSubpixelYAdvance: INT // Multiplier in synopsis expression
) -> INT
{
let nSubpixelDeltaUpperBound: INT;
//
// Compute the delta bound
//
if (pEdge.ErrorUp == 0)
{
//
// No errorUp, so simply compute bound based on dx value
//
nSubpixelDeltaUpperBound = nSubpixelYAdvance*(pEdge.Dx).abs();
}
else
{
let nAbsDx: INT;
let nAbsErrorUp: INT;
//
// Compute abs of (dx, error)
//
// Here, we can assume errorUp > 0
//
assert!(pEdge.ErrorUp > 0);
if (pEdge.Dx >= 0)
{
nAbsDx = pEdge.Dx;
nAbsErrorUp = pEdge.ErrorUp;
}
else
{
//
// Dx < 0, so negate (dx, errorUp)
//
// Note that since errorUp > 0, we know -errorUp < 0 and that
// we need to add errorDown to get an errorUp >= 0 which
// also means substracting one from dx.
//
nAbsDx = -pEdge.Dx - 1;
nAbsErrorUp = -pEdge.ErrorUp + pEdge.ErrorDown;
}
//
// Compute the bound of nSubpixelAdvanceY*|1/m|
//
// Note that the +1 below is included to bound any left over errorUp that we are dropping here.
//
nSubpixelDeltaUpperBound = nSubpixelYAdvance*nAbsDx + (nSubpixelYAdvance*nAbsErrorUp)/pEdge.ErrorDown + 1;
}
return nSubpixelDeltaUpperBound;
}
//-------------------------------------------------------------------------
//
// Function: ComputeDistanceLowerBound
//
// Synopsis:
// Compute some value that is <= distance between
// (pEdgeLeft->X, pEdgeLeft->Error) and (pEdgeRight->X, pEdgeRight->Error)
//
//-------------------------------------------------------------------------
fn
ComputeDistanceLowerBound(
pEdgeLeft: &CEdge, // Left edge containing the position for the distance computation
pEdgeRight: &CEdge // Right edge containing the position for the distance computation
) -> INT
{
//
// Note: In these comments, error1 and error2 are theoretical. The actual Error members
// are biased by -1.
//
// distance = (x2 + error2/errorDown2) - (x1 + error1/errorDown1)
// = x2 - x1 + error2/errorDown2 - error1/errorDown1
// >= x2 - x1 + error2/errorDown2 , since error1 < 0
// >= x2 - x1 - 1 , since error2 < 0
// = pEdgeRight->X - pEdgeLeft->X - 1
//
// In the special case where error2/errorDown2 >= error1/errorDown1, we
// can get a tigher bound of:
//
// pEdgeRight->X - pEdgeLeft->X
//
// This case occurs often in thin strokes, so we check for it here.
//
assert!(pEdgeLeft.Error.get() < 0);
assert!(pEdgeRight.Error.get() < 0);
assert!(pEdgeLeft.X <= pEdgeRight.X);
let mut nSubpixelXDistanceLowerBound: INT = pEdgeRight.X.get() - pEdgeLeft.X.get();
//
// If error2/errorDown2 < error1/errorDown1, we need to subtract one from the bound.
// Note that error's are actually baised by -1, we so we have to add one before
// we do the comparison.
//
if (IsFractionLessThan(
pEdgeRight.Error.get()+1,
pEdgeRight.ErrorDown,
pEdgeLeft.Error.get()+1,
pEdgeLeft.ErrorDown
))
{
// We can't use the tighter lower bound described above, so we need to subtract one to
// ensure we have a lower bound.
nSubpixelXDistanceLowerBound -= 1;
}
return nSubpixelXDistanceLowerBound;
}
pub struct CHwRasterizer<'x, 'y, 'z> {
m_rcClipBounds: MilPointAndSizeL,
m_matWorldToDevice: CMILMatrix,
m_pIGeometrySink: &'x mut CHwVertexBufferBuilder<'y, 'z>,
m_fillMode: MilFillMode,
/*
DynArray<MilPoint2F> *m_prgPoints;
DynArray<BYTE> *m_prgTypes;
MilPointAndSizeL m_rcClipBounds;
CMILMatrix m_matWorldToDevice;
IGeometrySink *m_pIGeometrySink;
MilFillMode::Enum m_fillMode;
//
// Complex scan coverage buffer
//
CCoverageBuffer m_coverageBuffer;
CD3DDeviceLevel1 * m_pDeviceNoRef;*/
//m_coverageBuffer: CCoverageBuffer,
}
//-------------------------------------------------------------------------
//
// Function: CHwRasterizer::ConvertSubpixelXToPixel
//
// Synopsis:
// Convert from our subpixel coordinate (x + error/errorDown)
// to a floating point value.
//
//-------------------------------------------------------------------------
fn ConvertSubpixelXToPixel(
x: INT,
error: INT,
rErrorDown: f32
) -> f32
{
assert!(rErrorDown > f32::EPSILON);
return ((x as f32) + (error as f32)/rErrorDown)*c_rInvShiftSize;
}
//-------------------------------------------------------------------------
//
// Function: CHwRasterizer::ConvertSubpixelYToPixel
//
// Synopsis:
// Convert from our subpixel space to pixel space assuming no
// error.
//
//-------------------------------------------------------------------------
fn ConvertSubpixelYToPixel(
nSubpixel: i32
) -> f32
{
return (nSubpixel as f32)*c_rInvShiftSize;
}
impl<'x, 'y, 'z> CHwRasterizer<'x, 'y, 'z> {
//-------------------------------------------------------------------------
//
// Function: CHwRasterizer::RasterizePath
//
// Synopsis:
// Internal rasterizer fill path. Note that this method follows the
// same basic structure as the software rasterizer in aarasterizer.cpp.
//
// The general algorithm used for rasterization is a vertical sweep of
// the shape that maintains an active edge list. The sweep is done
// at a sub-scanline resolution and results in either:
// 1. Sub-scanlines being combined in the coverage buffer and output
// as "complex scans".
// 2. Simple trapezoids being recognized in the active edge list
// and output using a faster simple trapezoid path.
//
// This method consists of the setup to the main rasterization loop
// which includes:
//
// 1. Setup of the clip rectangle
// 2. Calling FixedPointPathEnumerate to populate our inactive
// edge list.
// 3. Delegating to RasterizePath to execute the main loop.
//
//-------------------------------------------------------------------------
pub fn RasterizePath(
&mut self,
rgpt: &[POINT],
rgTypes: &[BYTE],
cPoints: UINT,
pmatWorldTransform: &CMILMatrix
) -> HRESULT
{
let mut hr;
// Default is not implemented for arrays of size 40 so we need to use map
let mut inactiveArrayStack: [CInactiveEdge; INACTIVE_LIST_NUMBER!()] = [(); INACTIVE_LIST_NUMBER!()].map(|_| Default::default());
let mut pInactiveArray: &mut [CInactiveEdge];
let mut pInactiveArrayAllocation: Vec<CInactiveEdge>;
let mut edgeHead: CEdge = Default::default();
let mut edgeTail: CEdge = Default::default();
let pEdgeActiveList: Ref<CEdge>;
let mut edgeStore = Arena::new();
//edgeStore.init();
let mut edgeContext: CInitializeEdgesContext = CInitializeEdgesContext::new(&mut edgeStore);
edgeContext.ClipRect = None;
edgeTail.X.set(i32::MAX); // Terminator to active list
edgeTail.StartY = i32::MAX; // Terminator to inactive list
edgeTail.EndY = i32::MIN;
edgeHead.X.set(i32::MIN); // Beginning of active list
edgeContext.MaxY = i32::MIN;
edgeHead.Next.set(Ref::new(&edgeTail));
pEdgeActiveList = Ref::new(&mut edgeHead);
//edgeContext.Store = &mut edgeStore;
edgeContext.AntiAliasMode = c_antiAliasMode;
assert!(edgeContext.AntiAliasMode != MilAntiAliasMode::None);
// If the path contains 0 or 1 points, we can ignore it.
if (cPoints < 2)
{
return S_OK;
}
let nPixelYClipBottom: INT = self.m_rcClipBounds.Y + self.m_rcClipBounds.Height;
// Scale the clip bounds rectangle by 16 to account for our
// scaling to 28.4 coordinates:
let mut clipBounds : RECT = Default::default();
clipBounds.left = self.m_rcClipBounds.X * FIX4_ONE!();
clipBounds.top = self.m_rcClipBounds.Y * FIX4_ONE!();
clipBounds.right = (self.m_rcClipBounds.X + self.m_rcClipBounds.Width) * FIX4_ONE!();
clipBounds.bottom = (self.m_rcClipBounds.Y + self.m_rcClipBounds.Height) * FIX4_ONE!();
edgeContext.ClipRect = Some(&clipBounds);
//////////////////////////////////////////////////////////////////////////
// Convert all our points to 28.4 fixed point:
let mut matrix: CMILMatrix = (*pmatWorldTransform).clone();
AppendScaleToMatrix(&mut matrix, TOREAL!(16), TOREAL!(16));
let coverageBuffer: CCoverageBuffer = Default::default();
// Initialize the coverage buffer
coverageBuffer.Initialize();
// Enumerate the path and construct the edge table:
hr = MIL_THR!(FixedPointPathEnumerate(
rgpt,
rgTypes,
cPoints,
&matrix,
edgeContext.ClipRect,
&mut edgeContext
));
if (FAILED(hr))
{
if (hr == WGXERR_VALUEOVERFLOW)
{
// Draw nothing on value overflow and return
hr = S_OK;
}
return hr;
}
let nTotalCount: UINT; nTotalCount = edgeContext.Store.len() as u32;
if (nTotalCount == 0)
{
hr = S_OK; // We're outta here (empty path or entirely clipped)
return hr;
}
// At this point, there has to be at least two edges. If there's only
// one, it means that we didn't do the trivially rejection properly.
assert!((nTotalCount >= 2) && (nTotalCount <= (UINT::MAX - 2)));
pInactiveArray = &mut inactiveArrayStack[..];
if (nTotalCount > (INACTIVE_LIST_NUMBER!() as u32 - 2))
{
pInactiveArrayAllocation = vec![Default::default(); nTotalCount as usize + 2];
pInactiveArray = &mut pInactiveArrayAllocation;
}
// Initialize and sort the inactive array:
let nSubpixelYCurrent = InitializeInactiveArray(
edgeContext.Store,
pInactiveArray,
nTotalCount,
Ref::new(&edgeTail)
);
let mut nSubpixelYBottom = edgeContext.MaxY;
assert!(nSubpixelYBottom > 0);
// Skip the head sentinel on the inactive array:
pInactiveArray = &mut pInactiveArray[1..];
//
// Rasterize the path
//
// 'nPixelYClipBottom' is in screen space and needs to be converted to the
// format we use for antialiasing.
nSubpixelYBottom = nSubpixelYBottom.min(nPixelYClipBottom << c_nShift);
// 'nTotalCount' should have been zero if all the edges were
// clipped out (RasterizeEdges assumes there's at least one edge
// to be drawn):
assert!(nSubpixelYBottom > nSubpixelYCurrent);
IFC!(self.RasterizeEdges(
pEdgeActiveList,
pInactiveArray,
&coverageBuffer,
nSubpixelYCurrent,
nSubpixelYBottom
));
return hr;
}
//-------------------------------------------------------------------------
//
// Function: CHwRasterizer::new
//
// Synopsis:
// 1. Ensure clean state
// 2. Convert path to internal format
//
//-------------------------------------------------------------------------
pub fn new(
pIGeometrySink: &'x mut CHwVertexBufferBuilder<'y, 'z>,
fillMode: MilFillMode,
pmatWorldToDevice: Option<CMatrix<CoordinateSpace::Shape,CoordinateSpace::Device>>,
clipRect: MilPointAndSizeL,
) -> Self
{
//
// PS#856364-2003/07/01-ashrafm Remove pixel center fixup
//
// Incoming coordinate space uses integers at upper-left of pixel (pixel
// center are half integers) at device level.
//
// Rasterizer uses the coordinate space with integers at pixel center.
//
// To convert from center (1/2, 1/2) to center (0, 0) we need to subtract
// 1/2 from each coordinate in device space.
//
// See InitializeEdges in aarasterizer.ccp to see how we unconvert for
// antialiased rendering.
//
let mut matWorldHPCToDeviceIPC = pmatWorldToDevice.unwrap_or(CMatrix::Identity());
matWorldHPCToDeviceIPC.SetDx(matWorldHPCToDeviceIPC.GetDx() - 0.5);
matWorldHPCToDeviceIPC.SetDy(matWorldHPCToDeviceIPC.GetDy() - 0.5);
//
// Set local state.
//
// There's an opportunity for early clipping here
//
// However, since the rasterizer itself does a reasonable job of clipping some
// cases, we don't early clip yet.
Self {
m_fillMode: fillMode,
m_rcClipBounds: clipRect,
m_pIGeometrySink: pIGeometrySink,
m_matWorldToDevice: matWorldHPCToDeviceIPC,
}
}
//-------------------------------------------------------------------------
//
// Function: CHwRasterizer::SendGeometry
//
// Synopsis:
// Tessellate and send geometry to the pipeline
//
//-------------------------------------------------------------------------
pub fn SendGeometry(&mut self,
points: &[POINT],
types: &[BYTE],
) -> HRESULT
{
let mut hr = S_OK;
//
// Rasterize the path
//
let count = points.len() as u32;
IFR!(self.RasterizePath(
points,
types,
count,
&self.m_matWorldToDevice.clone(),
));
/*
IFC!(self.RasterizePath(
self.m_prgPoints.as_ref().unwrap().GetDataBuffer(),
self.m_prgTypes.as_ref().unwrap().GetDataBuffer(),
self.m_prgPoints.as_ref().unwrap().GetCount() as u32,
&self.m_matWorldToDevice,
self.m_fillMode
));*/
//
// It's possible that we output no triangles. For example, if we tried to fill a
// line instead of stroke it. Since we have no efficient way to detect all these cases
// up front, we simply rasterize and see if we generated anything.
//
if (self.m_pIGeometrySink.IsEmpty())
{
hr = WGXHR_EMPTYFILL;
}
RRETURN1!(hr, WGXHR_EMPTYFILL);
}
/*
//-------------------------------------------------------------------------
//
// Function: CHwRasterizer::SendGeometryModifiers
//
// Synopsis: Send an AA color source to the pipeline.
//
//-------------------------------------------------------------------------
fn SendGeometryModifiers(&self,
pPipelineBuilder: &mut CHwPipelineBuilder
) -> HRESULT
{
let hr = S_OK;
let pAntiAliasColorSource = None;
self.m_pDeviceNoRef.GetColorComponentSource(
CHwColorComponentSource::Diffuse,
&pAntiAliasColorSource
);
IFC!(pPipelineBuilder.Set_AAColorSource(
pAntiAliasColorSource
));
return hr;
}*/
//-------------------------------------------------------------------------
//
// Function: CHwRasterizer::GenerateOutputAndClearCoverage
//
// Synopsis:
// Collapse output and generate span data
//
//-------------------------------------------------------------------------
fn
GenerateOutputAndClearCoverage<'a>(&mut self, coverageBuffer: &'a CCoverageBuffer<'a>,
nSubpixelY: INT
) -> HRESULT
{
let hr = S_OK;
let nPixelY = nSubpixelY >> c_nShift;
let pIntervalSpanStart: Ref<CCoverageInterval> = coverageBuffer.m_pIntervalStart.get();
IFC!(self.m_pIGeometrySink.AddComplexScan(nPixelY, pIntervalSpanStart));
coverageBuffer.Reset();
return hr;
}
//-------------------------------------------------------------------------
//
// Function: CHwRasterizer::ComputeTrapezoidsEndScan
//
// Synopsis:
// This methods takes the current active edge list (and ycurrent)
// and will determine:
//
// 1. Can we output some list of simple trapezoids for this active
// edge list? If the answer is no, then we simply return
// nSubpixelYCurrent indicating this condition.
//
// 2. If we can output some set of trapezoids, then what is the
// next ycurrent, i.e., how tall are our trapezoids.
//
// Note that all trapezoids output for a particular active edge list
// are all the same height.
//
// To further understand the conditions for making this decision, it
// is important to consider the simple trapezoid tessellation:
//
// ___+_________________+___
// / + / \ + \ '+' marks active edges
// / + / \ + \
// / + / \ + \
// /__+__/___________________\__+__\
// 1+1/m +
//
// Note that 1+1/edge_slope is the required expand distance to ensure
// that we cover all pixels required.
//
// Now, we can fail to output any trapezoids under the following conditions:
// 1. The expand regions along the top edge of the trapezoid overlap.
// 2. The expand regions along the bottom edge of the trapezoid overlap
// within the current scanline. Note that if the bottom edges overlap
// at some later point, we can shorten our trapezoid to remove the
// overlapping.
//
// The key to the algorithm at this point is to detect the above condition
// in our active edge list and either update the returned end y position
// or reject all together based on overlapping.
//
//-------------------------------------------------------------------------
fn ComputeTrapezoidsEndScan(&mut self,
pEdgeCurrent: Ref<CEdge>,
nSubpixelYCurrent: INT,
nSubpixelYNextInactive: INT
) -> INT
{
let mut nSubpixelYBottomTrapezoids;
let mut pEdgeLeft: Ref<CEdge>;
let mut pEdgeRight: Ref<CEdge>;
//
// Trapezoids should always start at scanline boundaries
//
assert!((nSubpixelYCurrent & c_nShiftMask) == 0);
//
// If we are doing a winding mode fill, check that we can ignore mode and do an
// alternating fill in OutputTrapezoids. This condition occurs when winding is
// equivalent to alternating which happens if the pairwise edges have different
// winding directions.
//
if (self.m_fillMode == MilFillMode::Winding)
{
let mut pEdge = pEdgeCurrent;
while pEdge.EndY != INT::MIN {
// The active edge list always has an even number of edges which we actually
// assert in ASSERTACTIVELIST.
assert!(pEdge.Next.get().EndY != INT::MIN);
// If not alternating winding direction, we can't fill with alternate mode
if (pEdge.WindingDirection == pEdge.Next.get().WindingDirection)
{
// Give up until we handle winding mode
nSubpixelYBottomTrapezoids = nSubpixelYCurrent;
return nSubpixelYBottomTrapezoids;
}
pEdge = pEdge.Next.get().Next.get();
}
}
//
// For each edge, we:
//
// 1. Set the new trapezoid bottom to the min of the current
// one and the edge EndY
//
// 2. Check if edges will intersect during trapezoidal shrink/expand
//
nSubpixelYBottomTrapezoids = nSubpixelYNextInactive;
let mut pEdge = pEdgeCurrent;
while pEdge.EndY != INT::MIN {
//
// Step 1
//
// Updated nSubpixelYBottomTrapezoids based on edge EndY.
//
// Since edges are clipped to the current clip rect y bounds, we also know
// that pEdge->EndY <= nSubpixelYBottom so there is no need to check for that here.
//
nSubpixelYBottomTrapezoids = nSubpixelYBottomTrapezoids.min(pEdge.EndY);
//
// Step 2
//
// Check that edges will not overlap during trapezoid shrink/expand.
//
pEdgeLeft = pEdge;
pEdgeRight = pEdge.Next.get();
if (pEdgeRight.EndY != INT::MIN)
{
//
// __A__A'___________________B'_B__
// \ + \ / + / '+' marks active edges
// \ + \ / + /
// \ + \ / + /
// \__+__\____________/__+__/
// 1+1/m C C' D' D
//
// We need to determine if position A' <= position B' and that position C' <= position D'
// in the above diagram. So, we need to ensure that both the distance between
// A and B and the distance between C and D is greater than or equal to:
//
// 0.5 + |0.5/m1| + 0.5 + |0.5/m2| (pixel space)
// = shiftsize + halfshiftsize*(|1/m1| + |1/m2|) (subpixel space)
//
// So, we'll start by computing this distance. Note that we can compute a distance
// that is too large here since the self-intersection detection is simply used to
// recognize trapezoid opportunities and isn't required for visual correctness.
//
let nSubpixelExpandDistanceUpperBound: INT =
c_nShiftSize
+ ComputeDeltaUpperBound(&*pEdgeLeft, c_nHalfShiftSize)
+ ComputeDeltaUpperBound(&*pEdgeRight, c_nHalfShiftSize);
//
// Compute a top edge distance that is <= to the distance between A' and B' as follows:
// lowerbound(distance(A, B)) - nSubpixelExpandDistanceUpperBound
//
let nSubpixelXTopDistanceLowerBound: INT =
ComputeDistanceLowerBound(&*pEdgeLeft, &*pEdgeRight) - nSubpixelExpandDistanceUpperBound;
//
// Check if the top edges cross
//
if (nSubpixelXTopDistanceLowerBound < 0)
{
// The top edges have crossed, so we are out of luck. We can't
// start a trapezoid on this scanline
nSubpixelYBottomTrapezoids = nSubpixelYCurrent;
return nSubpixelYBottomTrapezoids;
}
//
// If the edges are converging, we need to check if they cross at
// nSubpixelYBottomTrapezoids
//
//
// 1) \ / 2) \ \ 3) / /
// \ / \ \ / /
// \ / \ \ / /
//
// The edges converge iff (dx1 > dx2 || (dx1 == dx2 && errorUp1/errorDown1 > errorUp2/errorDown2).
//
// Note that in the case where the edges do not converge, the code below will end up computing
// the DDA at the end points and checking for intersection again. This code doesn't rely on
// the fact that the edges don't converge, so we can be too conservative here.
//
if (pEdgeLeft.Dx > pEdgeRight.Dx
|| ((pEdgeLeft.Dx == pEdgeRight.Dx)
&& IsFractionGreaterThan(pEdgeLeft.ErrorUp, pEdgeLeft.ErrorDown, pEdgeRight.ErrorUp, pEdgeRight.ErrorDown)))
{
let nSubpixelYAdvance: INT = nSubpixelYBottomTrapezoids - nSubpixelYCurrent;
assert!(nSubpixelYAdvance > 0);
//
// Compute the edge position at nSubpixelYBottomTrapezoids
//
let mut nSubpixelXLeftAdjustedBottom = 0;
let mut nSubpixelErrorLeftBottom = 0;
let mut nSubpixelXRightBottom = 0;
let mut nSubpixelErrorRightBottom = 0;
AdvanceDDAMultipleSteps(
&*pEdgeLeft,
&*pEdgeRight,
nSubpixelYAdvance,
&mut nSubpixelXLeftAdjustedBottom,
&mut nSubpixelErrorLeftBottom,
&mut nSubpixelXRightBottom,
&mut nSubpixelErrorRightBottom
);
//
// Adjust the bottom left position by the expand distance for all the math
// that follows. Note that since we adjusted the top distance by that
// same expand distance, this adjustment is equivalent to moving the edges
// nSubpixelExpandDistanceUpperBound closer together.
//
nSubpixelXLeftAdjustedBottom += nSubpixelExpandDistanceUpperBound;
//
// Check if the bottom edge crosses.
//
// To avoid checking error1/errDown1 and error2/errDown2, we assume the
// edges cross if nSubpixelXLeftAdjustedBottom == nSubpixelXRightBottom
// and thus produce a result that is too conservative.
//
if (nSubpixelXLeftAdjustedBottom >= nSubpixelXRightBottom)
{
//
// At this point, we have the following scenario
//
// ____d1____
// \ / | |
// \ / h1 |
// \/ | | nSubpixelYAdvance
// / \ |
// /__d2__\ |
//
// We want to compute h1. We know that:
//
// h1 / nSubpixelYAdvance = d1 / (d1 + d2)
// h1 = nSubpixelYAdvance * d1 / (d1 + d2)
//
// Now, if we approximate d1 with some d1' <= d1, we get
//
// h1 = nSubpixelYAdvance * d1 / (d1 + d2)
// h1 >= nSubpixelYAdvance * d1' / (d1' + d2)
//
// Similarly, if we approximate d2 with some d2' >= d2, we get
//
// h1 >= nSubpixelYAdvance * d1' / (d1' + d2)
// >= nSubpixelYAdvance * d1' / (d1' + d2')
//
// Since we are allowed to be too conservative with h1 (it can be
// less than the actual value), we'll construct such approximations
// for simplicity.
//
// Note that d1' = nSubpixelXTopDistanceLowerBound which we have already
// computed.
//
// d2 = (x1 + error1/errorDown1) - (x2 + error2/errorDown2)
// = x1 - x2 + error1/errorDown1 - error2/errorDown2
// <= x1 - x2 - error2/errorDown2 , since error1 < 0
// <= x1 - x2 + 1 , since error2 < 0
// = nSubpixelXLeftAdjustedBottom - nSubpixelXRightBottom + 1
//
let nSubpixelXBottomDistanceUpperBound: INT = nSubpixelXLeftAdjustedBottom - nSubpixelXRightBottom + 1;
assert!(nSubpixelXTopDistanceLowerBound >= 0);
assert!(nSubpixelXBottomDistanceUpperBound > 0);
#[cfg(debug_assertions)]
let nDbgPreviousSubpixelXBottomTrapezoids: INT = nSubpixelYBottomTrapezoids;
nSubpixelYBottomTrapezoids =
nSubpixelYCurrent +
(nSubpixelYAdvance * nSubpixelXTopDistanceLowerBound) /
(nSubpixelXTopDistanceLowerBound + nSubpixelXBottomDistanceUpperBound);
#[cfg(debug_assertions)]
assert!(nDbgPreviousSubpixelXBottomTrapezoids >= nSubpixelYBottomTrapezoids);
if (nSubpixelYBottomTrapezoids < nSubpixelYCurrent + c_nShiftSize)
{
// We no longer have a trapezoid that is at least one scanline high, so
// abort
nSubpixelYBottomTrapezoids = nSubpixelYCurrent;
return nSubpixelYBottomTrapezoids;
}
}
}
}
pEdge = pEdge.Next.get();
}
//
// Snap to pixel boundary
//
nSubpixelYBottomTrapezoids = nSubpixelYBottomTrapezoids & (!c_nShiftMask);
//
// Ensure that we are never less than nSubpixelYCurrent
//
assert!(nSubpixelYBottomTrapezoids >= nSubpixelYCurrent);
//
// Return trapezoid end scan
//
//Cleanup:
return nSubpixelYBottomTrapezoids;
}
//-------------------------------------------------------------------------
//
// Function: CHwRasterizer::OutputTrapezoids
//
// Synopsis:
// Given the current active edge list, output a list of
// trapezoids.
//
// _________________________
// / / \ \
// / / \ \
// / / \ \
// /_____/___________________\_____\
// 1+1/m
//
// We output a trapezoid where the distance in X is 1+1/m slope on either edge.
// Note that we actually do a linear interpolation for coverage along the
// entire falloff region which comes within 12.5% error when compared to our
// 8x8 coverage output for complex scans. What is happening here is
// that we are applying a linear approximation to the coverage function
// based on slope. It is possible to get better linear interpolations
// by varying the expanded region, but it hasn't been necessary to apply
// these quality improvements yet.
//
//-------------------------------------------------------------------------
fn
OutputTrapezoids(&mut self,
pEdgeCurrent: Ref<CEdge>,
nSubpixelYCurrent: INT, // inclusive
nSubpixelYNext: INT // exclusive
) -> HRESULT
{
let hr = S_OK;
let nSubpixelYAdvance: INT;
let mut rSubpixelLeftErrorDown: f32;
let mut rSubpixelRightErrorDown: f32;
let mut rPixelXLeft: f32;
let mut rPixelXRight: f32;
let mut rSubpixelLeftInvSlope: f32;
let mut rSubpixelLeftAbsInvSlope: f32;
let mut rSubpixelRightInvSlope: f32;
let mut rSubpixelRightAbsInvSlope: f32;
let mut rPixelXLeftDelta: f32;
let mut rPixelXRightDelta: f32;
let mut pEdgeLeft = pEdgeCurrent;
let mut pEdgeRight = (*pEdgeCurrent).Next.get();
assert!((nSubpixelYCurrent & c_nShiftMask) == 0);
assert!(pEdgeLeft.EndY != INT::MIN);
assert!(pEdgeRight.EndY != INT::MIN);
//
// Compute the height our trapezoids
//
nSubpixelYAdvance = nSubpixelYNext - nSubpixelYCurrent;
//
// Output each trapezoid
//
loop
{
//
// Compute x/error for end of trapezoid
//
let mut nSubpixelXLeftBottom: INT = 0;
let mut nSubpixelErrorLeftBottom: INT = 0;
let mut nSubpixelXRightBottom: INT = 0;
let mut nSubpixelErrorRightBottom: INT = 0;
AdvanceDDAMultipleSteps(
&*pEdgeLeft,
&*pEdgeRight,
nSubpixelYAdvance,
&mut nSubpixelXLeftBottom,
&mut nSubpixelErrorLeftBottom,
&mut nSubpixelXRightBottom,
&mut nSubpixelErrorRightBottom
);
// The above computation should ensure that we are a simple
// trapezoid at this point
assert!(nSubpixelXLeftBottom <= nSubpixelXRightBottom);
// We know we have a simple trapezoid now. Now, compute the end of our current trapezoid
assert!(nSubpixelYAdvance > 0);
//
// Computation of edge data
//
rSubpixelLeftErrorDown = pEdgeLeft.ErrorDown as f32;
rSubpixelRightErrorDown = pEdgeRight.ErrorDown as f32;
rPixelXLeft = ConvertSubpixelXToPixel(pEdgeLeft.X.get(), pEdgeLeft.Error.get(), rSubpixelLeftErrorDown);
rPixelXRight = ConvertSubpixelXToPixel(pEdgeRight.X.get(), pEdgeRight.Error.get(), rSubpixelRightErrorDown);
rSubpixelLeftInvSlope = pEdgeLeft.Dx as f32 + pEdgeLeft.ErrorUp as f32/rSubpixelLeftErrorDown;
rSubpixelLeftAbsInvSlope = rSubpixelLeftInvSlope.abs();
rSubpixelRightInvSlope = pEdgeRight.Dx as f32 + pEdgeRight.ErrorUp as f32/rSubpixelRightErrorDown;
rSubpixelRightAbsInvSlope = rSubpixelRightInvSlope.abs();
rPixelXLeftDelta = 0.5 + 0.5 * rSubpixelLeftAbsInvSlope;
rPixelXRightDelta = 0.5 + 0.5 * rSubpixelRightAbsInvSlope;
let rPixelYTop = ConvertSubpixelYToPixel(nSubpixelYCurrent);
let rPixelYBottom = ConvertSubpixelYToPixel(nSubpixelYNext);
let rPixelXBottomLeft = ConvertSubpixelXToPixel(
nSubpixelXLeftBottom,
nSubpixelErrorLeftBottom,
pEdgeLeft.ErrorDown as f32
);
let rPixelXBottomRight = ConvertSubpixelXToPixel(
nSubpixelXRightBottom,
nSubpixelErrorRightBottom,
pEdgeRight.ErrorDown as f32
);
//
// Output the trapezoid
//
IFC!(self.m_pIGeometrySink.AddTrapezoid(
rPixelYTop, // In: y coordinate of top of trapezoid
rPixelXLeft, // In: x coordinate for top left
rPixelXRight, // In: x coordinate for top right
rPixelYBottom, // In: y coordinate of bottom of trapezoid
rPixelXBottomLeft, // In: x coordinate for bottom left
rPixelXBottomRight, // In: x coordinate for bottom right
rPixelXLeftDelta, // In: trapezoid expand radius for left edge
rPixelXRightDelta // In: trapezoid expand radius for right edge
));
//
// Update the edge data
//
// no need to do this if edges are stale
pEdgeLeft.X.set(nSubpixelXLeftBottom);
pEdgeLeft.Error.set(nSubpixelErrorLeftBottom);
pEdgeRight.X.set(nSubpixelXRightBottom);
pEdgeRight.Error.set(nSubpixelErrorRightBottom);
//
// Check for termination
//
if (pEdgeRight.Next.get().EndY == INT::MIN)
{
break;
}
//
// Advance edge data
//
pEdgeLeft = pEdgeRight.Next.get();
pEdgeRight = pEdgeLeft.Next.get();
}
return hr;
}
//-------------------------------------------------------------------------
//
// Function: CHwRasterizer::RasterizeEdges
//
// Synopsis:
// Rasterize using trapezoidal AA
//
//-------------------------------------------------------------------------
fn
RasterizeEdges<'a, 'b>(&mut self,
pEdgeActiveList: Ref<'a, CEdge<'a>>,
mut pInactiveEdgeArray: &'a mut [CInactiveEdge<'a>],
coverageBuffer: &'b CCoverageBuffer<'b>,
mut nSubpixelYCurrent: INT,
nSubpixelYBottom: INT
) -> HRESULT
{
let hr: HRESULT = S_OK;
let mut pEdgePrevious: Ref<CEdge>;
let mut pEdgeCurrent: Ref<CEdge>;
let mut nSubpixelYNextInactive: INT = 0;
let mut nSubpixelYNext: INT;
pInactiveEdgeArray = InsertNewEdges(
pEdgeActiveList,
nSubpixelYCurrent,
pInactiveEdgeArray,
&mut nSubpixelYNextInactive
);
while (nSubpixelYCurrent < nSubpixelYBottom)
{
ASSERTACTIVELIST!(pEdgeActiveList, nSubpixelYCurrent);
//
// Detect trapezoidal case
//
pEdgePrevious = pEdgeActiveList;
pEdgeCurrent = pEdgeActiveList.Next.get();
nSubpixelYNext = nSubpixelYCurrent;
if (!IsTagEnabled!(tagDisableTrapezoids)
&& (nSubpixelYCurrent & c_nShiftMask) == 0
&& pEdgeCurrent.EndY != INT::MIN
&& nSubpixelYNextInactive >= nSubpixelYCurrent + c_nShiftSize
)
{
// Edges are paired, so we can assert we have another one
assert!(pEdgeCurrent.Next.get().EndY != INT::MIN);
//
// Given an active edge list, we compute the furthest we can go in the y direction
// without creating self-intersection or going past the edge EndY. Note that if we
// can't even go one scanline, then nSubpixelYNext == nSubpixelYCurrent
//
nSubpixelYNext = self.ComputeTrapezoidsEndScan(Ref::new(&*pEdgeCurrent), nSubpixelYCurrent, nSubpixelYNextInactive);
assert!(nSubpixelYNext >= nSubpixelYCurrent);
//
// Attempt to output a trapezoid. If it turns out we don't have any
// potential trapezoids, then nSubpixelYNext == nSubpixelYCurent
// indicating that we need to fall back to complex scans.
//
if (nSubpixelYNext >= nSubpixelYCurrent + c_nShiftSize)
{
IFC!(self.OutputTrapezoids(
pEdgeCurrent,
nSubpixelYCurrent,
nSubpixelYNext
));
}
}
//
// Rasterize simple trapezoid or a complex scanline
//
if (nSubpixelYNext > nSubpixelYCurrent)
{
// If we advance, it must be by at least one scan line
assert!(nSubpixelYNext - nSubpixelYCurrent >= c_nShiftSize);
// Advance nSubpixelYCurrent
nSubpixelYCurrent = nSubpixelYNext;
// Remove stale edges. Note that the DDA is incremented in OutputTrapezoids.
while (pEdgeCurrent.EndY != INT::MIN)
{
if (pEdgeCurrent.EndY <= nSubpixelYCurrent)
{
// Unlink and advance
pEdgeCurrent = pEdgeCurrent.Next.get();
pEdgePrevious.Next.set(pEdgeCurrent);
}
else
{
// Advance
pEdgePrevious = pEdgeCurrent;
pEdgeCurrent = pEdgeCurrent.Next.get();
}
}
}
else
{
//
// Trapezoid rasterization failed, so
// 1) Handle case with no active edges, or
// 2) fall back to scan rasterization
//
if (pEdgeCurrent.EndY == INT::MIN)
{
nSubpixelYNext = nSubpixelYNextInactive;
}
else
{
nSubpixelYNext = nSubpixelYCurrent + 1;
if (self.m_fillMode == MilFillMode::Alternate)
{
IFC!(coverageBuffer.FillEdgesAlternating(pEdgeActiveList, nSubpixelYCurrent));
}
else
{
IFC!(coverageBuffer.FillEdgesWinding(pEdgeActiveList, nSubpixelYCurrent));
}
}
// If the next scan is done, output what's there:
if (nSubpixelYNext > (nSubpixelYCurrent | c_nShiftMask))
{
IFC!(self.GenerateOutputAndClearCoverage(coverageBuffer, nSubpixelYCurrent));
}
// Advance nSubpixelYCurrent
nSubpixelYCurrent = nSubpixelYNext;
// Advance DDA and update edge list
AdvanceDDAAndUpdateActiveEdgeList(nSubpixelYCurrent, pEdgeActiveList);
}
//
// Update edge list
//
if (nSubpixelYCurrent == nSubpixelYNextInactive)
{
pInactiveEdgeArray = InsertNewEdges(
pEdgeActiveList,
nSubpixelYCurrent,
pInactiveEdgeArray,
&mut nSubpixelYNextInactive
);
}
}
//
// Output the last scanline that has partial coverage
//
if ((nSubpixelYCurrent & c_nShiftMask) != 0)
{
IFC!(self.GenerateOutputAndClearCoverage(coverageBuffer, nSubpixelYCurrent));
}
RRETURN!(hr);
}
}
|