1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// This import does not use Chromutils because the next version of the library
// will require an async import, which is not supported by importESModule,
// so we'll just add await here.
import {
env,
RawImage,
AutoProcessor,
AutoTokenizer,
AutoModelForVision2Seq,
} from "chrome://global/content/ml/transformers-dev.js";
/**
* Lazy initialization container.
*
* @type {object}
*/
const lazy = {};
ChromeUtils.defineESModuleGetters(
lazy,
{
arrayBufferToBlobURL: "chrome://global/content/ml/Utils.sys.mjs",
},
{ global: "current" }
);
// Using a custom console, see https://bugzilla.mozilla.org/show_bug.cgi?id=1891789
let _logLevel = "Error";
function debug(...args) {
if (["Debug", "Trace", "All"].includes(_logLevel)) {
console.log("ML:", ...args); // eslint-disable-line no-console
}
}
/**
* Echo inference for testing purposes.
*
* @async
* @param {object} request - The request object containing image data.
* @param {object} _model - The model used for inference.
* @param {object} _tokenizer - The tokenizer used for decoding.
* @param {object} _processor - The processor used for preparing image data.
* @returns {Promise<object>} The result object containing the processed text.
*/
async function echo(request, _model, _tokenizer, _processor) {
return {
metrics: {
tokenizingTime: 0,
},
output: request.data,
};
}
/**
* Converts an image to text using a machine learning model.
*
* @async
* @param {object} request - The request object containing image data.
* @param {string} [request.imageUrl] - The URL of the image to process. Either `imageUrl` or `data` must be provided, but not both.
* @param {ArrayBuffer} [request.data] - The raw image data to process. Either `data` or `imageUrl` must be provided, but not both.
* @param {string} request.mimeType - The MIME type of the image data.
* @param {object} model - The model used for inference.
* @param {object} tokenizer - The tokenizer used for decoding.
* @param {object} processor - The processor used for preparing image data.
* @returns {Promise<object>} The result object containing the processed text.
*/
async function imageToText(request, model, tokenizer, processor) {
let result = {
metrics: {
inferenceTime: 0,
tokenizingTime: 0,
},
};
let start = Date.now();
let rawImage;
if ("imageUrl" in request) {
rawImage = await RawImage.fromUrl(request.imageUrl);
} else {
const blob = new Blob([request.data], { type: request.mimeType });
rawImage = await RawImage.fromBlob(blob);
}
debug("Image loaded in ", Date.now() - start);
const { pixel_values } = await processor(rawImage);
result.metrics.tokenizingTime += Date.now() - start;
const toReturn = [];
for (const batch of pixel_values) {
batch.dims = [1, ...batch.dims];
start = Date.now();
const output = await model.generate(batch);
result.metrics.inferenceTime += Date.now() - start;
start = Date.now();
const decoded = tokenizer
.batch_decode(output, {
skip_special_tokens: true,
})
.map(x => ({ generated_text: x.trim() }));
result.metrics.tokenizingTime += Date.now() - start;
toReturn.push(decoded);
}
debug("Inference done in ", Date.now() - start);
result.output = toReturn[0][0].generated_text;
return result;
}
/**
* Configuration for engine. Each task has a configuration object that
* gets merged at runtime with the options from PipelineOptions.
*
* When a key exists in both the default configuration and the options,
* the value from the options is used.
*
* The configuration keys that are not exposed as options are all the
* callables that are used in the pipeline:
*
* - modelClass
* - tokenizerClass
* - processorClass
* - pipelineFunction
*
* @type {object}
*/
const ENGINE_CONFIGURATION = {
"image-to-text": {
modelId: "mozilla/distilvit",
modelClass: AutoModelForVision2Seq,
tokenizerId: "mozilla/distilvit",
tokenizerClass: AutoTokenizer,
processorId: "mozilla/distilvit",
processorClass: AutoProcessor,
pipelineFunction: imageToText,
},
echo: {
modelId: null,
modelClass: null,
tokenizerId: null,
tokenizerClass: null,
processorId: null,
processorClass: null,
pipelineFunction: echo,
},
};
/**
* Represents a pipeline for processing machine learning tasks.
*/
export class Pipeline {
#modelCache = null;
#model = null;
#tokenizer = null;
#processor = null;
#pipelineFunction = null;
#taskName = null;
#initTime = 0;
#isReady = false;
/**
* Creates an instance of a Pipeline.
*
* @param {object} modelCache - Implements the Cache interface and used to get models
* @param {object} config - The configuration options
*/
constructor(modelCache, config) {
let start = Date.now();
this.#modelCache = modelCache;
_logLevel = config.logLevel || "Error";
// Setting up the Transformers.js environment
// See https://huggingface.co/docs/transformers.js/api/env
// Caching strategy.
// Here we make sure that everytime transformers.js requires a file, it uses
// modelCache, which transfers the request to the main thread and uses the
// ModelHub that caches files into IndexDB.
env.useBrowserCache = false;
env.allowLocalModels = false;
env.remoteHost = config.modelHubRootUrl;
env.remotePathTemplate = config.modelHubUrlTemplate;
env.useCustomCache = true;
env.customCache = this.#modelCache;
env.localModelPath = "/";
// ONNX runtime - we set up the wasm runtime we got from RS for the ONNX backend to pick
debug("Setting up ONNX backend");
env.backends.onnx.wasm.wasmPaths = {};
env.backends.onnx.wasm.wasmPaths[config.runtimeFilename] =
lazy.arrayBufferToBlobURL(config.runtime);
if (config.modelClass && config.modelId) {
debug(`Loading model ${config.modelId} with class ${config.modelClass}`);
this.#model = config.modelClass.from_pretrained(config.modelId);
}
if (config.tokenizerClass && config.tokenizerId) {
debug(
`Loading tokenizer ${config.tokenizerId} with class ${config.tokenizerClass}`
);
this.#tokenizer = config.tokenizerClass.from_pretrained(
config.tokenizerId
);
}
if (config.processorClass && config.processorId) {
debug(
`Loading processor ${config.processorId} with class ${config.processorClass}`
);
this.#processor = config.processorClass.from_pretrained(
config.processorId
);
}
this.#taskName = config.taskName;
this.#pipelineFunction = config.pipelineFunction.bind(this);
this.#initTime = Date.now() - start;
debug("Pipeline initialized, took ", this.#initTime);
}
/**
* Initializes the pipeline with given options.
*
* @static
* @async
* @param {object} modelCache - Implements the Cache interface and used to get models
* @param {ArrayBuffer} runtime - The runtime wasm file.
* @param {PipelineOptions} options - The options for initialization.
* @returns {Promise<Pipeline>} The initialized pipeline instance.
*/
static async initialize(modelCache, runtime, options) {
const taskName = options.taskName;
debug(`Initializing Pipeline for task ${taskName}`);
if (!ENGINE_CONFIGURATION[taskName]) {
throw new Error(`Task ${taskName} is not supported`);
}
// Loading the config defaults for the task
let config = { ...ENGINE_CONFIGURATION[taskName] };
config.runtime = runtime;
// Overriding the defaults with the options
options.applyToConfig(config);
if (!config.pipelineFunction) {
throw new Error("pipelineFunction is required for the pipeline");
}
return new Pipeline(modelCache, config);
}
/**
* Runs the pipeline with the given request.
*
* @async
* @param {T} request - The request object to be processed. The fields it may contain
* depends on the task. See each pipeline function for more details.
* @returns {Promise<object>} The result object from the pipeline execution.
*/
async run(request) {
debug("Running task: ", this.#taskName);
// Calling all promises to ensure they are resolved before running the first pipeline
if (!this.#isReady) {
let start = Date.now();
debug("Initializing model, tokenizer and processor");
// deactive console.warn, see https://bugzilla.mozilla.org/show_bug.cgi?id=1891003
const originalWarn = console.warn;
console.warn = () => {};
try {
this.#model = await this.#model;
this.#tokenizer = await this.#tokenizer;
this.#processor = await this.#processor;
this.#isReady = true;
} catch (error) {
debug("Error initializing pipeline", error);
throw error;
} finally {
console.warn = originalWarn;
}
this.#initTime += Date.now() - start;
debug("Pipeline is fully initialized, took ", this.#initTime);
}
let result = await this.#pipelineFunction(
request,
this.#model,
this.#tokenizer,
this.#processor
);
result.metrics.initTime = this.#initTime;
return result;
}
}
|