summaryrefslogtreecommitdiffstats
path: root/xpcom/ds/nsTArray-inl.h
blob: 3d9ff1d41056eeb0637939c842a8c9e898879284 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef nsTArray_h__
#  error "Don't include this file directly"
#endif

// NOTE: We don't use MOZ_COUNT_CTOR/MOZ_COUNT_DTOR to perform leak checking of
// nsTArray_base objects intentionally for the following reasons:
// * The leak logging isn't as useful as other types of logging, as
//   nsTArray_base is frequently relocated without invoking a constructor, such
//   as when stored within another nsTArray. This means that
//   XPCOM_MEM_LOG_CLASSES cannot be used to identify specific leaks of nsTArray
//   objects.
// * The nsTArray type is layout compatible with the ThinVec crate with the
//   correct flags, and ThinVec does not currently perform leak logging.
//   This means that if a large number of arrays are transferred between Rust
//   and C++ code using ThinVec, for example within another ThinVec, they
//   will not be logged correctly and might appear as e.g. negative leaks.
// * Leaks which have been found thanks to the leak logging added by this
//   type have often not been significant, and/or have needed to be
//   circumvented using some other mechanism. Most leaks found with this type
//   in them also include other types which will continue to be tracked.

template <class Alloc, class RelocationStrategy>
nsTArray_base<Alloc, RelocationStrategy>::nsTArray_base() : mHdr(EmptyHdr()) {}

template <class Alloc, class RelocationStrategy>
nsTArray_base<Alloc, RelocationStrategy>::~nsTArray_base() {
  if (!HasEmptyHeader() && !UsesAutoArrayBuffer()) {
    Alloc::Free(mHdr);
  }
}

template <class Alloc, class RelocationStrategy>
nsTArray_base<Alloc, RelocationStrategy>::nsTArray_base(const nsTArray_base&)
    : mHdr(EmptyHdr()) {
  // Actual copying happens through nsTArray_CopyEnabler, we just need to do the
  // initialization of mHdr.
}

template <class Alloc, class RelocationStrategy>
nsTArray_base<Alloc, RelocationStrategy>&
nsTArray_base<Alloc, RelocationStrategy>::operator=(const nsTArray_base&) {
  // Actual copying happens through nsTArray_CopyEnabler, so do nothing here (do
  // not copy mHdr).
  return *this;
}

template <class Alloc, class RelocationStrategy>
const nsTArrayHeader*
nsTArray_base<Alloc, RelocationStrategy>::GetAutoArrayBufferUnsafe(
    size_t aElemAlign) const {
  // Assuming |this| points to an nsAutoArray, we want to get a pointer to
  // mAutoBuf.  So just cast |this| to nsAutoArray* and read &mAutoBuf!

  const void* autoBuf =
      &reinterpret_cast<const AutoTArray<nsTArray<uint32_t>, 1>*>(this)
           ->mAutoBuf;

  // If we're on a 32-bit system and aElemAlign is 8, we need to adjust our
  // pointer to take into account the extra alignment in the auto array.

  static_assert(
      sizeof(void*) != 4 || (MOZ_ALIGNOF(mozilla::AlignedElem<8>) == 8 &&
                             sizeof(AutoTArray<mozilla::AlignedElem<8>, 1>) ==
                                 sizeof(void*) + sizeof(nsTArrayHeader) + 4 +
                                     sizeof(mozilla::AlignedElem<8>)),
      "auto array padding wasn't what we expected");

  // We don't support alignments greater than 8 bytes.
  MOZ_ASSERT(aElemAlign <= 4 || aElemAlign == 8, "unsupported alignment.");
  if (sizeof(void*) == 4 && aElemAlign == 8) {
    autoBuf = reinterpret_cast<const char*>(autoBuf) + 4;
  }

  return reinterpret_cast<const Header*>(autoBuf);
}

template <class Alloc, class RelocationStrategy>
bool nsTArray_base<Alloc, RelocationStrategy>::UsesAutoArrayBuffer() const {
  if (!mHdr->mIsAutoArray) {
    return false;
  }

  // This is nuts.  If we were sane, we'd pass aElemAlign as a parameter to
  // this function.  Unfortunately this function is called in nsTArray_base's
  // destructor, at which point we don't know value_type's alignment.
  //
  // We'll fall on our face and return true when we should say false if
  //
  //   * we're not using our auto buffer,
  //   * aElemAlign == 4, and
  //   * mHdr == GetAutoArrayBuffer(8).
  //
  // This could happen if |*this| lives on the heap and malloc allocated our
  // buffer on the heap adjacent to |*this|.
  //
  // However, we can show that this can't happen.  If |this| is an auto array
  // (as we ensured at the beginning of the method), GetAutoArrayBuffer(8)
  // always points to memory owned by |*this|, because (as we assert below)
  //
  //   * GetAutoArrayBuffer(8) is at most 4 bytes past GetAutoArrayBuffer(4),
  //     and
  //   * sizeof(nsTArrayHeader) > 4.
  //
  // Since AutoTArray always contains an nsTArrayHeader,
  // GetAutoArrayBuffer(8) will always point inside the auto array object,
  // even if it doesn't point at the beginning of the header.
  //
  // Note that this means that we can't store elements with alignment 16 in an
  // nsTArray, because GetAutoArrayBuffer(16) could lie outside the memory
  // owned by this AutoTArray.  We statically assert that value_type's
  // alignment is 8 bytes or less in AutoTArray.

  static_assert(sizeof(nsTArrayHeader) > 4, "see comment above");

#ifdef DEBUG
  ptrdiff_t diff = reinterpret_cast<const char*>(GetAutoArrayBuffer(8)) -
                   reinterpret_cast<const char*>(GetAutoArrayBuffer(4));
  MOZ_ASSERT(diff >= 0 && diff <= 4,
             "GetAutoArrayBuffer doesn't do what we expect.");
#endif

  return mHdr == GetAutoArrayBuffer(4) || mHdr == GetAutoArrayBuffer(8);
}

// defined in nsTArray.cpp
bool IsTwiceTheRequiredBytesRepresentableAsUint32(size_t aCapacity,
                                                  size_t aElemSize);

template <class Alloc, class RelocationStrategy>
template <typename ActualAlloc>
typename ActualAlloc::ResultTypeProxy
nsTArray_base<Alloc, RelocationStrategy>::ExtendCapacity(size_type aLength,
                                                         size_type aCount,
                                                         size_type aElemSize) {
  mozilla::CheckedInt<size_type> newLength = aLength;
  newLength += aCount;

  if (!newLength.isValid()) {
    return ActualAlloc::FailureResult();
  }

  return this->EnsureCapacity<ActualAlloc>(newLength.value(), aElemSize);
}

template <class Alloc, class RelocationStrategy>
template <typename ActualAlloc>
typename ActualAlloc::ResultTypeProxy
nsTArray_base<Alloc, RelocationStrategy>::EnsureCapacityImpl(
    size_type aCapacity, size_type aElemSize) {
  MOZ_ASSERT(aCapacity > mHdr->mCapacity,
             "Should have been checked by caller (EnsureCapacity)");

  // If the requested memory allocation exceeds size_type(-1)/2, then
  // our doubling algorithm may not be able to allocate it.
  // Additionally, if it exceeds uint32_t(-1) then we couldn't fit in the
  // Header::mCapacity member. Just bail out in cases like that.  We don't want
  // to be allocating 2 GB+ arrays anyway.
  if (!IsTwiceTheRequiredBytesRepresentableAsUint32(aCapacity, aElemSize)) {
    ActualAlloc::SizeTooBig((size_t)aCapacity * aElemSize);
    return ActualAlloc::FailureResult();
  }

  size_t reqSize = sizeof(Header) + aCapacity * aElemSize;

  if (HasEmptyHeader()) {
    // Malloc() new data
    Header* header = static_cast<Header*>(ActualAlloc::Malloc(reqSize));
    if (!header) {
      return ActualAlloc::FailureResult();
    }
    header->mLength = 0;
    header->mCapacity = aCapacity;
    header->mIsAutoArray = 0;
    mHdr = header;

    return ActualAlloc::SuccessResult();
  }

  // We increase our capacity so that the allocated buffer grows exponentially,
  // which gives us amortized O(1) appending. Below the threshold, we use
  // powers-of-two. Above the threshold, we grow by at least 1.125, rounding up
  // to the nearest MiB.
  const size_t slowGrowthThreshold = 8 * 1024 * 1024;

  size_t bytesToAlloc;
  if (reqSize >= slowGrowthThreshold) {
    size_t currSize = sizeof(Header) + Capacity() * aElemSize;
    size_t minNewSize = currSize + (currSize >> 3);  // multiply by 1.125
    bytesToAlloc = reqSize > minNewSize ? reqSize : minNewSize;

    // Round up to the next multiple of MiB.
    const size_t MiB = 1 << 20;
    bytesToAlloc = MiB * ((bytesToAlloc + MiB - 1) / MiB);
  } else {
    // Round up to the next power of two.
    bytesToAlloc = mozilla::RoundUpPow2(reqSize);
  }

  Header* header;
  if (UsesAutoArrayBuffer() || !RelocationStrategy::allowRealloc) {
    // Malloc() and copy
    header = static_cast<Header*>(ActualAlloc::Malloc(bytesToAlloc));
    if (!header) {
      return ActualAlloc::FailureResult();
    }

    RelocationStrategy::RelocateNonOverlappingRegionWithHeader(
        header, mHdr, Length(), aElemSize);

    if (!UsesAutoArrayBuffer()) {
      ActualAlloc::Free(mHdr);
    }
  } else {
    // Realloc() existing data
    header = static_cast<Header*>(ActualAlloc::Realloc(mHdr, bytesToAlloc));
    if (!header) {
      return ActualAlloc::FailureResult();
    }
  }

  // How many elements can we fit in bytesToAlloc?
  size_t newCapacity = (bytesToAlloc - sizeof(Header)) / aElemSize;
  MOZ_ASSERT(newCapacity >= aCapacity, "Didn't enlarge the array enough!");
  header->mCapacity = newCapacity;

  mHdr = header;

  return ActualAlloc::SuccessResult();
}

// We don't need use Alloc template parameter specified here because failure to
// shrink the capacity will leave the array unchanged.
template <class Alloc, class RelocationStrategy>
void nsTArray_base<Alloc, RelocationStrategy>::ShrinkCapacity(
    size_type aElemSize, size_t aElemAlign) {
  if (HasEmptyHeader() || UsesAutoArrayBuffer()) {
    return;
  }

  if (mHdr->mLength >= mHdr->mCapacity) {  // should never be greater than...
    return;
  }

  size_type length = Length();

  if (IsAutoArray() && GetAutoArrayBuffer(aElemAlign)->mCapacity >= length) {
    Header* header = GetAutoArrayBuffer(aElemAlign);

    // Move the data, but don't copy the header to avoid overwriting mCapacity.
    header->mLength = length;
    RelocationStrategy::RelocateNonOverlappingRegion(header + 1, mHdr + 1,
                                                     length, aElemSize);

    nsTArrayFallibleAllocator::Free(mHdr);
    mHdr = header;
    return;
  }

  if (length == 0) {
    MOZ_ASSERT(!IsAutoArray(), "autoarray should have fit 0 elements");
    nsTArrayFallibleAllocator::Free(mHdr);
    mHdr = EmptyHdr();
    return;
  }

  size_type newSize = sizeof(Header) + length * aElemSize;

  Header* newHeader;
  if (!RelocationStrategy::allowRealloc) {
    // Malloc() and copy.
    newHeader =
        static_cast<Header*>(nsTArrayFallibleAllocator::Malloc(newSize));
    if (!newHeader) {
      return;
    }

    RelocationStrategy::RelocateNonOverlappingRegionWithHeader(
        newHeader, mHdr, Length(), aElemSize);

    nsTArrayFallibleAllocator::Free(mHdr);
  } else {
    // Realloc() existing data.
    newHeader =
        static_cast<Header*>(nsTArrayFallibleAllocator::Realloc(mHdr, newSize));
    if (!newHeader) {
      return;
    }
  }

  mHdr = newHeader;
  mHdr->mCapacity = length;
}

template <class Alloc, class RelocationStrategy>
void nsTArray_base<Alloc, RelocationStrategy>::ShrinkCapacityToZero(
    size_type aElemSize, size_t aElemAlign) {
  MOZ_ASSERT(mHdr->mLength == 0);

  if (HasEmptyHeader() || UsesAutoArrayBuffer()) {
    return;
  }

  const bool isAutoArray = IsAutoArray();

  nsTArrayFallibleAllocator::Free(mHdr);

  if (isAutoArray) {
    mHdr = GetAutoArrayBufferUnsafe(aElemAlign);
    mHdr->mLength = 0;
  } else {
    mHdr = EmptyHdr();
  }
}

template <class Alloc, class RelocationStrategy>
template <typename ActualAlloc>
void nsTArray_base<Alloc, RelocationStrategy>::ShiftData(index_type aStart,
                                                         size_type aOldLen,
                                                         size_type aNewLen,
                                                         size_type aElemSize,
                                                         size_t aElemAlign) {
  if (aOldLen == aNewLen) {
    return;
  }

  // Determine how many elements need to be shifted
  size_type num = mHdr->mLength - (aStart + aOldLen);

  // Compute the resulting length of the array
  mHdr->mLength += aNewLen - aOldLen;
  if (mHdr->mLength == 0) {
    ShrinkCapacityToZero(aElemSize, aElemAlign);
  } else {
    // Maybe nothing needs to be shifted
    if (num == 0) {
      return;
    }
    // Perform shift (change units to bytes first)
    aStart *= aElemSize;
    aNewLen *= aElemSize;
    aOldLen *= aElemSize;
    char* baseAddr = reinterpret_cast<char*>(mHdr + 1) + aStart;
    RelocationStrategy::RelocateOverlappingRegion(
        baseAddr + aNewLen, baseAddr + aOldLen, num, aElemSize);
  }
}

template <class Alloc, class RelocationStrategy>
template <typename ActualAlloc>
void nsTArray_base<Alloc, RelocationStrategy>::SwapFromEnd(index_type aStart,
                                                           size_type aCount,
                                                           size_type aElemSize,
                                                           size_t aElemAlign) {
  // This method is part of the implementation of
  // nsTArray::SwapRemoveElement{s,}At. For more information, read the
  // documentation on that method.
  if (aCount == 0) {
    return;
  }

  // We are going to be removing aCount elements. Update our length to point to
  // the new end of the array.
  size_type oldLength = mHdr->mLength;
  mHdr->mLength -= aCount;

  if (mHdr->mLength == 0) {
    // If we have no elements remaining in the array, we can free our buffer.
    ShrinkCapacityToZero(aElemSize, aElemAlign);
    return;
  }

  // Determine how many elements we need to move from the end of the array into
  // the now-removed section. This will either be the number of elements which
  // were removed (if there are more elements in the tail of the array), or the
  // entire tail of the array, whichever is smaller.
  size_type relocCount = std::min(aCount, mHdr->mLength - aStart);
  if (relocCount == 0) {
    return;
  }

  // Move the elements which are now stranded after the end of the array back
  // into the now-vacated memory.
  index_type sourceBytes = (oldLength - relocCount) * aElemSize;
  index_type destBytes = aStart * aElemSize;

  // Perform the final copy. This is guaranteed to be a non-overlapping copy
  // as our source contains only still-valid entries, and the destination
  // contains only invalid entries which need to be overwritten.
  MOZ_ASSERT(sourceBytes >= destBytes,
             "The source should be after the destination.");
  MOZ_ASSERT(sourceBytes - destBytes >= relocCount * aElemSize,
             "The range should be nonoverlapping");

  char* baseAddr = reinterpret_cast<char*>(mHdr + 1);
  RelocationStrategy::RelocateNonOverlappingRegion(
      baseAddr + destBytes, baseAddr + sourceBytes, relocCount, aElemSize);
}

template <class Alloc, class RelocationStrategy>
template <typename ActualAlloc>
typename ActualAlloc::ResultTypeProxy
nsTArray_base<Alloc, RelocationStrategy>::InsertSlotsAt(index_type aIndex,
                                                        size_type aCount,
                                                        size_type aElemSize,
                                                        size_t aElemAlign) {
  if (MOZ_UNLIKELY(aIndex > Length())) {
    mozilla::detail::InvalidArrayIndex_CRASH(aIndex, Length());
  }

  if (!ActualAlloc::Successful(
          this->ExtendCapacity<ActualAlloc>(Length(), aCount, aElemSize))) {
    return ActualAlloc::FailureResult();
  }

  // Move the existing elements as needed.  Note that this will
  // change our mLength, so no need to call IncrementLength.
  ShiftData<ActualAlloc>(aIndex, 0, aCount, aElemSize, aElemAlign);

  return ActualAlloc::SuccessResult();
}

// nsTArray_base::IsAutoArrayRestorer is an RAII class which takes
// |nsTArray_base &array| in its constructor.  When it's destructed, it ensures
// that
//
//   * array.mIsAutoArray has the same value as it did when we started, and
//   * if array has an auto buffer and mHdr would otherwise point to
//     sEmptyTArrayHeader, array.mHdr points to array's auto buffer.

template <class Alloc, class RelocationStrategy>
nsTArray_base<Alloc, RelocationStrategy>::IsAutoArrayRestorer::
    IsAutoArrayRestorer(nsTArray_base<Alloc, RelocationStrategy>& aArray,
                        size_t aElemAlign)
    : mArray(aArray), mElemAlign(aElemAlign), mIsAuto(aArray.IsAutoArray()) {}

template <class Alloc, class RelocationStrategy>
nsTArray_base<Alloc,
              RelocationStrategy>::IsAutoArrayRestorer::~IsAutoArrayRestorer() {
  // Careful: We don't want to set mIsAutoArray = 1 on sEmptyTArrayHeader.
  if (mIsAuto && mArray.HasEmptyHeader()) {
    // Call GetAutoArrayBufferUnsafe() because GetAutoArrayBuffer() asserts
    // that mHdr->mIsAutoArray is true, which surely isn't the case here.
    mArray.mHdr = mArray.GetAutoArrayBufferUnsafe(mElemAlign);
    mArray.mHdr->mLength = 0;
  } else if (!mArray.HasEmptyHeader()) {
    mArray.mHdr->mIsAutoArray = mIsAuto;
  }
}

template <class Alloc, class RelocationStrategy>
template <typename ActualAlloc, class Allocator>
typename ActualAlloc::ResultTypeProxy
nsTArray_base<Alloc, RelocationStrategy>::SwapArrayElements(
    nsTArray_base<Allocator, RelocationStrategy>& aOther, size_type aElemSize,
    size_t aElemAlign) {
  // EnsureNotUsingAutoArrayBuffer will set mHdr = sEmptyTArrayHeader even if we
  // have an auto buffer.  We need to point mHdr back to our auto buffer before
  // we return, otherwise we'll forget that we have an auto buffer at all!
  // IsAutoArrayRestorer takes care of this for us.

  IsAutoArrayRestorer ourAutoRestorer(*this, aElemAlign);
  typename nsTArray_base<Allocator, RelocationStrategy>::IsAutoArrayRestorer
      otherAutoRestorer(aOther, aElemAlign);

  // If neither array uses an auto buffer which is big enough to store the
  // other array's elements, then ensure that both arrays use malloc'ed storage
  // and swap their mHdr pointers.
  if ((!UsesAutoArrayBuffer() || Capacity() < aOther.Length()) &&
      (!aOther.UsesAutoArrayBuffer() || aOther.Capacity() < Length())) {
    if (!EnsureNotUsingAutoArrayBuffer<ActualAlloc>(aElemSize) ||
        !aOther.template EnsureNotUsingAutoArrayBuffer<ActualAlloc>(
            aElemSize)) {
      return ActualAlloc::FailureResult();
    }

    Header* temp = mHdr;
    mHdr = aOther.mHdr;
    aOther.mHdr = temp;

    return ActualAlloc::SuccessResult();
  }

  // Swap the two arrays by copying, since at least one is using an auto
  // buffer which is large enough to hold all of the aOther's elements.  We'll
  // copy the shorter array into temporary storage.
  //
  // (We could do better than this in some circumstances.  Suppose we're
  // swapping arrays X and Y.  X has space for 2 elements in its auto buffer,
  // but currently has length 4, so it's using malloc'ed storage.  Y has length
  // 2.  When we swap X and Y, we don't need to use a temporary buffer; we can
  // write Y straight into X's auto buffer, write X's malloc'ed buffer on top
  // of Y, and then switch X to using its auto buffer.)

  if (!ActualAlloc::Successful(
          EnsureCapacity<ActualAlloc>(aOther.Length(), aElemSize)) ||
      !Allocator::Successful(
          aOther.template EnsureCapacity<Allocator>(Length(), aElemSize))) {
    return ActualAlloc::FailureResult();
  }

  // The EnsureCapacity calls above shouldn't have caused *both* arrays to
  // switch from their auto buffers to malloc'ed space.
  MOZ_ASSERT(UsesAutoArrayBuffer() || aOther.UsesAutoArrayBuffer(),
             "One of the arrays should be using its auto buffer.");

  size_type smallerLength = XPCOM_MIN(Length(), aOther.Length());
  size_type largerLength = XPCOM_MAX(Length(), aOther.Length());
  void* smallerElements;
  void* largerElements;
  if (Length() <= aOther.Length()) {
    smallerElements = Hdr() + 1;
    largerElements = aOther.Hdr() + 1;
  } else {
    smallerElements = aOther.Hdr() + 1;
    largerElements = Hdr() + 1;
  }

  // Allocate temporary storage for the smaller of the two arrays.  We want to
  // allocate this space on the stack, if it's not too large.  Sounds like a
  // job for AutoTArray!  (One of the two arrays we're swapping is using an
  // auto buffer, so we're likely not allocating a lot of space here.  But one
  // could, in theory, allocate a huge AutoTArray on the heap.)
  AutoTArray<uint8_t, 64 * sizeof(void*)> temp;
  if (!ActualAlloc::Successful(temp.template EnsureCapacity<ActualAlloc>(
          smallerLength * aElemSize, sizeof(uint8_t)))) {
    return ActualAlloc::FailureResult();
  }

  RelocationStrategy::RelocateNonOverlappingRegion(
      temp.Elements(), smallerElements, smallerLength, aElemSize);
  RelocationStrategy::RelocateNonOverlappingRegion(
      smallerElements, largerElements, largerLength, aElemSize);
  RelocationStrategy::RelocateNonOverlappingRegion(
      largerElements, temp.Elements(), smallerLength, aElemSize);

  // Swap the arrays' lengths.
  MOZ_ASSERT((aOther.Length() == 0 || !HasEmptyHeader()) &&
                 (Length() == 0 || !aOther.HasEmptyHeader()),
             "Don't set sEmptyTArrayHeader's length.");
  size_type tempLength = Length();

  // Avoid writing to EmptyHdr, since it can trigger false
  // positives with TSan.
  if (!HasEmptyHeader()) {
    mHdr->mLength = aOther.Length();
  }
  if (!aOther.HasEmptyHeader()) {
    aOther.mHdr->mLength = tempLength;
  }

  return ActualAlloc::SuccessResult();
}

template <class Alloc, class RelocationStrategy>
template <class Allocator>
void nsTArray_base<Alloc, RelocationStrategy>::MoveInit(
    nsTArray_base<Allocator, RelocationStrategy>& aOther, size_type aElemSize,
    size_t aElemAlign) {
  // This method is similar to SwapArrayElements, but specialized for the case
  // where the target array is empty with no allocated heap storage. It is
  // provided and used to simplify template instantiation and enable better code
  // generation.

  MOZ_ASSERT(Length() == 0);
  MOZ_ASSERT(Capacity() == 0 || (IsAutoArray() && UsesAutoArrayBuffer()));

  // EnsureNotUsingAutoArrayBuffer will set mHdr = sEmptyTArrayHeader even if we
  // have an auto buffer.  We need to point mHdr back to our auto buffer before
  // we return, otherwise we'll forget that we have an auto buffer at all!
  // IsAutoArrayRestorer takes care of this for us.

  IsAutoArrayRestorer ourAutoRestorer(*this, aElemAlign);
  typename nsTArray_base<Allocator, RelocationStrategy>::IsAutoArrayRestorer
      otherAutoRestorer(aOther, aElemAlign);

  // If neither array uses an auto buffer which is big enough to store the
  // other array's elements, then ensure that both arrays use malloc'ed storage
  // and swap their mHdr pointers.
  if ((!IsAutoArray() || Capacity() < aOther.Length()) &&
      !aOther.UsesAutoArrayBuffer()) {
    mHdr = aOther.mHdr;

    aOther.mHdr = EmptyHdr();

    return;
  }

  // Move the data by copying, since at least one has an auto
  // buffer which is large enough to hold all of the aOther's elements.

  EnsureCapacity<nsTArrayInfallibleAllocator>(aOther.Length(), aElemSize);

  // The EnsureCapacity calls above shouldn't have caused *both* arrays to
  // switch from their auto buffers to malloc'ed space.
  MOZ_ASSERT(UsesAutoArrayBuffer() || aOther.UsesAutoArrayBuffer(),
             "One of the arrays should be using its auto buffer.");

  RelocationStrategy::RelocateNonOverlappingRegion(Hdr() + 1, aOther.Hdr() + 1,
                                                   aOther.Length(), aElemSize);

  // Swap the arrays' lengths.
  MOZ_ASSERT((aOther.Length() == 0 || !HasEmptyHeader()) &&
                 (Length() == 0 || !aOther.HasEmptyHeader()),
             "Don't set sEmptyTArrayHeader's length.");

  // Avoid writing to EmptyHdr, since it can trigger false
  // positives with TSan.
  if (!HasEmptyHeader()) {
    mHdr->mLength = aOther.Length();
  }
  if (!aOther.HasEmptyHeader()) {
    aOther.mHdr->mLength = 0;
  }
}

template <class Alloc, class RelocationStrategy>
template <class Allocator>
void nsTArray_base<Alloc, RelocationStrategy>::MoveConstructNonAutoArray(
    nsTArray_base<Allocator, RelocationStrategy>& aOther, size_type aElemSize,
    size_t aElemAlign) {
  // We know that we are not an (Copyable)AutoTArray and we know that we are
  // empty, so don't use SwapArrayElements which doesn't know either of these
  // facts and is very complex.

  if (aOther.IsEmpty()) {
    return;
  }

  // aOther might be an (Copyable)AutoTArray though, and it might use its inline
  // buffer.
  const bool otherUsesAutoArrayBuffer = aOther.UsesAutoArrayBuffer();
  if (otherUsesAutoArrayBuffer) {
    // Use nsTArrayInfallibleAllocator regardless of Alloc because this is
    // called from a move constructor, which cannot report an error to the
    // caller.
    aOther.template EnsureNotUsingAutoArrayBuffer<nsTArrayInfallibleAllocator>(
        aElemSize);
  }

  const bool otherIsAuto = otherUsesAutoArrayBuffer || aOther.IsAutoArray();
  mHdr = aOther.mHdr;
  // We might write to mHdr, so ensure it's not the static empty header. aOther
  // shouldn't have been empty if we get here anyway.
  MOZ_ASSERT(!HasEmptyHeader());

  if (otherIsAuto) {
    mHdr->mIsAutoArray = false;
    aOther.mHdr = aOther.GetAutoArrayBufferUnsafe(aElemAlign);
    aOther.mHdr->mLength = 0;
  } else {
    aOther.mHdr = aOther.EmptyHdr();
  }
}

template <class Alloc, class RelocationStrategy>
template <typename ActualAlloc>
bool nsTArray_base<Alloc, RelocationStrategy>::EnsureNotUsingAutoArrayBuffer(
    size_type aElemSize) {
  if (UsesAutoArrayBuffer()) {
    // If you call this on a 0-length array, we'll set that array's mHdr to
    // sEmptyTArrayHeader, in flagrant violation of the AutoTArray invariants.
    // It's up to you to set it back!  (If you don't, the AutoTArray will
    // forget that it has an auto buffer.)
    if (Length() == 0) {
      mHdr = EmptyHdr();
      return true;
    }

    size_type size = sizeof(Header) + Length() * aElemSize;

    Header* header = static_cast<Header*>(ActualAlloc::Malloc(size));
    if (!header) {
      return false;
    }

    RelocationStrategy::RelocateNonOverlappingRegionWithHeader(
        header, mHdr, Length(), aElemSize);
    header->mCapacity = Length();
    mHdr = header;
  }

  return true;
}