1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
|
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
/// Documents multiple unsafe blocks with a single safety comment.
///
/// Invoked as:
///
/// ```rust,ignore
/// safety_comment! {
/// // Non-doc comments come first.
/// /// SAFETY:
/// /// Safety comment starts on its own line.
/// macro_1!(args);
/// macro_2! { args };
/// /// SAFETY:
/// /// Subsequent safety comments are allowed but not required.
/// macro_3! { args };
/// }
/// ```
///
/// The macro invocations are emitted, each decorated with the following
/// attribute: `#[allow(clippy::undocumented_unsafe_blocks)]`.
macro_rules! safety_comment {
(#[doc = r" SAFETY:"] $($(#[$attr:meta])* $macro:ident!$args:tt;)*) => {
#[allow(clippy::undocumented_unsafe_blocks, unused_attributes)]
const _: () = { $($(#[$attr])* $macro!$args;)* };
}
}
/// Unsafely implements trait(s) for a type.
///
/// # Safety
///
/// The trait impl must be sound.
///
/// When implementing `TryFromBytes`:
/// - If no `is_bit_valid` impl is provided, then it must be valid for
/// `is_bit_valid` to unconditionally return `true`. In other words, it must
/// be the case that any initialized sequence of bytes constitutes a valid
/// instance of `$ty`.
/// - If an `is_bit_valid` impl is provided, then:
/// - Regardless of whether the provided closure takes a `Ptr<$repr>` or
/// `&$repr` argument, it must be the case that, given `t: *mut $ty` and
/// `let r = t as *mut $repr`, `r` refers to an object of equal or lesser
/// size than the object referred to by `t`.
/// - If the provided closure takes a `&$repr` argument, then given a `Ptr<'a,
/// $ty>` which satisfies the preconditions of
/// `TryFromBytes::<$ty>::is_bit_valid`, it must be guaranteed that the
/// memory referenced by that `Ptr` always contains a valid `$repr`.
/// - The alignment of `$repr` is less than or equal to the alignment of
/// `$ty`.
/// - The impl of `is_bit_valid` must only return `true` for its argument
/// `Ptr<$repr>` if the original `Ptr<$ty>` refers to a valid `$ty`.
macro_rules! unsafe_impl {
// Implement `$trait` for `$ty` with no bounds.
($(#[$attr:meta])* $ty:ty: $trait:ident $(; |$candidate:ident: &$repr:ty| $is_bit_valid:expr)?) => {
$(#[$attr])*
unsafe impl $trait for $ty {
unsafe_impl!(@method $trait $(; |$candidate: &$repr| $is_bit_valid)?);
}
};
// Implement all `$traits` for `$ty` with no bounds.
($ty:ty: $($traits:ident),*) => {
$( unsafe_impl!($ty: $traits); )*
};
// This arm is identical to the following one, except it contains a
// preceding `const`. If we attempt to handle these with a single arm, there
// is an inherent ambiguity between `const` (the keyword) and `const` (the
// ident match for `$tyvar:ident`).
//
// To explain how this works, consider the following invocation:
//
// unsafe_impl!(const N: usize, T: ?Sized + Copy => Clone for Foo<T>);
//
// In this invocation, here are the assignments to meta-variables:
//
// |---------------|------------|
// | Meta-variable | Assignment |
// |---------------|------------|
// | $constname | N |
// | $constty | usize |
// | $tyvar | T |
// | $optbound | Sized |
// | $bound | Copy |
// | $trait | Clone |
// | $ty | Foo<T> |
// |---------------|------------|
//
// The following arm has the same behavior with the exception of the lack of
// support for a leading `const` parameter.
(
$(#[$attr:meta])*
const $constname:ident : $constty:ident $(,)?
$($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
=> $trait:ident for $ty:ty $(; |$candidate:ident $(: &$ref_repr:ty)? $(: Ptr<$ptr_repr:ty>)?| $is_bit_valid:expr)?
) => {
unsafe_impl!(
@inner
$(#[$attr])*
@const $constname: $constty,
$($tyvar $(: $(? $optbound +)* + $($bound +)*)?,)*
=> $trait for $ty $(; |$candidate $(: &$ref_repr)? $(: Ptr<$ptr_repr>)?| $is_bit_valid)?
);
};
(
$(#[$attr:meta])*
$($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
=> $trait:ident for $ty:ty $(; |$candidate:ident $(: &$ref_repr:ty)? $(: Ptr<$ptr_repr:ty>)?| $is_bit_valid:expr)?
) => {
unsafe_impl!(
@inner
$(#[$attr])*
$($tyvar $(: $(? $optbound +)* + $($bound +)*)?,)*
=> $trait for $ty $(; |$candidate $(: &$ref_repr)? $(: Ptr<$ptr_repr>)?| $is_bit_valid)?
);
};
(
@inner
$(#[$attr:meta])*
$(@const $constname:ident : $constty:ident,)*
$($tyvar:ident $(: $(? $optbound:ident +)* + $($bound:ident +)* )?,)*
=> $trait:ident for $ty:ty $(; |$candidate:ident $(: &$ref_repr:ty)? $(: Ptr<$ptr_repr:ty>)?| $is_bit_valid:expr)?
) => {
$(#[$attr])*
unsafe impl<$(const $constname: $constty,)* $($tyvar $(: $(? $optbound +)* $($bound +)*)?),*> $trait for $ty {
unsafe_impl!(@method $trait $(; |$candidate: $(&$ref_repr)? $(Ptr<$ptr_repr>)?| $is_bit_valid)?);
}
};
(@method TryFromBytes ; |$candidate:ident: &$repr:ty| $is_bit_valid:expr) => {
#[inline]
unsafe fn is_bit_valid(candidate: Ptr<'_, Self>) -> bool {
// SAFETY:
// - The argument to `cast_unsized` is `|p| p as *mut _` as required
// by that method's safety precondition.
// - The caller has promised that the cast results in an object of
// equal or lesser size.
// - The caller has promised that `$repr`'s alignment is less than
// or equal to `Self`'s alignment.
#[allow(clippy::as_conversions)]
let candidate = unsafe { candidate.cast_unsized::<$repr, _>(|p| p as *mut _) };
// SAFETY:
// - The caller has promised that the referenced memory region will
// contain a valid `$repr` for `'a`.
// - The memory may not be referenced by any mutable references.
// This is a precondition of `is_bit_valid`.
// - The memory may not be mutated even via `UnsafeCell`s. This is a
// precondition of `is_bit_valid`.
// - There must not exist any references to the same memory region
// which contain `UnsafeCell`s at byte ranges which are not
// identical to the byte ranges at which `T` contains
// `UnsafeCell`s. This is a precondition of `is_bit_valid`.
let $candidate: &$repr = unsafe { candidate.as_ref() };
$is_bit_valid
}
};
(@method TryFromBytes ; |$candidate:ident: Ptr<$repr:ty>| $is_bit_valid:expr) => {
#[inline]
unsafe fn is_bit_valid(candidate: Ptr<'_, Self>) -> bool {
// SAFETY:
// - The argument to `cast_unsized` is `|p| p as *mut _` as required
// by that method's safety precondition.
// - The caller has promised that the cast results in an object of
// equal or lesser size.
// - The caller has promised that `$repr`'s alignment is less than
// or equal to `Self`'s alignment.
#[allow(clippy::as_conversions)]
let $candidate = unsafe { candidate.cast_unsized::<$repr, _>(|p| p as *mut _) };
$is_bit_valid
}
};
(@method TryFromBytes) => { #[inline(always)] unsafe fn is_bit_valid(_: Ptr<'_, Self>) -> bool { true } };
(@method $trait:ident) => {
#[allow(clippy::missing_inline_in_public_items)]
fn only_derive_is_allowed_to_implement_this_trait() {}
};
(@method $trait:ident; |$_candidate:ident $(: &$_ref_repr:ty)? $(: NonNull<$_ptr_repr:ty>)?| $_is_bit_valid:expr) => {
compile_error!("Can't provide `is_bit_valid` impl for trait other than `TryFromBytes`");
};
}
/// Implements a trait for a type, bounding on each memeber of the power set of
/// a set of type variables. This is useful for implementing traits for tuples
/// or `fn` types.
///
/// The last argument is the name of a macro which will be called in every
/// `impl` block, and is expected to expand to the name of the type for which to
/// implement the trait.
///
/// For example, the invocation:
/// ```ignore
/// unsafe_impl_for_power_set!(A, B => Foo for type!(...))
/// ```
/// ...expands to:
/// ```ignore
/// unsafe impl Foo for type!() { ... }
/// unsafe impl<B> Foo for type!(B) { ... }
/// unsafe impl<A, B> Foo for type!(A, B) { ... }
/// ```
macro_rules! unsafe_impl_for_power_set {
($first:ident $(, $rest:ident)* $(-> $ret:ident)? => $trait:ident for $macro:ident!(...)) => {
unsafe_impl_for_power_set!($($rest),* $(-> $ret)? => $trait for $macro!(...));
unsafe_impl_for_power_set!(@impl $first $(, $rest)* $(-> $ret)? => $trait for $macro!(...));
};
($(-> $ret:ident)? => $trait:ident for $macro:ident!(...)) => {
unsafe_impl_for_power_set!(@impl $(-> $ret)? => $trait for $macro!(...));
};
(@impl $($vars:ident),* $(-> $ret:ident)? => $trait:ident for $macro:ident!(...)) => {
unsafe impl<$($vars,)* $($ret)?> $trait for $macro!($($vars),* $(-> $ret)?) {
#[allow(clippy::missing_inline_in_public_items)]
fn only_derive_is_allowed_to_implement_this_trait() {}
}
};
}
/// Expands to an `Option<extern "C" fn>` type with the given argument types and
/// return type. Designed for use with `unsafe_impl_for_power_set`.
macro_rules! opt_extern_c_fn {
($($args:ident),* -> $ret:ident) => { Option<extern "C" fn($($args),*) -> $ret> };
}
/// Expands to a `Option<fn>` type with the given argument types and return
/// type. Designed for use with `unsafe_impl_for_power_set`.
macro_rules! opt_fn {
($($args:ident),* -> $ret:ident) => { Option<fn($($args),*) -> $ret> };
}
/// Implements trait(s) for a type or verifies the given implementation by
/// referencing an existing (derived) implementation.
///
/// This macro exists so that we can provide zerocopy-derive as an optional
/// dependency and still get the benefit of using its derives to validate that
/// our trait impls are sound.
///
/// When compiling without `--cfg 'feature = "derive"` and without `--cfg test`,
/// `impl_or_verify!` emits the provided trait impl. When compiling with either
/// of those cfgs, it is expected that the type in question is deriving the
/// traits instead. In this case, `impl_or_verify!` emits code which validates
/// that the given trait impl is at least as restrictive as the the impl emitted
/// by the custom derive. This has the effect of confirming that the impl which
/// is emitted when the `derive` feature is disabled is actually sound (on the
/// assumption that the impl emitted by the custom derive is sound).
///
/// The caller is still required to provide a safety comment (e.g. using the
/// `safety_comment!` macro) . The reason for this restriction is that, while
/// `impl_or_verify!` can guarantee that the provided impl is sound when it is
/// compiled with the appropriate cfgs, there is no way to guarantee that it is
/// ever compiled with those cfgs. In particular, it would be possible to
/// accidentally place an `impl_or_verify!` call in a context that is only ever
/// compiled when the `derive` feature is disabled. If that were to happen,
/// there would be nothing to prevent an unsound trait impl from being emitted.
/// Requiring a safety comment reduces the likelihood of emitting an unsound
/// impl in this case, and also provides useful documentation for readers of the
/// code.
///
/// ## Example
///
/// ```rust,ignore
/// // Note that these derives are gated by `feature = "derive"`
/// #[cfg_attr(any(feature = "derive", test), derive(FromZeroes, FromBytes, AsBytes, Unaligned))]
/// #[repr(transparent)]
/// struct Wrapper<T>(T);
///
/// safety_comment! {
/// /// SAFETY:
/// /// `Wrapper<T>` is `repr(transparent)`, so it is sound to implement any
/// /// zerocopy trait if `T` implements that trait.
/// impl_or_verify!(T: FromZeroes => FromZeroes for Wrapper<T>);
/// impl_or_verify!(T: FromBytes => FromBytes for Wrapper<T>);
/// impl_or_verify!(T: AsBytes => AsBytes for Wrapper<T>);
/// impl_or_verify!(T: Unaligned => Unaligned for Wrapper<T>);
/// }
/// ```
macro_rules! impl_or_verify {
// The following two match arms follow the same pattern as their
// counterparts in `unsafe_impl!`; see the documentation on those arms for
// more details.
(
const $constname:ident : $constty:ident $(,)?
$($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
=> $trait:ident for $ty:ty
) => {
impl_or_verify!(@impl { unsafe_impl!(
const $constname: $constty, $($tyvar $(: $(? $optbound +)* $($bound +)*)?),* => $trait for $ty
); });
impl_or_verify!(@verify $trait, {
impl<const $constname: $constty, $($tyvar $(: $(? $optbound +)* $($bound +)*)?),*> Subtrait for $ty {}
});
};
(
$($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
=> $trait:ident for $ty:ty
) => {
impl_or_verify!(@impl { unsafe_impl!(
$($tyvar $(: $(? $optbound +)* $($bound +)*)?),* => $trait for $ty
); });
impl_or_verify!(@verify $trait, {
impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?),*> Subtrait for $ty {}
});
};
(
$($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
=> $trait:ident for $ty:ty
) => {
unsafe_impl!(
@inner
$($tyvar $(: $(? $optbound +)* + $($bound +)*)?,)*
=> $trait for $ty
);
};
(@impl $impl_block:tt) => {
#[cfg(not(any(feature = "derive", test)))]
const _: () = { $impl_block };
};
(@verify $trait:ident, $impl_block:tt) => {
#[cfg(any(feature = "derive", test))]
const _: () = {
trait Subtrait: $trait {}
$impl_block
};
};
}
/// Implements `KnownLayout` for a sized type.
macro_rules! impl_known_layout {
($(const $constvar:ident : $constty:ty, $tyvar:ident $(: ?$optbound:ident)? => $ty:ty),* $(,)?) => {
$(impl_known_layout!(@inner const $constvar: $constty, $tyvar $(: ?$optbound)? => $ty);)*
};
($($tyvar:ident $(: ?$optbound:ident)? => $ty:ty),* $(,)?) => {
$(impl_known_layout!(@inner , $tyvar $(: ?$optbound)? => $ty);)*
};
($($ty:ty),*) => { $(impl_known_layout!(@inner , => $ty);)* };
(@inner $(const $constvar:ident : $constty:ty)? , $($tyvar:ident $(: ?$optbound:ident)?)? => $ty:ty) => {
const _: () = {
use core::ptr::NonNull;
// SAFETY: Delegates safety to `DstLayout::for_type`.
unsafe impl<$(const $constvar : $constty,)? $($tyvar $(: ?$optbound)?)?> KnownLayout for $ty {
#[allow(clippy::missing_inline_in_public_items)]
fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {}
const LAYOUT: DstLayout = DstLayout::for_type::<$ty>();
// SAFETY: `.cast` preserves address and provenance.
//
// TODO(#429): Add documentation to `.cast` that promises that
// it preserves provenance.
#[inline(always)]
fn raw_from_ptr_len(bytes: NonNull<u8>, _elems: usize) -> NonNull<Self> {
bytes.cast::<Self>()
}
}
};
};
}
/// Implements `KnownLayout` for a type in terms of the implementation of
/// another type with the same representation.
///
/// # Safety
///
/// - `$ty` and `$repr` must have the same:
/// - Fixed prefix size
/// - Alignment
/// - (For DSTs) trailing slice element size
/// - It must be valid to perform an `as` cast from `*mut $repr` to `*mut $ty`,
/// and this operation must preserve referent size (ie, `size_of_val_raw`).
macro_rules! unsafe_impl_known_layout {
($($tyvar:ident: ?Sized + KnownLayout =>)? #[repr($repr:ty)] $ty:ty) => {
const _: () = {
use core::ptr::NonNull;
unsafe impl<$($tyvar: ?Sized + KnownLayout)?> KnownLayout for $ty {
#[allow(clippy::missing_inline_in_public_items)]
fn only_derive_is_allowed_to_implement_this_trait() {}
const LAYOUT: DstLayout = <$repr as KnownLayout>::LAYOUT;
// SAFETY: All operations preserve address and provenance.
// Caller has promised that the `as` cast preserves size.
//
// TODO(#429): Add documentation to `NonNull::new_unchecked`
// that it preserves provenance.
#[inline(always)]
#[allow(unused_qualifications)] // for `core::ptr::NonNull`
fn raw_from_ptr_len(bytes: NonNull<u8>, elems: usize) -> NonNull<Self> {
#[allow(clippy::as_conversions)]
let ptr = <$repr>::raw_from_ptr_len(bytes, elems).as_ptr() as *mut Self;
// SAFETY: `ptr` was converted from `bytes`, which is non-null.
unsafe { NonNull::new_unchecked(ptr) }
}
}
};
};
}
/// Uses `align_of` to confirm that a type or set of types have alignment 1.
///
/// Note that `align_of<T>` requires `T: Sized`, so this macro doesn't work for
/// unsized types.
macro_rules! assert_unaligned {
($ty:ty) => {
// We only compile this assertion under `cfg(test)` to avoid taking an
// extra non-dev dependency (and making this crate more expensive to
// compile for our dependents).
#[cfg(test)]
static_assertions::const_assert_eq!(core::mem::align_of::<$ty>(), 1);
};
($($ty:ty),*) => {
$(assert_unaligned!($ty);)*
};
}
|