1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "PowerCounters.h"
#include "nsXULAppAPI.h" // for XRE_IsParentProcess
#include "nsString.h"
#include <windows.h>
#include <devioctl.h>
#include <setupapi.h> // for SetupDi*
// LogSeverity, defined by setupapi.h to DWORD, messes with other code.
#undef LogSeverity
#include <emi.h>
using namespace mozilla;
// This is a counter to collect power utilization during profiling.
// It cannot be a raw `ProfilerCounter` because we need to manually add/remove
// it while the profiler lock is already held.
class PowerMeterChannel final : public BaseProfilerCount {
public:
explicit PowerMeterChannel(const WCHAR* aChannelName, ULONGLONG aInitialValue,
ULONGLONG aInitialTime)
: BaseProfilerCount(nullptr, nullptr, nullptr, "power",
"Power utilization"),
mChannelName(NS_ConvertUTF16toUTF8(aChannelName)),
mPreviousValue(aInitialValue),
mPreviousTime(aInitialTime),
mIsSampleNew(true) {
if (mChannelName.Equals("RAPL_Package0_PKG")) {
mLabel = "Power: CPU package";
mDescription = mChannelName.get();
} else if (mChannelName.Equals("RAPL_Package0_PP0")) {
mLabel = "Power: CPU cores";
mDescription = mChannelName.get();
} else if (mChannelName.Equals("RAPL_Package0_PP1")) {
mLabel = "Power: iGPU";
mDescription = mChannelName.get();
} else if (mChannelName.Equals("RAPL_Package0_DRAM")) {
mLabel = "Power: DRAM";
mDescription = mChannelName.get();
} else {
unsigned int coreId;
if (sscanf(mChannelName.get(), "RAPL_Package0_Core%u_CORE", &coreId) ==
1) {
mLabelString = "Power: CPU core ";
mLabelString.AppendInt(coreId);
mLabel = mLabelString.get();
mDescription = mChannelName.get();
} else {
mLabel = mChannelName.get();
}
}
}
CountSample Sample() override {
CountSample result;
result.count = mCounter;
result.number = 0;
result.isSampleNew = mIsSampleNew;
mIsSampleNew = false;
return result;
}
void AddSample(ULONGLONG aAbsoluteEnergy, ULONGLONG aAbsoluteTime) {
// aAbsoluteTime is the time since the system start in 100ns increments.
if (aAbsoluteTime == mPreviousTime) {
return;
}
if (aAbsoluteEnergy > mPreviousValue) {
int64_t increment = aAbsoluteEnergy - mPreviousValue;
mCounter += increment;
mPreviousValue += increment;
mPreviousTime = aAbsoluteTime;
}
mIsSampleNew = true;
}
private:
int64_t mCounter;
nsCString mChannelName;
// Used as a storage when the label can not be a literal string.
nsCString mLabelString;
ULONGLONG mPreviousValue;
ULONGLONG mPreviousTime;
bool mIsSampleNew;
};
class PowerMeterDevice {
public:
explicit PowerMeterDevice(LPCTSTR aDevicePath) {
mHandle = ::CreateFile(aDevicePath, GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
if (mHandle == INVALID_HANDLE_VALUE) {
return;
}
EMI_VERSION version = {0};
DWORD dwOut;
if (!::DeviceIoControl(mHandle, IOCTL_EMI_GET_VERSION, nullptr, 0, &version,
sizeof(version), &dwOut, nullptr) ||
(version.EmiVersion != EMI_VERSION_V1 &&
version.EmiVersion != EMI_VERSION_V2)) {
return;
}
EMI_METADATA_SIZE size = {0};
if (!::DeviceIoControl(mHandle, IOCTL_EMI_GET_METADATA_SIZE, nullptr, 0,
&size, sizeof(size), &dwOut, nullptr) ||
!size.MetadataSize) {
return;
}
UniquePtr<uint8_t[]> metadata(new (std::nothrow)
uint8_t[size.MetadataSize]);
if (!metadata) {
return;
}
if (version.EmiVersion == EMI_VERSION_V2) {
EMI_METADATA_V2* metadata2 =
reinterpret_cast<EMI_METADATA_V2*>(metadata.get());
if (!::DeviceIoControl(mHandle, IOCTL_EMI_GET_METADATA, nullptr, 0,
metadata2, size.MetadataSize, &dwOut, nullptr)) {
return;
}
if (!mChannels.reserve(metadata2->ChannelCount)) {
return;
}
mDataBuffer =
MakeUnique<EMI_CHANNEL_MEASUREMENT_DATA[]>(metadata2->ChannelCount);
if (!mDataBuffer) {
return;
}
if (!::DeviceIoControl(
mHandle, IOCTL_EMI_GET_MEASUREMENT, nullptr, 0, mDataBuffer.get(),
sizeof(EMI_CHANNEL_MEASUREMENT_DATA[metadata2->ChannelCount]),
&dwOut, nullptr)) {
return;
}
EMI_CHANNEL_V2* channel = &metadata2->Channels[0];
for (int i = 0; i < metadata2->ChannelCount; ++i) {
EMI_CHANNEL_MEASUREMENT_DATA* channel_data = &mDataBuffer[i];
mChannels.infallibleAppend(new PowerMeterChannel(
channel->ChannelName, channel_data->AbsoluteEnergy,
channel_data->AbsoluteTime));
channel = EMI_CHANNEL_V2_NEXT_CHANNEL(channel);
}
} else if (version.EmiVersion == EMI_VERSION_V1) {
EMI_METADATA_V1* metadata1 =
reinterpret_cast<EMI_METADATA_V1*>(metadata.get());
if (!::DeviceIoControl(mHandle, IOCTL_EMI_GET_METADATA, nullptr, 0,
metadata1, size.MetadataSize, &dwOut, nullptr)) {
return;
}
mDataBuffer = MakeUnique<EMI_CHANNEL_MEASUREMENT_DATA[]>(1);
if (!mDataBuffer) {
return;
}
if (!::DeviceIoControl(
mHandle, IOCTL_EMI_GET_MEASUREMENT, nullptr, 0, mDataBuffer.get(),
sizeof(EMI_CHANNEL_MEASUREMENT_DATA), &dwOut, nullptr)) {
return;
}
(void)mChannels.append(new PowerMeterChannel(
metadata1->MeteredHardwareName, mDataBuffer[0].AbsoluteEnergy,
mDataBuffer[0].AbsoluteTime));
}
}
~PowerMeterDevice() {
if (mHandle != INVALID_HANDLE_VALUE) {
::CloseHandle(mHandle);
}
}
void Sample() {
MOZ_ASSERT(HasChannels());
MOZ_ASSERT(mDataBuffer);
DWORD dwOut;
if (!::DeviceIoControl(
mHandle, IOCTL_EMI_GET_MEASUREMENT, nullptr, 0, mDataBuffer.get(),
sizeof(EMI_CHANNEL_MEASUREMENT_DATA[mChannels.length()]), &dwOut,
nullptr)) {
return;
}
for (size_t i = 0; i < mChannels.length(); ++i) {
EMI_CHANNEL_MEASUREMENT_DATA* channel_data = &mDataBuffer[i];
mChannels[i]->AddSample(channel_data->AbsoluteEnergy,
channel_data->AbsoluteTime);
}
}
bool HasChannels() { return mChannels.length() != 0; }
void AppendCountersTo(PowerCounters::CountVector& aCounters) {
if (aCounters.reserve(aCounters.length() + mChannels.length())) {
for (auto& channel : mChannels) {
aCounters.infallibleAppend(channel);
}
}
}
private:
Vector<PowerMeterChannel*, 4> mChannels;
HANDLE mHandle = INVALID_HANDLE_VALUE;
UniquePtr<EMI_CHANNEL_MEASUREMENT_DATA[]> mDataBuffer;
};
PowerCounters::PowerCounters() {
class MOZ_STACK_CLASS HDevInfoHolder final {
public:
explicit HDevInfoHolder(HDEVINFO aHandle) : mHandle(aHandle) {}
~HDevInfoHolder() { ::SetupDiDestroyDeviceInfoList(mHandle); }
private:
HDEVINFO mHandle;
};
if (!XRE_IsParentProcess()) {
// Energy meters are global, so only sample them on the parent.
return;
}
// Energy Metering Device Interface
// {45BD8344-7ED6-49cf-A440-C276C933B053}
//
// Using GUID_DEVICE_ENERGY_METER does not compile as the symbol does not
// exist before Windows 10.
GUID my_GUID_DEVICE_ENERGY_METER = {
0x45bd8344,
0x7ed6,
0x49cf,
{0xa4, 0x40, 0xc2, 0x76, 0xc9, 0x33, 0xb0, 0x53}};
HDEVINFO hdev =
::SetupDiGetClassDevs(&my_GUID_DEVICE_ENERGY_METER, nullptr, nullptr,
DIGCF_PRESENT | DIGCF_DEVICEINTERFACE);
if (hdev == INVALID_HANDLE_VALUE) {
return;
}
HDevInfoHolder hdevHolder(hdev);
DWORD i = 0;
SP_DEVICE_INTERFACE_DATA did = {0};
did.cbSize = sizeof(did);
while (::SetupDiEnumDeviceInterfaces(
hdev, nullptr, &my_GUID_DEVICE_ENERGY_METER, i++, &did)) {
DWORD bufferSize = 0;
::SetupDiGetDeviceInterfaceDetail(hdev, &did, nullptr, 0, &bufferSize,
nullptr);
if (::GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
continue;
}
UniquePtr<uint8_t[]> buffer(new (std::nothrow) uint8_t[bufferSize]);
if (!buffer) {
continue;
}
PSP_DEVICE_INTERFACE_DETAIL_DATA pdidd =
reinterpret_cast<PSP_DEVICE_INTERFACE_DETAIL_DATA>(buffer.get());
MOZ_ASSERT(uintptr_t(buffer.get()) %
alignof(PSP_DEVICE_INTERFACE_DETAIL_DATA) ==
0);
pdidd->cbSize = sizeof(*pdidd);
if (!::SetupDiGetDeviceInterfaceDetail(hdev, &did, pdidd, bufferSize,
&bufferSize, nullptr)) {
continue;
}
UniquePtr<PowerMeterDevice> pmd =
MakeUnique<PowerMeterDevice>(pdidd->DevicePath);
if (!pmd->HasChannels() ||
!mPowerMeterDevices.emplaceBack(std::move(pmd))) {
NS_WARNING("PowerMeterDevice without measurement channel (or OOM)");
}
}
for (auto& device : mPowerMeterDevices) {
device->AppendCountersTo(mCounters);
}
}
// This default destructor can not be defined in the header file as it depends
// on the full definition of PowerMeterDevice which lives in this file.
PowerCounters::~PowerCounters() {}
void PowerCounters::Sample() {
for (auto& device : mPowerMeterDevices) {
device->Sample();
}
}
|