1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
// Write/Read data to/from an ArrayBuffer
class ArrayBufferDataStream {
constructor(arrayBuffer) {
this.dataView = new DataView(arrayBuffer);
this.pos = 0;
}
readUint8() {
let rv = this.dataView.getUint8(this.pos);
this.pos += 1;
return rv;
}
writeUint8(value) {
this.dataView.setUint8(this.pos, value);
this.pos += 1;
}
readUint16() {
let rv = this.dataView.getUint16(this.pos);
this.pos += 2;
return rv;
}
writeUint16(value) {
this.dataView.setUint16(this.pos, value);
this.pos += 2;
}
readUint32() {
let rv = this.dataView.getUint32(this.pos);
this.pos += 4;
return rv;
}
writeUint32(value) {
this.dataView.setUint32(this.pos, value);
this.pos += 4;
}
readUint64() {
let rv = this.dataView.getBigUint64(this.pos);
this.pos += 8;
return Number(rv);
}
writeUint64(value) {
this.dataView.setBigUint64(this.pos, BigInt(value));
this.pos += 8;
}
readInt8() {
let rv = this.dataView.getInt8(this.pos);
this.pos += 1;
return rv;
}
writeInt8(value) {
this.dataView.setInt8(this.pos, value);
this.pos += 1;
}
readInt16() {
let rv = this.dataView.getInt16(this.pos);
this.pos += 2;
return rv;
}
writeInt16(value) {
this.dataView.setInt16(this.pos, value);
this.pos += 2;
}
readInt32() {
let rv = this.dataView.getInt32(this.pos);
this.pos += 4;
return rv;
}
writeInt32(value) {
this.dataView.setInt32(this.pos, value);
this.pos += 4;
}
readInt64() {
let rv = this.dataView.getBigInt64(this.pos);
this.pos += 8;
return Number(rv);
}
writeInt64(value) {
this.dataView.setBigInt64(this.pos, BigInt(value));
this.pos += 8;
}
readFloat32() {
let rv = this.dataView.getFloat32(this.pos);
this.pos += 4;
return rv;
}
writeFloat32(value) {
this.dataView.setFloat32(this.pos, value);
this.pos += 4;
}
readFloat64() {
let rv = this.dataView.getFloat64(this.pos);
this.pos += 8;
return rv;
}
writeFloat64(value) {
this.dataView.setFloat64(this.pos, value);
this.pos += 8;
}
writeString(value) {
const encoder = new TextEncoder();
// Note: in order to efficiently write this data, we first write the
// string data, reserving 4 bytes for the size.
const dest = new Uint8Array(this.dataView.buffer, this.pos + 4);
const encodeResult = encoder.encodeInto(value, dest);
if (encodeResult.read != value.length) {
throw new UniFFIError(
"writeString: out of space when writing to ArrayBuffer. Did the computeSize() method returned the wrong result?"
);
}
const size = encodeResult.written;
// Next, go back and write the size before the string data
this.dataView.setUint32(this.pos, size);
// Finally, advance our position past both the size and string data
this.pos += size + 4;
}
readString() {
const decoder = new TextDecoder();
const size = this.readUint32();
const source = new Uint8Array(this.dataView.buffer, this.pos, size)
const value = decoder.decode(source);
this.pos += size;
return value;
}
{%- for object in ci.object_definitions() %}
// Reads a {{ object.nm() }} pointer from the data stream
// UniFFI Pointers are **always** 8 bytes long. That is enforced
// by the C++ and Rust Scaffolding code.
readPointer{{ object.nm() }}() {
const pointerId = {{ object_ids.get(ci, object) }}; // {{ object_ids.name(ci, object) }}
const res = UniFFIScaffolding.readPointer(pointerId, this.dataView.buffer, this.pos);
this.pos += 8;
return res;
}
// Writes a {{ object.nm() }} pointer into the data stream
// UniFFI Pointers are **always** 8 bytes long. That is enforced
// by the C++ and Rust Scaffolding code.
writePointer{{ object.nm() }}(value) {
const pointerId = {{ object_ids.get(ci, object) }}; // {{ object_ids.name(ci, object) }}
UniFFIScaffolding.writePointer(pointerId, value, this.dataView.buffer, this.pos);
this.pos += 8;
}
{% endfor %}
}
function handleRustResult(result, liftCallback, liftErrCallback) {
switch (result.code) {
case "success":
return liftCallback(result.data);
case "error":
throw liftErrCallback(result.data);
case "internal-error":
let message = result.internalErrorMessage;
if (message) {
throw new UniFFIInternalError(message);
} else {
throw new UniFFIInternalError("Unknown error");
}
default:
throw new UniFFIError(`Unexpected status code: ${result.code}`);
}
}
class UniFFIError {
constructor(message) {
this.message = message;
}
toString() {
return `UniFFIError: ${this.message}`
}
}
class UniFFIInternalError extends UniFFIError {}
// Base class for FFI converters
class FfiConverter {
// throw `UniFFITypeError` if a value to be converted has an invalid type
static checkType(value) {
if (value === undefined ) {
throw new UniFFITypeError(`undefined`);
}
if (value === null ) {
throw new UniFFITypeError(`null`);
}
}
}
// Base class for FFI converters that lift/lower by reading/writing to an ArrayBuffer
class FfiConverterArrayBuffer extends FfiConverter {
static lift(buf) {
return this.read(new ArrayBufferDataStream(buf));
}
static lower(value) {
const buf = new ArrayBuffer(this.computeSize(value));
const dataStream = new ArrayBufferDataStream(buf);
this.write(dataStream, value);
return buf;
}
}
// Symbols that are used to ensure that Object constructors
// can only be used with a proper UniFFI pointer
const uniffiObjectPtr = Symbol("uniffiObjectPtr");
const constructUniffiObject = Symbol("constructUniffiObject");
UnitTestObjs.uniffiObjectPtr = uniffiObjectPtr;
|