1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
#![allow(clippy::upper_case_acronyms)]
//! ULE implementation for the `char` type.
use super::*;
use crate::impl_ule_from_array;
use core::cmp::Ordering;
use core::convert::TryFrom;
/// A u8 array of little-endian data corresponding to a Unicode scalar value.
///
/// The bytes of a `CharULE` are guaranteed to represent a little-endian-encoded u32 that is a
/// valid `char` and can be converted without validation.
///
/// # Examples
///
/// Convert a `char` to a `CharULE` and back again:
///
/// ```
/// use zerovec::ule::{AsULE, CharULE, ULE};
///
/// let c1 = '𑄃';
/// let ule = c1.to_unaligned();
/// assert_eq!(CharULE::as_byte_slice(&[ule]), &[0x03, 0x11, 0x01]);
/// let c2 = char::from_unaligned(ule);
/// assert_eq!(c1, c2);
/// ```
///
/// Attempt to parse invalid bytes to a `CharULE`:
///
/// ```
/// use zerovec::ule::{CharULE, ULE};
///
/// let bytes: &[u8] = &[0xFF, 0xFF, 0xFF, 0xFF];
/// CharULE::parse_byte_slice(bytes).expect_err("Invalid bytes");
/// ```
#[repr(transparent)]
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
pub struct CharULE([u8; 3]);
impl CharULE {
/// Converts a [`char`] to a [`CharULE`]. This is equivalent to calling
/// [`AsULE::to_unaligned()`]
///
/// See the type-level documentation for [`CharULE`] for more information.
#[inline]
pub const fn from_aligned(c: char) -> Self {
let [u0, u1, u2, _u3] = (c as u32).to_le_bytes();
Self([u0, u1, u2])
}
impl_ule_from_array!(char, CharULE, Self([0; 3]));
}
// Safety (based on the safety checklist on the ULE trait):
// 1. CharULE does not include any uninitialized or padding bytes.
// (achieved by `#[repr(transparent)]` on a type that satisfies this invariant)
// 2. CharULE is aligned to 1 byte.
// (achieved by `#[repr(transparent)]` on a type that satisfies this invariant)
// 3. The impl of validate_byte_slice() returns an error if any byte is not valid.
// 4. The impl of validate_byte_slice() returns an error if there are extra bytes.
// 5. The other ULE methods use the default impl.
// 6. CharULE byte equality is semantic equality
unsafe impl ULE for CharULE {
#[inline]
fn validate_byte_slice(bytes: &[u8]) -> Result<(), ZeroVecError> {
if bytes.len() % 3 != 0 {
return Err(ZeroVecError::length::<Self>(bytes.len()));
}
// Validate the bytes
for chunk in bytes.chunks_exact(3) {
// TODO: Use slice::as_chunks() when stabilized
#[allow(clippy::indexing_slicing)]
// Won't panic because the chunks are always 3 bytes long
let u = u32::from_le_bytes([chunk[0], chunk[1], chunk[2], 0]);
char::try_from(u).map_err(|_| ZeroVecError::parse::<Self>())?;
}
Ok(())
}
}
impl AsULE for char {
type ULE = CharULE;
#[inline]
fn to_unaligned(self) -> Self::ULE {
CharULE::from_aligned(self)
}
#[inline]
fn from_unaligned(unaligned: Self::ULE) -> Self {
// Safe because the bytes of CharULE are defined to represent a valid Unicode scalar value.
unsafe {
Self::from_u32_unchecked(u32::from_le_bytes([
unaligned.0[0],
unaligned.0[1],
unaligned.0[2],
0,
]))
}
}
}
impl PartialOrd for CharULE {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for CharULE {
fn cmp(&self, other: &Self) -> Ordering {
char::from_unaligned(*self).cmp(&char::from_unaligned(*other))
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_from_array() {
const CHARS: [char; 2] = ['a', '🙃'];
const CHARS_ULE: [CharULE; 2] = CharULE::from_array(CHARS);
assert_eq!(
CharULE::as_byte_slice(&CHARS_ULE),
&[0x61, 0x00, 0x00, 0x43, 0xF6, 0x01]
);
}
#[test]
fn test_from_array_zst() {
const CHARS: [char; 0] = [];
const CHARS_ULE: [CharULE; 0] = CharULE::from_array(CHARS);
let bytes = CharULE::as_byte_slice(&CHARS_ULE);
let empty: &[u8] = &[];
assert_eq!(bytes, empty);
}
#[test]
fn test_parse() {
// 1-byte, 2-byte, 3-byte, and two 4-byte character in UTF-8 (not as relevant in UTF-32)
let chars = ['w', 'ω', '文', '𑄃', '🙃'];
let char_ules: Vec<CharULE> = chars.iter().copied().map(char::to_unaligned).collect();
let char_bytes: &[u8] = CharULE::as_byte_slice(&char_ules);
// Check parsing
let parsed_ules: &[CharULE] = CharULE::parse_byte_slice(char_bytes).unwrap();
assert_eq!(char_ules, parsed_ules);
let parsed_chars: Vec<char> = parsed_ules
.iter()
.copied()
.map(char::from_unaligned)
.collect();
assert_eq!(&chars, parsed_chars.as_slice());
// Compare to golden expected data
assert_eq!(
&[119, 0, 0, 201, 3, 0, 135, 101, 0, 3, 17, 1, 67, 246, 1],
char_bytes
);
}
#[test]
fn test_failures() {
// 119 and 120 are valid, but not 0xD800 (high surrogate)
let u32s = [119, 0xD800, 120];
let u32_ules: Vec<RawBytesULE<4>> = u32s
.iter()
.copied()
.map(<u32 as AsULE>::to_unaligned)
.collect();
let u32_bytes: &[u8] = RawBytesULE::<4>::as_byte_slice(&u32_ules);
let parsed_ules_result = CharULE::parse_byte_slice(u32_bytes);
assert!(parsed_ules_result.is_err());
// 0x20FFFF is out of range for a char
let u32s = [0x20FFFF];
let u32_ules: Vec<RawBytesULE<4>> = u32s
.iter()
.copied()
.map(<u32 as AsULE>::to_unaligned)
.collect();
let u32_bytes: &[u8] = RawBytesULE::<4>::as_byte_slice(&u32_ules);
let parsed_ules_result = CharULE::parse_byte_slice(u32_bytes);
assert!(parsed_ules_result.is_err());
}
}
|