summaryrefslogtreecommitdiffstats
path: root/xpcom/io/nsPipe3.cpp
blob: 3d7486e673871ba21966c8b6ea8f8fc7e7cce741 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include <algorithm>
#include "mozilla/Attributes.h"
#include "mozilla/IntegerPrintfMacros.h"
#include "mozilla/ReentrantMonitor.h"
#include "nsIBufferedStreams.h"
#include "nsICloneableInputStream.h"
#include "nsIPipe.h"
#include "nsIEventTarget.h"
#include "nsITellableStream.h"
#include "mozilla/RefPtr.h"
#include "nsSegmentedBuffer.h"
#include "nsStreamUtils.h"
#include "nsString.h"
#include "nsCOMPtr.h"
#include "nsCRT.h"
#include "mozilla/Logging.h"
#include "nsIClassInfoImpl.h"
#include "nsAlgorithm.h"
#include "nsPipe.h"
#include "nsIAsyncInputStream.h"
#include "nsIAsyncOutputStream.h"
#include "nsIInputStreamPriority.h"
#include "nsThreadUtils.h"

using namespace mozilla;

#ifdef LOG
#  undef LOG
#endif
//
// set MOZ_LOG=nsPipe:5
//
static LazyLogModule sPipeLog("nsPipe");
#define LOG(args) MOZ_LOG(sPipeLog, mozilla::LogLevel::Debug, args)

#define DEFAULT_SEGMENT_SIZE 4096
#define DEFAULT_SEGMENT_COUNT 16

class nsPipe;
class nsPipeEvents;
class nsPipeInputStream;
class nsPipeOutputStream;
class AutoReadSegment;

namespace {

enum MonitorAction { DoNotNotifyMonitor, NotifyMonitor };

enum SegmentChangeResult { SegmentNotChanged, SegmentAdvanceBufferRead };

}  // namespace

//-----------------------------------------------------------------------------

class CallbackHolder {
 public:
  CallbackHolder() = default;
  MOZ_IMPLICIT CallbackHolder(std::nullptr_t) {}

  CallbackHolder(nsIAsyncInputStream* aStream,
                 nsIInputStreamCallback* aCallback, uint32_t aFlags,
                 nsIEventTarget* aEventTarget)
      : mRunnable(aCallback ? NS_NewCancelableRunnableFunction(
                                  "nsPipeInputStream AsyncWait Callback",
                                  [stream = nsCOMPtr{aStream},
                                   callback = nsCOMPtr{aCallback}]() {
                                    callback->OnInputStreamReady(stream);
                                  })
                            : nullptr),
        mEventTarget(aEventTarget),
        mFlags(aFlags) {}

  CallbackHolder(nsIAsyncOutputStream* aStream,
                 nsIOutputStreamCallback* aCallback, uint32_t aFlags,
                 nsIEventTarget* aEventTarget)
      : mRunnable(aCallback ? NS_NewCancelableRunnableFunction(
                                  "nsPipeOutputStream AsyncWait Callback",
                                  [stream = nsCOMPtr{aStream},
                                   callback = nsCOMPtr{aCallback}]() {
                                    callback->OnOutputStreamReady(stream);
                                  })
                            : nullptr),
        mEventTarget(aEventTarget),
        mFlags(aFlags) {}

  CallbackHolder(const CallbackHolder&) = delete;
  CallbackHolder(CallbackHolder&&) = default;
  CallbackHolder& operator=(const CallbackHolder&) = delete;
  CallbackHolder& operator=(CallbackHolder&&) = default;

  CallbackHolder& operator=(std::nullptr_t) {
    mRunnable = nullptr;
    mEventTarget = nullptr;
    mFlags = 0;
    return *this;
  }

  MOZ_IMPLICIT operator bool() const { return mRunnable; }

  uint32_t Flags() const {
    MOZ_ASSERT(mRunnable, "Should only be called when a callback is present");
    return mFlags;
  }

  void Notify() {
    nsCOMPtr<nsIRunnable> runnable = mRunnable.forget();
    nsCOMPtr<nsIEventTarget> eventTarget = mEventTarget.forget();
    if (runnable) {
      if (eventTarget) {
        eventTarget->Dispatch(runnable.forget());
      } else {
        runnable->Run();
      }
    }
  }

 private:
  nsCOMPtr<nsIRunnable> mRunnable;
  nsCOMPtr<nsIEventTarget> mEventTarget;
  uint32_t mFlags = 0;
};

//-----------------------------------------------------------------------------

// this class is used to delay notifications until the end of a particular
// scope.  it helps avoid the complexity of issuing callbacks while inside
// a critical section.
class nsPipeEvents {
 public:
  nsPipeEvents() = default;
  ~nsPipeEvents();

  inline void NotifyReady(CallbackHolder aCallback) {
    mCallbacks.AppendElement(std::move(aCallback));
  }

 private:
  nsTArray<CallbackHolder> mCallbacks;
};

//-----------------------------------------------------------------------------

// This class is used to maintain input stream state.  Its broken out from the
// nsPipeInputStream class because generally the nsPipe should be modifying
// this state and not the input stream itself.
struct nsPipeReadState {
  nsPipeReadState()
      : mReadCursor(nullptr),
        mReadLimit(nullptr),
        mSegment(0),
        mAvailable(0),
        mActiveRead(false),
        mNeedDrain(false) {}

  // All members of this type are guarded by the pipe monitor, however it cannot
  // be named from this type, so the less-reliable MOZ_GUARDED_VAR is used
  // instead. In the future it would be nice to avoid this, especially as
  // MOZ_GUARDED_VAR is deprecated.
  char* mReadCursor MOZ_GUARDED_VAR;
  char* mReadLimit MOZ_GUARDED_VAR;
  int32_t mSegment MOZ_GUARDED_VAR;
  uint32_t mAvailable MOZ_GUARDED_VAR;

  // This flag is managed using the AutoReadSegment RAII stack class.
  bool mActiveRead MOZ_GUARDED_VAR;

  // Set to indicate that the input stream has closed and should be drained,
  // but that drain has been delayed due to an active read.  When the read
  // completes, this flag indicate the drain should then be performed.
  bool mNeedDrain MOZ_GUARDED_VAR;
};

//-----------------------------------------------------------------------------

// an input end of a pipe (maintained as a list of refs within the pipe)
class nsPipeInputStream final : public nsIAsyncInputStream,
                                public nsITellableStream,
                                public nsISearchableInputStream,
                                public nsICloneableInputStream,
                                public nsIClassInfo,
                                public nsIBufferedInputStream,
                                public nsIInputStreamPriority {
 public:
  NS_DECL_THREADSAFE_ISUPPORTS
  NS_DECL_NSIINPUTSTREAM
  NS_DECL_NSIASYNCINPUTSTREAM
  NS_DECL_NSITELLABLESTREAM
  NS_DECL_NSISEARCHABLEINPUTSTREAM
  NS_DECL_NSICLONEABLEINPUTSTREAM
  NS_DECL_NSICLASSINFO
  NS_DECL_NSIBUFFEREDINPUTSTREAM
  NS_DECL_NSIINPUTSTREAMPRIORITY

  explicit nsPipeInputStream(nsPipe* aPipe)
      : mPipe(aPipe),
        mLogicalOffset(0),
        mInputStatus(NS_OK),
        mBlocking(true),
        mBlocked(false),
        mPriority(nsIRunnablePriority::PRIORITY_NORMAL) {}

  nsPipeInputStream(const nsPipeInputStream& aOther)
      : mPipe(aOther.mPipe),
        mLogicalOffset(aOther.mLogicalOffset),
        mInputStatus(aOther.mInputStatus),
        mBlocking(aOther.mBlocking),
        mBlocked(false),
        mReadState(aOther.mReadState),
        mPriority(nsIRunnablePriority::PRIORITY_NORMAL) {}

  void SetNonBlocking(bool aNonBlocking) { mBlocking = !aNonBlocking; }

  uint32_t Available() MOZ_REQUIRES(Monitor());

  // synchronously wait for the pipe to become readable.
  nsresult Wait();

  // These two don't acquire the monitor themselves.  Instead they
  // expect their caller to have done so and to pass the monitor as
  // evidence.
  MonitorAction OnInputReadable(uint32_t aBytesWritten, nsPipeEvents&,
                                const ReentrantMonitorAutoEnter& ev)
      MOZ_REQUIRES(Monitor());
  MonitorAction OnInputException(nsresult, nsPipeEvents&,
                                 const ReentrantMonitorAutoEnter& ev)
      MOZ_REQUIRES(Monitor());

  nsPipeReadState& ReadState() { return mReadState; }

  const nsPipeReadState& ReadState() const { return mReadState; }

  nsresult Status() const;

  // A version of Status() that doesn't acquire the monitor.
  nsresult Status(const ReentrantMonitorAutoEnter& ev) const
      MOZ_REQUIRES(Monitor());

  // The status of this input stream, ignoring the status of the underlying
  // monitor. If this status is errored, the input stream has either already
  // been removed from the pipe, or will be removed from the pipe shortly.
  nsresult InputStatus(const ReentrantMonitorAutoEnter&) const
      MOZ_REQUIRES(Monitor()) {
    return mInputStatus;
  }

  ReentrantMonitor& Monitor() const;

 private:
  virtual ~nsPipeInputStream();

  RefPtr<nsPipe> mPipe;

  int64_t mLogicalOffset;
  // Individual input streams can be closed without effecting the rest of the
  // pipe.  So track individual input stream status separately.  |mInputStatus|
  // is protected by |mPipe->mReentrantMonitor|.
  nsresult mInputStatus MOZ_GUARDED_BY(Monitor());
  bool mBlocking;

  // these variables can only be accessed while inside the pipe's monitor
  bool mBlocked MOZ_GUARDED_BY(Monitor());
  CallbackHolder mCallback MOZ_GUARDED_BY(Monitor());

  // requires pipe's monitor to access members; usually treat as an opaque token
  // to pass to nsPipe
  nsPipeReadState mReadState;
  Atomic<uint32_t, Relaxed> mPriority;
};

//-----------------------------------------------------------------------------

// the output end of a pipe (allocated as a member of the pipe).
class nsPipeOutputStream : public nsIAsyncOutputStream, public nsIClassInfo {
 public:
  // since this class will be allocated as a member of the pipe, we do not
  // need our own ref count.  instead, we share the lifetime (the ref count)
  // of the entire pipe.  this macro is just convenience since it does not
  // declare a mRefCount variable; however, don't let the name fool you...
  // we are not inheriting from nsPipe ;-)
  NS_DECL_ISUPPORTS_INHERITED

  NS_DECL_NSIOUTPUTSTREAM
  NS_DECL_NSIASYNCOUTPUTSTREAM
  NS_DECL_NSICLASSINFO

  explicit nsPipeOutputStream(nsPipe* aPipe)
      : mPipe(aPipe),
        mWriterRefCnt(0),
        mLogicalOffset(0),
        mBlocking(true),
        mBlocked(false),
        mWritable(true) {}

  void SetNonBlocking(bool aNonBlocking) { mBlocking = !aNonBlocking; }
  void SetWritable(bool aWritable) MOZ_REQUIRES(Monitor()) {
    mWritable = aWritable;
  }

  // synchronously wait for the pipe to become writable.
  nsresult Wait();

  MonitorAction OnOutputWritable(nsPipeEvents&) MOZ_REQUIRES(Monitor());
  MonitorAction OnOutputException(nsresult, nsPipeEvents&)
      MOZ_REQUIRES(Monitor());

  ReentrantMonitor& Monitor() const;

 private:
  nsPipe* mPipe;

  // separate refcnt so that we know when to close the producer
  ThreadSafeAutoRefCnt mWriterRefCnt;
  int64_t mLogicalOffset;
  bool mBlocking;

  // these variables can only be accessed while inside the pipe's monitor
  bool mBlocked MOZ_GUARDED_BY(Monitor());
  bool mWritable MOZ_GUARDED_BY(Monitor());
  CallbackHolder mCallback MOZ_GUARDED_BY(Monitor());
};

//-----------------------------------------------------------------------------

class nsPipe final {
 public:
  friend class nsPipeInputStream;
  friend class nsPipeOutputStream;
  friend class AutoReadSegment;

  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(nsPipe)

  // public constructor
  friend void NS_NewPipe2(nsIAsyncInputStream**, nsIAsyncOutputStream**, bool,
                          bool, uint32_t, uint32_t);

 private:
  nsPipe(uint32_t aSegmentSize, uint32_t aSegmentCount);
  ~nsPipe();

  //
  // Methods below may only be called while inside the pipe's monitor.  Some
  // of these methods require passing a ReentrantMonitorAutoEnter to prove the
  // monitor is held.
  //

  void PeekSegment(const nsPipeReadState& aReadState, uint32_t aIndex,
                   char*& aCursor, char*& aLimit)
      MOZ_REQUIRES(mReentrantMonitor);
  SegmentChangeResult AdvanceReadSegment(nsPipeReadState& aReadState,
                                         const ReentrantMonitorAutoEnter& ev)
      MOZ_REQUIRES(mReentrantMonitor);
  bool ReadSegmentBeingWritten(nsPipeReadState& aReadState)
      MOZ_REQUIRES(mReentrantMonitor);
  uint32_t CountSegmentReferences(int32_t aSegment)
      MOZ_REQUIRES(mReentrantMonitor);
  void SetAllNullReadCursors() MOZ_REQUIRES(mReentrantMonitor);
  bool AllReadCursorsMatchWriteCursor() MOZ_REQUIRES(mReentrantMonitor);
  void RollBackAllReadCursors(char* aWriteCursor)
      MOZ_REQUIRES(mReentrantMonitor);
  void UpdateAllReadCursors(char* aWriteCursor) MOZ_REQUIRES(mReentrantMonitor);
  void ValidateAllReadCursors() MOZ_REQUIRES(mReentrantMonitor);
  uint32_t GetBufferSegmentCount(const nsPipeReadState& aReadState,
                                 const ReentrantMonitorAutoEnter& ev) const
      MOZ_REQUIRES(mReentrantMonitor);
  bool IsAdvanceBufferFull(const ReentrantMonitorAutoEnter& ev) const
      MOZ_REQUIRES(mReentrantMonitor);

  //
  // methods below may be called while outside the pipe's monitor
  //

  void DrainInputStream(nsPipeReadState& aReadState, nsPipeEvents& aEvents);
  nsresult GetWriteSegment(char*& aSegment, uint32_t& aSegmentLen);
  void AdvanceWriteCursor(uint32_t aCount);

  void OnInputStreamException(nsPipeInputStream* aStream, nsresult aReason);
  void OnPipeException(nsresult aReason, bool aOutputOnly = false);

  nsresult CloneInputStream(nsPipeInputStream* aOriginal,
                            nsIInputStream** aCloneOut);

  // methods below should only be called by AutoReadSegment
  nsresult GetReadSegment(nsPipeReadState& aReadState, const char*& aSegment,
                          uint32_t& aLength);
  void ReleaseReadSegment(nsPipeReadState& aReadState, nsPipeEvents& aEvents);
  void AdvanceReadCursor(nsPipeReadState& aReadState, uint32_t aCount);

  // We can't inherit from both nsIInputStream and nsIOutputStream
  // because they collide on their Close method. Consequently we nest their
  // implementations to avoid the extra object allocation.
  nsPipeOutputStream mOutput;

  // Since the input stream can be cloned, we may have more than one.  Use
  // a weak reference as the streams will clear their entry here in their
  // destructor.  Using a strong reference would create a reference cycle.
  // Only usable while mReentrantMonitor is locked.
  nsTArray<nsPipeInputStream*> mInputList MOZ_GUARDED_BY(mReentrantMonitor);

  ReentrantMonitor mReentrantMonitor;
  nsSegmentedBuffer mBuffer MOZ_GUARDED_BY(mReentrantMonitor);

  // The maximum number of segments to allow to be buffered in advance
  // of the fastest reader.  This is collection of segments is called
  // the "advance buffer".
  uint32_t mMaxAdvanceBufferSegmentCount MOZ_GUARDED_BY(mReentrantMonitor);

  int32_t mWriteSegment MOZ_GUARDED_BY(mReentrantMonitor);
  char* mWriteCursor MOZ_GUARDED_BY(mReentrantMonitor);
  char* mWriteLimit MOZ_GUARDED_BY(mReentrantMonitor);

  // |mStatus| is protected by |mReentrantMonitor|.
  nsresult mStatus MOZ_GUARDED_BY(mReentrantMonitor);
};

//-----------------------------------------------------------------------------

// Declarations of Monitor() methods on the streams.
//
// These must be placed early to provide MOZ_RETURN_CAPABILITY annotations for
// the thread-safety analysis. This couldn't be done at the declaration due to
// nsPipe not yet being defined.

ReentrantMonitor& nsPipeOutputStream::Monitor() const
    MOZ_RETURN_CAPABILITY(mPipe->mReentrantMonitor) {
  return mPipe->mReentrantMonitor;
}

ReentrantMonitor& nsPipeInputStream::Monitor() const
    MOZ_RETURN_CAPABILITY(mPipe->mReentrantMonitor) {
  return mPipe->mReentrantMonitor;
}

//-----------------------------------------------------------------------------

// RAII class representing an active read segment.  When it goes out of scope
// it automatically updates the read cursor and releases the read segment.
class MOZ_STACK_CLASS AutoReadSegment final {
 public:
  AutoReadSegment(nsPipe* aPipe, nsPipeReadState& aReadState,
                  uint32_t aMaxLength)
      : mPipe(aPipe),
        mReadState(aReadState),
        mStatus(NS_ERROR_FAILURE),
        mSegment(nullptr),
        mLength(0),
        mOffset(0) {
    MOZ_DIAGNOSTIC_ASSERT(mPipe);
    MOZ_DIAGNOSTIC_ASSERT(!mReadState.mActiveRead);
    mStatus = mPipe->GetReadSegment(mReadState, mSegment, mLength);
    if (NS_SUCCEEDED(mStatus)) {
      MOZ_DIAGNOSTIC_ASSERT(mReadState.mActiveRead);
      MOZ_DIAGNOSTIC_ASSERT(mSegment);
      mLength = std::min(mLength, aMaxLength);
      MOZ_DIAGNOSTIC_ASSERT(mLength);
    }
  }

  ~AutoReadSegment() {
    if (NS_SUCCEEDED(mStatus)) {
      if (mOffset) {
        mPipe->AdvanceReadCursor(mReadState, mOffset);
      } else {
        nsPipeEvents events;
        mPipe->ReleaseReadSegment(mReadState, events);
      }
    }
    MOZ_DIAGNOSTIC_ASSERT(!mReadState.mActiveRead);
  }

  nsresult Status() const { return mStatus; }

  const char* Data() const {
    MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(mStatus));
    MOZ_DIAGNOSTIC_ASSERT(mSegment);
    return mSegment + mOffset;
  }

  uint32_t Length() const {
    MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(mStatus));
    MOZ_DIAGNOSTIC_ASSERT(mLength >= mOffset);
    return mLength - mOffset;
  }

  void Advance(uint32_t aCount) {
    MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(mStatus));
    MOZ_DIAGNOSTIC_ASSERT(aCount <= (mLength - mOffset));
    mOffset += aCount;
  }

  nsPipeReadState& ReadState() const { return mReadState; }

 private:
  // guaranteed to remain alive due to limited stack lifetime of AutoReadSegment
  nsPipe* mPipe;
  nsPipeReadState& mReadState;
  nsresult mStatus;
  const char* mSegment;
  uint32_t mLength;
  uint32_t mOffset;
};

//
// NOTES on buffer architecture:
//
//       +-----------------+ - - mBuffer.GetSegment(0)
//       |                 |
//       + - - - - - - - - + - - nsPipeReadState.mReadCursor
//       |/////////////////|
//       |/////////////////|
//       |/////////////////|
//       |/////////////////|
//       +-----------------+ - - nsPipeReadState.mReadLimit
//                |
//       +-----------------+
//       |/////////////////|
//       |/////////////////|
//       |/////////////////|
//       |/////////////////|
//       |/////////////////|
//       |/////////////////|
//       +-----------------+
//                |
//       +-----------------+ - - mBuffer.GetSegment(mWriteSegment)
//       |/////////////////|
//       |/////////////////|
//       |/////////////////|
//       + - - - - - - - - + - - mWriteCursor
//       |                 |
//       |                 |
//       +-----------------+ - - mWriteLimit
//
// (shaded region contains data)
//
// NOTE: Each input stream produced by the nsPipe contains its own, separate
//       nsPipeReadState.  This means there are multiple mReadCursor and
//       mReadLimit values in play.  The pipe cannot discard old data until
//       all mReadCursors have moved beyond that point in the stream.
//
//       Likewise, each input stream reader will have it's own amount of
//       buffered data.  The pipe size threshold, however, is only applied
//       to the input stream that is being read fastest.  We call this
//       the "advance buffer" in that its in advance of all readers.  We
//       allow slower input streams to buffer more data so that we don't
//       stall processing of the faster input stream.
//
// NOTE: on some systems (notably OS/2), the heap allocator uses an arena for
// small allocations (e.g., 64 byte allocations).  this means that buffers may
// be allocated back-to-back.  in the diagram above, for example, mReadLimit
// would actually be pointing at the beginning of the next segment.  when
// making changes to this file, please keep this fact in mind.
//

//-----------------------------------------------------------------------------
// nsPipe methods:
//-----------------------------------------------------------------------------

nsPipe::nsPipe(uint32_t aSegmentSize, uint32_t aSegmentCount)
    : mOutput(this),
      mReentrantMonitor("nsPipe.mReentrantMonitor"),
      // protect against overflow
      mMaxAdvanceBufferSegmentCount(
          std::min(aSegmentCount, UINT32_MAX / aSegmentSize)),
      mWriteSegment(-1),
      mWriteCursor(nullptr),
      mWriteLimit(nullptr),
      mStatus(NS_OK) {
  // The internal buffer is always "infinite" so that we can allow
  // the size to expand when cloned streams are read at different
  // rates.  We enforce a limit on how much data can be buffered
  // ahead of the fastest reader in GetWriteSegment().
  MOZ_ALWAYS_SUCCEEDS(mBuffer.Init(aSegmentSize));
}

nsPipe::~nsPipe() = default;

void nsPipe::PeekSegment(const nsPipeReadState& aReadState, uint32_t aIndex,
                         char*& aCursor, char*& aLimit) {
  if (aIndex == 0) {
    MOZ_DIAGNOSTIC_ASSERT(!aReadState.mReadCursor || mBuffer.GetSegmentCount());
    aCursor = aReadState.mReadCursor;
    aLimit = aReadState.mReadLimit;
  } else {
    uint32_t absoluteIndex = aReadState.mSegment + aIndex;
    uint32_t numSegments = mBuffer.GetSegmentCount();
    if (absoluteIndex >= numSegments) {
      aCursor = aLimit = nullptr;
    } else {
      aCursor = mBuffer.GetSegment(absoluteIndex);
      if (mWriteSegment == (int32_t)absoluteIndex) {
        aLimit = mWriteCursor;
      } else {
        aLimit = aCursor + mBuffer.GetSegmentSize();
      }
    }
  }
}

nsresult nsPipe::GetReadSegment(nsPipeReadState& aReadState,
                                const char*& aSegment, uint32_t& aLength) {
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  if (aReadState.mReadCursor == aReadState.mReadLimit) {
    return NS_FAILED(mStatus) ? mStatus : NS_BASE_STREAM_WOULD_BLOCK;
  }

  // The input stream locks the pipe while getting the buffer to read from,
  // but then unlocks while actual data copying is taking place.  In
  // order to avoid deleting the buffer out from under this lockless read
  // set a flag to indicate a read is active.  This flag is only modified
  // while the lock is held.
  MOZ_DIAGNOSTIC_ASSERT(!aReadState.mActiveRead);
  aReadState.mActiveRead = true;

  aSegment = aReadState.mReadCursor;
  aLength = aReadState.mReadLimit - aReadState.mReadCursor;
  MOZ_DIAGNOSTIC_ASSERT(aLength <= aReadState.mAvailable);

  return NS_OK;
}

void nsPipe::ReleaseReadSegment(nsPipeReadState& aReadState,
                                nsPipeEvents& aEvents) {
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  MOZ_DIAGNOSTIC_ASSERT(aReadState.mActiveRead);
  aReadState.mActiveRead = false;

  // When a read completes and releases the mActiveRead flag, we may have
  // blocked a drain from completing.  This occurs when the input stream is
  // closed during the read.  In these cases, we need to complete the drain as
  // soon as the active read completes.
  if (aReadState.mNeedDrain) {
    aReadState.mNeedDrain = false;
    DrainInputStream(aReadState, aEvents);
  }
}

void nsPipe::AdvanceReadCursor(nsPipeReadState& aReadState,
                               uint32_t aBytesRead) {
  MOZ_DIAGNOSTIC_ASSERT(aBytesRead > 0);

  nsPipeEvents events;
  {
    ReentrantMonitorAutoEnter mon(mReentrantMonitor);

    LOG(("III advancing read cursor by %u\n", aBytesRead));
    MOZ_DIAGNOSTIC_ASSERT(aBytesRead <= mBuffer.GetSegmentSize());

    aReadState.mReadCursor += aBytesRead;
    MOZ_DIAGNOSTIC_ASSERT(aReadState.mReadCursor <= aReadState.mReadLimit);

    MOZ_DIAGNOSTIC_ASSERT(aReadState.mAvailable >= aBytesRead);
    aReadState.mAvailable -= aBytesRead;

    // Check to see if we're at the end of the available read data.  If we
    // are, and this segment is not still being written, then we can possibly
    // free up the segment.
    if (aReadState.mReadCursor == aReadState.mReadLimit &&
        !ReadSegmentBeingWritten(aReadState)) {
      // Advance the segment position.  If we have read any segments from the
      // advance buffer then we can potentially notify blocked writers.
      mOutput.Monitor().AssertCurrentThreadIn();
      if (AdvanceReadSegment(aReadState, mon) == SegmentAdvanceBufferRead &&
          mOutput.OnOutputWritable(events) == NotifyMonitor) {
        mon.NotifyAll();
      }
    }

    ReleaseReadSegment(aReadState, events);
  }
}

SegmentChangeResult nsPipe::AdvanceReadSegment(
    nsPipeReadState& aReadState, const ReentrantMonitorAutoEnter& ev) {
  // Calculate how many segments are buffered for this stream to start.
  uint32_t startBufferSegments = GetBufferSegmentCount(aReadState, ev);

  int32_t currentSegment = aReadState.mSegment;

  // Move to the next segment to read
  aReadState.mSegment += 1;

  // If this was the last reference to the first segment, then remove it.
  if (currentSegment == 0 && CountSegmentReferences(currentSegment) == 0) {
    // shift write and read segment index (-1 indicates an empty buffer).
    mWriteSegment -= 1;

    // Directly modify the current read state.  If the associated input
    // stream is closed simultaneous with reading, then it may not be
    // in the mInputList any more.
    aReadState.mSegment -= 1;

    for (uint32_t i = 0; i < mInputList.Length(); ++i) {
      // Skip the current read state structure since we modify it manually
      // before entering this loop.
      if (&mInputList[i]->ReadState() == &aReadState) {
        continue;
      }
      mInputList[i]->ReadState().mSegment -= 1;
    }

    // done with this segment
    mBuffer.DeleteFirstSegment();
    LOG(("III deleting first segment\n"));
  }

  if (mWriteSegment < aReadState.mSegment) {
    // read cursor has hit the end of written data, so reset it
    MOZ_DIAGNOSTIC_ASSERT(mWriteSegment == (aReadState.mSegment - 1));
    aReadState.mReadCursor = nullptr;
    aReadState.mReadLimit = nullptr;
    // also, the buffer is completely empty, so reset the write cursor
    if (mWriteSegment == -1) {
      mWriteCursor = nullptr;
      mWriteLimit = nullptr;
    }
  } else {
    // advance read cursor and limit to next buffer segment
    aReadState.mReadCursor = mBuffer.GetSegment(aReadState.mSegment);
    if (mWriteSegment == aReadState.mSegment) {
      aReadState.mReadLimit = mWriteCursor;
    } else {
      aReadState.mReadLimit = aReadState.mReadCursor + mBuffer.GetSegmentSize();
    }
  }

  // Calculate how many segments are buffered for the stream after
  // reading.
  uint32_t endBufferSegments = GetBufferSegmentCount(aReadState, ev);

  // If the stream has read a segment out of the set of advanced buffer
  // segments, then the writer may advance.
  if (startBufferSegments >= mMaxAdvanceBufferSegmentCount &&
      endBufferSegments < mMaxAdvanceBufferSegmentCount) {
    return SegmentAdvanceBufferRead;
  }

  // Otherwise there are no significant changes to the segment structure.
  return SegmentNotChanged;
}

void nsPipe::DrainInputStream(nsPipeReadState& aReadState,
                              nsPipeEvents& aEvents) {
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  // If a segment is actively being read in ReadSegments() for this input
  // stream, then we cannot drain the stream.  This can happen because
  // ReadSegments() does not hold the lock while copying from the buffer.
  // If we detect this condition, simply note that we need a drain once
  // the read completes and return immediately.
  if (aReadState.mActiveRead) {
    MOZ_DIAGNOSTIC_ASSERT(!aReadState.mNeedDrain);
    aReadState.mNeedDrain = true;
    return;
  }

  while (mWriteSegment >= aReadState.mSegment) {
    // If the last segment to free is still being written to, we're done
    // draining.  We can't free any more.
    if (ReadSegmentBeingWritten(aReadState)) {
      break;
    }

    // Don't bother checking if this results in an advance buffer segment
    // read.  Since we are draining the entire stream we will read an
    // advance buffer segment no matter what.
    AdvanceReadSegment(aReadState, mon);
  }

  // Force the stream into an empty state.  Make sure mAvailable, mCursor, and
  // mReadLimit are consistent with one another.
  aReadState.mAvailable = 0;
  aReadState.mReadCursor = nullptr;
  aReadState.mReadLimit = nullptr;

  // Remove the input stream from the pipe's list of streams.  This will
  // prevent the pipe from holding the stream alive or trying to update
  // its read state any further.
  DebugOnly<uint32_t> numRemoved = 0;
  mInputList.RemoveElementsBy([&](nsPipeInputStream* aEntry) {
    bool result = &aReadState == &aEntry->ReadState();
    numRemoved += result ? 1 : 0;
    return result;
  });
  MOZ_ASSERT(numRemoved == 1);

  // If we have read any segments from the advance buffer then we can
  // potentially notify blocked writers.
  mOutput.Monitor().AssertCurrentThreadIn();
  if (!IsAdvanceBufferFull(mon) &&
      mOutput.OnOutputWritable(aEvents) == NotifyMonitor) {
    mon.NotifyAll();
  }
}

bool nsPipe::ReadSegmentBeingWritten(nsPipeReadState& aReadState) {
  mReentrantMonitor.AssertCurrentThreadIn();
  bool beingWritten =
      mWriteSegment == aReadState.mSegment && mWriteLimit > mWriteCursor;
  MOZ_DIAGNOSTIC_ASSERT(!beingWritten || aReadState.mReadLimit == mWriteCursor);
  return beingWritten;
}

nsresult nsPipe::GetWriteSegment(char*& aSegment, uint32_t& aSegmentLen) {
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);

  if (NS_FAILED(mStatus)) {
    return mStatus;
  }

  // write cursor and limit may both be null indicating an empty buffer.
  if (mWriteCursor == mWriteLimit) {
    // The pipe is full if we have hit our limit on advance data buffering.
    // This means the fastest reader is still reading slower than data is
    // being written into the pipe.
    if (IsAdvanceBufferFull(mon)) {
      return NS_BASE_STREAM_WOULD_BLOCK;
    }

    // The nsSegmentedBuffer is configured to be "infinite", so this
    // should never return nullptr here.
    char* seg = mBuffer.AppendNewSegment();
    if (!seg) {
      return NS_ERROR_OUT_OF_MEMORY;
    }

    LOG(("OOO appended new segment\n"));
    mWriteCursor = seg;
    mWriteLimit = mWriteCursor + mBuffer.GetSegmentSize();
    ++mWriteSegment;
  }

  // make sure read cursor is initialized
  SetAllNullReadCursors();

  // check to see if we can roll-back our read and write cursors to the
  // beginning of the current/first segment.  this is purely an optimization.
  if (mWriteSegment == 0 && AllReadCursorsMatchWriteCursor()) {
    char* head = mBuffer.GetSegment(0);
    LOG(("OOO rolling back write cursor %" PRId64 " bytes\n",
         static_cast<int64_t>(mWriteCursor - head)));
    RollBackAllReadCursors(head);
    mWriteCursor = head;
  }

  aSegment = mWriteCursor;
  aSegmentLen = mWriteLimit - mWriteCursor;
  return NS_OK;
}

void nsPipe::AdvanceWriteCursor(uint32_t aBytesWritten) {
  MOZ_DIAGNOSTIC_ASSERT(aBytesWritten > 0);

  nsPipeEvents events;
  {
    ReentrantMonitorAutoEnter mon(mReentrantMonitor);

    LOG(("OOO advancing write cursor by %u\n", aBytesWritten));

    char* newWriteCursor = mWriteCursor + aBytesWritten;
    MOZ_DIAGNOSTIC_ASSERT(newWriteCursor <= mWriteLimit);

    // update read limit if reading in the same segment
    UpdateAllReadCursors(newWriteCursor);

    mWriteCursor = newWriteCursor;

    ValidateAllReadCursors();

    // update the writable flag on the output stream
    if (mWriteCursor == mWriteLimit) {
      mOutput.Monitor().AssertCurrentThreadIn();
      mOutput.SetWritable(!IsAdvanceBufferFull(mon));
    }

    // notify input stream that pipe now contains additional data
    bool needNotify = false;
    for (uint32_t i = 0; i < mInputList.Length(); ++i) {
      mInputList[i]->Monitor().AssertCurrentThreadIn();
      if (mInputList[i]->OnInputReadable(aBytesWritten, events, mon) ==
          NotifyMonitor) {
        needNotify = true;
      }
    }

    if (needNotify) {
      mon.NotifyAll();
    }
  }
}

void nsPipe::OnInputStreamException(nsPipeInputStream* aStream,
                                    nsresult aReason) {
  MOZ_DIAGNOSTIC_ASSERT(NS_FAILED(aReason));

  nsPipeEvents events;
  {
    ReentrantMonitorAutoEnter mon(mReentrantMonitor);

    // Its possible to re-enter this method when we call OnPipeException() or
    // OnInputExection() below.  If there is a caller stuck in our synchronous
    // Wait() method, then they will get woken up with a failure code which
    // re-enters this method.  Therefore, gracefully handle unknown streams
    // here.

    // If we only have one stream open and it is the given stream, then shut
    // down the entire pipe.
    if (mInputList.Length() == 1) {
      if (mInputList[0] == aStream) {
        OnPipeException(aReason);
      }
      return;
    }

    // Otherwise just close the particular stream that hit an exception.
    for (uint32_t i = 0; i < mInputList.Length(); ++i) {
      if (mInputList[i] != aStream) {
        continue;
      }

      mInputList[i]->Monitor().AssertCurrentThreadIn();
      MonitorAction action =
          mInputList[i]->OnInputException(aReason, events, mon);

      // Notify after element is removed in case we re-enter as a result.
      if (action == NotifyMonitor) {
        mon.NotifyAll();
      }

      return;
    }
  }
}

void nsPipe::OnPipeException(nsresult aReason, bool aOutputOnly) {
  LOG(("PPP nsPipe::OnPipeException [reason=%" PRIx32 " output-only=%d]\n",
       static_cast<uint32_t>(aReason), aOutputOnly));

  nsPipeEvents events;
  {
    ReentrantMonitorAutoEnter mon(mReentrantMonitor);

    // if we've already hit an exception, then ignore this one.
    if (NS_FAILED(mStatus)) {
      return;
    }

    mStatus = aReason;

    bool needNotify = false;

    // OnInputException() can drain the stream and remove it from
    // mInputList.  So iterate over a temp list instead.
    nsTArray<nsPipeInputStream*> list = mInputList.Clone();
    for (uint32_t i = 0; i < list.Length(); ++i) {
      // an output-only exception applies to the input end if the pipe has
      // zero bytes available.
      list[i]->Monitor().AssertCurrentThreadIn();
      if (aOutputOnly && list[i]->Available()) {
        continue;
      }

      if (list[i]->OnInputException(aReason, events, mon) == NotifyMonitor) {
        needNotify = true;
      }
    }

    mOutput.Monitor().AssertCurrentThreadIn();
    if (mOutput.OnOutputException(aReason, events) == NotifyMonitor) {
      needNotify = true;
    }

    // Notify after we have removed any input streams from mInputList
    if (needNotify) {
      mon.NotifyAll();
    }
  }
}

nsresult nsPipe::CloneInputStream(nsPipeInputStream* aOriginal,
                                  nsIInputStream** aCloneOut) {
  ReentrantMonitorAutoEnter mon(mReentrantMonitor);
  RefPtr<nsPipeInputStream> ref = new nsPipeInputStream(*aOriginal);
  // don't add clones of closed pipes to mInputList.
  ref->Monitor().AssertCurrentThreadIn();
  if (NS_SUCCEEDED(ref->InputStatus(mon))) {
    mInputList.AppendElement(ref);
  }
  nsCOMPtr<nsIAsyncInputStream> upcast = std::move(ref);
  upcast.forget(aCloneOut);
  return NS_OK;
}

uint32_t nsPipe::CountSegmentReferences(int32_t aSegment) {
  mReentrantMonitor.AssertCurrentThreadIn();
  uint32_t count = 0;
  for (uint32_t i = 0; i < mInputList.Length(); ++i) {
    if (aSegment >= mInputList[i]->ReadState().mSegment) {
      count += 1;
    }
  }
  return count;
}

void nsPipe::SetAllNullReadCursors() {
  mReentrantMonitor.AssertCurrentThreadIn();
  for (uint32_t i = 0; i < mInputList.Length(); ++i) {
    nsPipeReadState& readState = mInputList[i]->ReadState();
    if (!readState.mReadCursor) {
      MOZ_DIAGNOSTIC_ASSERT(mWriteSegment == readState.mSegment);
      readState.mReadCursor = readState.mReadLimit = mWriteCursor;
    }
  }
}

bool nsPipe::AllReadCursorsMatchWriteCursor() {
  mReentrantMonitor.AssertCurrentThreadIn();
  for (uint32_t i = 0; i < mInputList.Length(); ++i) {
    const nsPipeReadState& readState = mInputList[i]->ReadState();
    if (readState.mSegment != mWriteSegment ||
        readState.mReadCursor != mWriteCursor) {
      return false;
    }
  }
  return true;
}

void nsPipe::RollBackAllReadCursors(char* aWriteCursor) {
  mReentrantMonitor.AssertCurrentThreadIn();
  for (uint32_t i = 0; i < mInputList.Length(); ++i) {
    nsPipeReadState& readState = mInputList[i]->ReadState();
    MOZ_DIAGNOSTIC_ASSERT(mWriteSegment == readState.mSegment);
    MOZ_DIAGNOSTIC_ASSERT(mWriteCursor == readState.mReadCursor);
    MOZ_DIAGNOSTIC_ASSERT(mWriteCursor == readState.mReadLimit);
    readState.mReadCursor = aWriteCursor;
    readState.mReadLimit = aWriteCursor;
  }
}

void nsPipe::UpdateAllReadCursors(char* aWriteCursor) {
  mReentrantMonitor.AssertCurrentThreadIn();
  for (uint32_t i = 0; i < mInputList.Length(); ++i) {
    nsPipeReadState& readState = mInputList[i]->ReadState();
    if (mWriteSegment == readState.mSegment &&
        readState.mReadLimit == mWriteCursor) {
      readState.mReadLimit = aWriteCursor;
    }
  }
}

void nsPipe::ValidateAllReadCursors() {
  mReentrantMonitor.AssertCurrentThreadIn();
  // The only way mReadCursor == mWriteCursor is if:
  //
  // - mReadCursor is at the start of a segment (which, based on how
  //   nsSegmentedBuffer works, means that this segment is the "first"
  //   segment)
  // - mWriteCursor points at the location past the end of the current
  //   write segment (so the current write filled the current write
  //   segment, so we've incremented mWriteCursor to point past the end
  //   of it)
  // - the segment to which data has just been written is located
  //   exactly one segment's worth of bytes before the first segment
  //   where mReadCursor is located
  //
  // Consequently, the byte immediately after the end of the current
  // write segment is the first byte of the first segment, so
  // mReadCursor == mWriteCursor.  (Another way to think about this is
  // to consider the buffer architecture diagram above, but consider it
  // with an arena allocator which allocates from the *end* of the
  // arena to the *beginning* of the arena.)
#ifdef DEBUG
  for (uint32_t i = 0; i < mInputList.Length(); ++i) {
    const nsPipeReadState& state = mInputList[i]->ReadState();
    MOZ_ASSERT(state.mReadCursor != mWriteCursor ||
               (mBuffer.GetSegment(state.mSegment) == state.mReadCursor &&
                mWriteCursor == mWriteLimit));
  }
#endif
}

uint32_t nsPipe::GetBufferSegmentCount(
    const nsPipeReadState& aReadState,
    const ReentrantMonitorAutoEnter& ev) const {
  // The write segment can be smaller than the current reader position
  // in some cases.  For example, when the first write segment has not
  // been allocated yet mWriteSegment is negative.  In these cases
  // the stream is effectively using zero segments.
  if (mWriteSegment < aReadState.mSegment) {
    return 0;
  }

  MOZ_DIAGNOSTIC_ASSERT(mWriteSegment >= 0);
  MOZ_DIAGNOSTIC_ASSERT(aReadState.mSegment >= 0);

  // Otherwise at least one segment is being used.  We add one here
  // since a single segment is being used when the write and read
  // segment indices are the same.
  return 1 + mWriteSegment - aReadState.mSegment;
}

bool nsPipe::IsAdvanceBufferFull(const ReentrantMonitorAutoEnter& ev) const {
  // If we have fewer total segments than the limit we can immediately
  // determine we are not full.  Note, we must add one to mWriteSegment
  // to convert from a index to a count.
  MOZ_DIAGNOSTIC_ASSERT(mWriteSegment >= -1);
  MOZ_DIAGNOSTIC_ASSERT(mWriteSegment < INT32_MAX);
  uint32_t totalWriteSegments = mWriteSegment + 1;
  if (totalWriteSegments < mMaxAdvanceBufferSegmentCount) {
    return false;
  }

  // Otherwise we must inspect all of our reader streams.  We need
  // to determine the buffer depth of the fastest reader.
  uint32_t minBufferSegments = UINT32_MAX;
  for (uint32_t i = 0; i < mInputList.Length(); ++i) {
    // Only count buffer segments from input streams that are open.
    mInputList[i]->Monitor().AssertCurrentThreadIn();
    if (NS_FAILED(mInputList[i]->Status(ev))) {
      continue;
    }
    const nsPipeReadState& state = mInputList[i]->ReadState();
    uint32_t bufferSegments = GetBufferSegmentCount(state, ev);
    minBufferSegments = std::min(minBufferSegments, bufferSegments);
    // We only care if any reader has fewer segments buffered than
    // our threshold.  We can stop once we hit that threshold.
    if (minBufferSegments < mMaxAdvanceBufferSegmentCount) {
      return false;
    }
  }

  // Note, its possible for minBufferSegments to exceed our
  // mMaxAdvanceBufferSegmentCount here.  This happens when a cloned
  // reader gets far behind, but then the fastest reader stream is
  // closed.  This leaves us with a single stream that is buffered
  // beyond our max.  Naturally we continue to indicate the pipe
  // is full at this point.

  return true;
}

//-----------------------------------------------------------------------------
// nsPipeEvents methods:
//-----------------------------------------------------------------------------

nsPipeEvents::~nsPipeEvents() {
  // dispatch any pending events
  for (auto& callback : mCallbacks) {
    callback.Notify();
  }
  mCallbacks.Clear();
}

//-----------------------------------------------------------------------------
// nsPipeInputStream methods:
//-----------------------------------------------------------------------------

NS_IMPL_ADDREF(nsPipeInputStream);
NS_IMPL_RELEASE(nsPipeInputStream);

NS_INTERFACE_TABLE_HEAD(nsPipeInputStream)
  NS_INTERFACE_TABLE_BEGIN
    NS_INTERFACE_TABLE_ENTRY(nsPipeInputStream, nsIAsyncInputStream)
    NS_INTERFACE_TABLE_ENTRY(nsPipeInputStream, nsITellableStream)
    NS_INTERFACE_TABLE_ENTRY(nsPipeInputStream, nsISearchableInputStream)
    NS_INTERFACE_TABLE_ENTRY(nsPipeInputStream, nsICloneableInputStream)
    NS_INTERFACE_TABLE_ENTRY(nsPipeInputStream, nsIBufferedInputStream)
    NS_INTERFACE_TABLE_ENTRY(nsPipeInputStream, nsIClassInfo)
    NS_INTERFACE_TABLE_ENTRY(nsPipeInputStream, nsIInputStreamPriority)
    NS_INTERFACE_TABLE_ENTRY_AMBIGUOUS(nsPipeInputStream, nsIInputStream,
                                       nsIAsyncInputStream)
    NS_INTERFACE_TABLE_ENTRY_AMBIGUOUS(nsPipeInputStream, nsISupports,
                                       nsIAsyncInputStream)
  NS_INTERFACE_TABLE_END
NS_INTERFACE_TABLE_TAIL

NS_IMPL_CI_INTERFACE_GETTER(nsPipeInputStream, nsIInputStream,
                            nsIAsyncInputStream, nsITellableStream,
                            nsISearchableInputStream, nsICloneableInputStream,
                            nsIBufferedInputStream)

NS_IMPL_THREADSAFE_CI(nsPipeInputStream)

NS_IMETHODIMP
nsPipeInputStream::Init(nsIInputStream*, uint32_t) {
  MOZ_CRASH(
      "nsPipeInputStream should never be initialized with "
      "nsIBufferedInputStream::Init!\n");
}

NS_IMETHODIMP
nsPipeInputStream::GetData(nsIInputStream** aResult) {
  // as this was not created with init() we are not
  // wrapping anything
  return NS_ERROR_NOT_IMPLEMENTED;
}

uint32_t nsPipeInputStream::Available() {
  mPipe->mReentrantMonitor.AssertCurrentThreadIn();
  return mReadState.mAvailable;
}

nsresult nsPipeInputStream::Wait() {
  MOZ_DIAGNOSTIC_ASSERT(mBlocking);

  ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);

  while (NS_SUCCEEDED(Status(mon)) && (mReadState.mAvailable == 0)) {
    LOG(("III pipe input: waiting for data\n"));

    mBlocked = true;
    mon.Wait();
    mBlocked = false;

    LOG(("III pipe input: woke up [status=%" PRIx32 " available=%u]\n",
         static_cast<uint32_t>(Status(mon)), mReadState.mAvailable));
  }

  return Status(mon) == NS_BASE_STREAM_CLOSED ? NS_OK : Status(mon);
}

MonitorAction nsPipeInputStream::OnInputReadable(
    uint32_t aBytesWritten, nsPipeEvents& aEvents,
    const ReentrantMonitorAutoEnter& ev) {
  MonitorAction result = DoNotNotifyMonitor;

  mPipe->mReentrantMonitor.AssertCurrentThreadIn();
  mReadState.mAvailable += aBytesWritten;

  if (mCallback && !(mCallback.Flags() & WAIT_CLOSURE_ONLY)) {
    aEvents.NotifyReady(std::move(mCallback));
  } else if (mBlocked) {
    result = NotifyMonitor;
  }

  return result;
}

MonitorAction nsPipeInputStream::OnInputException(
    nsresult aReason, nsPipeEvents& aEvents,
    const ReentrantMonitorAutoEnter& ev) {
  LOG(("nsPipeInputStream::OnInputException [this=%p reason=%" PRIx32 "]\n",
       this, static_cast<uint32_t>(aReason)));

  MonitorAction result = DoNotNotifyMonitor;

  MOZ_DIAGNOSTIC_ASSERT(NS_FAILED(aReason));

  if (NS_SUCCEEDED(mInputStatus)) {
    mInputStatus = aReason;
  }

  // force count of available bytes to zero.
  mPipe->DrainInputStream(mReadState, aEvents);

  if (mCallback) {
    aEvents.NotifyReady(std::move(mCallback));
  } else if (mBlocked) {
    result = NotifyMonitor;
  }

  return result;
}

NS_IMETHODIMP
nsPipeInputStream::CloseWithStatus(nsresult aReason) {
  LOG(("III CloseWithStatus [this=%p reason=%" PRIx32 "]\n", this,
       static_cast<uint32_t>(aReason)));

  ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);

  if (NS_FAILED(mInputStatus)) {
    return NS_OK;
  }

  if (NS_SUCCEEDED(aReason)) {
    aReason = NS_BASE_STREAM_CLOSED;
  }

  mPipe->OnInputStreamException(this, aReason);
  return NS_OK;
}

NS_IMETHODIMP
nsPipeInputStream::SetPriority(uint32_t priority) {
  mPriority = priority;
  return NS_OK;
}

NS_IMETHODIMP
nsPipeInputStream::GetPriority(uint32_t* priority) {
  *priority = mPriority;
  return NS_OK;
}

NS_IMETHODIMP
nsPipeInputStream::Close() { return CloseWithStatus(NS_BASE_STREAM_CLOSED); }

NS_IMETHODIMP
nsPipeInputStream::Available(uint64_t* aResult) {
  // nsPipeInputStream supports under 4GB stream only
  ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);

  // return error if closed
  if (!mReadState.mAvailable && NS_FAILED(Status(mon))) {
    return Status(mon);
  }

  *aResult = (uint64_t)mReadState.mAvailable;
  return NS_OK;
}

NS_IMETHODIMP
nsPipeInputStream::StreamStatus() {
  ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);
  return mReadState.mAvailable ? NS_OK : Status(mon);
}

NS_IMETHODIMP
nsPipeInputStream::ReadSegments(nsWriteSegmentFun aWriter, void* aClosure,
                                uint32_t aCount, uint32_t* aReadCount) {
  LOG(("III ReadSegments [this=%p count=%u]\n", this, aCount));

  nsresult rv = NS_OK;

  *aReadCount = 0;
  while (aCount) {
    AutoReadSegment segment(mPipe, mReadState, aCount);
    rv = segment.Status();
    if (NS_FAILED(rv)) {
      // ignore this error if we've already read something.
      if (*aReadCount > 0) {
        rv = NS_OK;
        break;
      }
      if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
        // pipe is empty
        if (!mBlocking) {
          break;
        }
        // wait for some data to be written to the pipe
        rv = Wait();
        if (NS_SUCCEEDED(rv)) {
          continue;
        }
      }
      // ignore this error, just return.
      if (rv == NS_BASE_STREAM_CLOSED) {
        rv = NS_OK;
        break;
      }
      mPipe->OnInputStreamException(this, rv);
      break;
    }

    uint32_t writeCount;
    while (segment.Length()) {
      writeCount = 0;

      rv = aWriter(static_cast<nsIAsyncInputStream*>(this), aClosure,
                   segment.Data(), *aReadCount, segment.Length(), &writeCount);

      if (NS_FAILED(rv) || writeCount == 0) {
        aCount = 0;
        // any errors returned from the writer end here: do not
        // propagate to the caller of ReadSegments.
        rv = NS_OK;
        break;
      }

      MOZ_DIAGNOSTIC_ASSERT(writeCount <= segment.Length());
      segment.Advance(writeCount);
      aCount -= writeCount;
      *aReadCount += writeCount;
      mLogicalOffset += writeCount;
    }
  }

  return rv;
}

NS_IMETHODIMP
nsPipeInputStream::Read(char* aToBuf, uint32_t aBufLen, uint32_t* aReadCount) {
  return ReadSegments(NS_CopySegmentToBuffer, aToBuf, aBufLen, aReadCount);
}

NS_IMETHODIMP
nsPipeInputStream::IsNonBlocking(bool* aNonBlocking) {
  *aNonBlocking = !mBlocking;
  return NS_OK;
}

NS_IMETHODIMP
nsPipeInputStream::AsyncWait(nsIInputStreamCallback* aCallback, uint32_t aFlags,
                             uint32_t aRequestedCount,
                             nsIEventTarget* aTarget) {
  LOG(("III AsyncWait [this=%p]\n", this));

  nsPipeEvents pipeEvents;
  {
    ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);

    // replace a pending callback
    mCallback = nullptr;

    if (!aCallback) {
      return NS_OK;
    }

    CallbackHolder callback(this, aCallback, aFlags, aTarget);

    if (NS_FAILED(Status(mon)) ||
        (mReadState.mAvailable && !(aFlags & WAIT_CLOSURE_ONLY))) {
      // stream is already closed or readable; post event.
      pipeEvents.NotifyReady(std::move(callback));
    } else {
      // queue up callback object to be notified when data becomes available
      mCallback = std::move(callback);
    }
  }
  return NS_OK;
}

NS_IMETHODIMP
nsPipeInputStream::Tell(int64_t* aOffset) {
  ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);

  // return error if closed
  if (!mReadState.mAvailable && NS_FAILED(Status(mon))) {
    return Status(mon);
  }

  *aOffset = mLogicalOffset;
  return NS_OK;
}

static bool strings_equal(bool aIgnoreCase, const char* aS1, const char* aS2,
                          uint32_t aLen) {
  return aIgnoreCase ? !nsCRT::strncasecmp(aS1, aS2, aLen)
                     : !strncmp(aS1, aS2, aLen);
}

NS_IMETHODIMP
nsPipeInputStream::Search(const char* aForString, bool aIgnoreCase,
                          bool* aFound, uint32_t* aOffsetSearchedTo) {
  LOG(("III Search [for=%s ic=%u]\n", aForString, aIgnoreCase));

  ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);

  char* cursor1;
  char* limit1;
  uint32_t index = 0, offset = 0;
  uint32_t strLen = strlen(aForString);

  mPipe->PeekSegment(mReadState, 0, cursor1, limit1);
  if (cursor1 == limit1) {
    *aFound = false;
    *aOffsetSearchedTo = 0;
    LOG(("  result [aFound=%u offset=%u]\n", *aFound, *aOffsetSearchedTo));
    return NS_OK;
  }

  while (true) {
    uint32_t i, len1 = limit1 - cursor1;

    // check if the string is in the buffer segment
    for (i = 0; i < len1 - strLen + 1; i++) {
      if (strings_equal(aIgnoreCase, &cursor1[i], aForString, strLen)) {
        *aFound = true;
        *aOffsetSearchedTo = offset + i;
        LOG(("  result [aFound=%u offset=%u]\n", *aFound, *aOffsetSearchedTo));
        return NS_OK;
      }
    }

    // get the next segment
    char* cursor2;
    char* limit2;
    uint32_t len2;

    index++;
    offset += len1;

    mPipe->PeekSegment(mReadState, index, cursor2, limit2);
    if (cursor2 == limit2) {
      *aFound = false;
      *aOffsetSearchedTo = offset - strLen + 1;
      LOG(("  result [aFound=%u offset=%u]\n", *aFound, *aOffsetSearchedTo));
      return NS_OK;
    }
    len2 = limit2 - cursor2;

    // check if the string is straddling the next buffer segment
    uint32_t lim = XPCOM_MIN(strLen, len2 + 1);
    for (i = 0; i < lim; ++i) {
      uint32_t strPart1Len = strLen - i - 1;
      uint32_t strPart2Len = strLen - strPart1Len;
      const char* strPart2 = &aForString[strLen - strPart2Len];
      uint32_t bufSeg1Offset = len1 - strPart1Len;
      if (strings_equal(aIgnoreCase, &cursor1[bufSeg1Offset], aForString,
                        strPart1Len) &&
          strings_equal(aIgnoreCase, cursor2, strPart2, strPart2Len)) {
        *aFound = true;
        *aOffsetSearchedTo = offset - strPart1Len;
        LOG(("  result [aFound=%u offset=%u]\n", *aFound, *aOffsetSearchedTo));
        return NS_OK;
      }
    }

    // finally continue with the next buffer
    cursor1 = cursor2;
    limit1 = limit2;
  }

  MOZ_ASSERT_UNREACHABLE("can't get here");
  return NS_ERROR_UNEXPECTED;  // keep compiler happy
}

NS_IMETHODIMP
nsPipeInputStream::GetCloneable(bool* aCloneableOut) {
  *aCloneableOut = true;
  return NS_OK;
}

NS_IMETHODIMP
nsPipeInputStream::Clone(nsIInputStream** aCloneOut) {
  return mPipe->CloneInputStream(this, aCloneOut);
}

nsresult nsPipeInputStream::Status(const ReentrantMonitorAutoEnter& ev) const {
  if (NS_FAILED(mInputStatus)) {
    return mInputStatus;
  }

  if (mReadState.mAvailable) {
    // Still something to read and this input stream state is OK.
    return NS_OK;
  }

  // Nothing to read, just fall through to the pipe's state that
  // may reflect state of its output stream side (already closed).
  return mPipe->mStatus;
}

nsresult nsPipeInputStream::Status() const {
  ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);
  return Status(mon);
}

nsPipeInputStream::~nsPipeInputStream() { Close(); }

//-----------------------------------------------------------------------------
// nsPipeOutputStream methods:
//-----------------------------------------------------------------------------

NS_IMPL_QUERY_INTERFACE(nsPipeOutputStream, nsIOutputStream,
                        nsIAsyncOutputStream, nsIClassInfo)

NS_IMPL_CI_INTERFACE_GETTER(nsPipeOutputStream, nsIOutputStream,
                            nsIAsyncOutputStream)

NS_IMPL_THREADSAFE_CI(nsPipeOutputStream)

nsresult nsPipeOutputStream::Wait() {
  MOZ_DIAGNOSTIC_ASSERT(mBlocking);

  ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);

  if (NS_SUCCEEDED(mPipe->mStatus) && !mWritable) {
    LOG(("OOO pipe output: waiting for space\n"));
    mBlocked = true;
    mon.Wait();
    mBlocked = false;
    LOG(("OOO pipe output: woke up [pipe-status=%" PRIx32 " writable=%u]\n",
         static_cast<uint32_t>(mPipe->mStatus), mWritable));
  }

  return mPipe->mStatus == NS_BASE_STREAM_CLOSED ? NS_OK : mPipe->mStatus;
}

MonitorAction nsPipeOutputStream::OnOutputWritable(nsPipeEvents& aEvents) {
  MonitorAction result = DoNotNotifyMonitor;

  mWritable = true;

  if (mCallback && !(mCallback.Flags() & WAIT_CLOSURE_ONLY)) {
    aEvents.NotifyReady(std::move(mCallback));
  } else if (mBlocked) {
    result = NotifyMonitor;
  }

  return result;
}

MonitorAction nsPipeOutputStream::OnOutputException(nsresult aReason,
                                                    nsPipeEvents& aEvents) {
  LOG(("nsPipeOutputStream::OnOutputException [this=%p reason=%" PRIx32 "]\n",
       this, static_cast<uint32_t>(aReason)));

  MonitorAction result = DoNotNotifyMonitor;

  MOZ_DIAGNOSTIC_ASSERT(NS_FAILED(aReason));
  mWritable = false;

  if (mCallback) {
    aEvents.NotifyReady(std::move(mCallback));
  } else if (mBlocked) {
    result = NotifyMonitor;
  }

  return result;
}

NS_IMETHODIMP_(MozExternalRefCountType)
nsPipeOutputStream::AddRef() {
  ++mWriterRefCnt;
  return mPipe->AddRef();
}

NS_IMETHODIMP_(MozExternalRefCountType)
nsPipeOutputStream::Release() {
  if (--mWriterRefCnt == 0) {
    Close();
  }
  return mPipe->Release();
}

NS_IMETHODIMP
nsPipeOutputStream::CloseWithStatus(nsresult aReason) {
  LOG(("OOO CloseWithStatus [this=%p reason=%" PRIx32 "]\n", this,
       static_cast<uint32_t>(aReason)));

  if (NS_SUCCEEDED(aReason)) {
    aReason = NS_BASE_STREAM_CLOSED;
  }

  // input stream may remain open
  mPipe->OnPipeException(aReason, true);
  return NS_OK;
}

NS_IMETHODIMP
nsPipeOutputStream::Close() { return CloseWithStatus(NS_BASE_STREAM_CLOSED); }

NS_IMETHODIMP
nsPipeOutputStream::WriteSegments(nsReadSegmentFun aReader, void* aClosure,
                                  uint32_t aCount, uint32_t* aWriteCount) {
  LOG(("OOO WriteSegments [this=%p count=%u]\n", this, aCount));

  nsresult rv = NS_OK;

  char* segment;
  uint32_t segmentLen;

  *aWriteCount = 0;
  while (aCount) {
    rv = mPipe->GetWriteSegment(segment, segmentLen);
    if (NS_FAILED(rv)) {
      if (rv == NS_BASE_STREAM_WOULD_BLOCK) {
        // pipe is full
        if (!mBlocking) {
          // ignore this error if we've already written something
          if (*aWriteCount > 0) {
            rv = NS_OK;
          }
          break;
        }
        // wait for the pipe to have an empty segment.
        rv = Wait();
        if (NS_SUCCEEDED(rv)) {
          continue;
        }
      }
      mPipe->OnPipeException(rv);
      break;
    }

    // write no more than aCount
    if (segmentLen > aCount) {
      segmentLen = aCount;
    }

    uint32_t readCount, originalLen = segmentLen;
    while (segmentLen) {
      readCount = 0;

      rv = aReader(this, aClosure, segment, *aWriteCount, segmentLen,
                   &readCount);

      if (NS_FAILED(rv) || readCount == 0) {
        aCount = 0;
        // any errors returned from the aReader end here: do not
        // propagate to the caller of WriteSegments.
        rv = NS_OK;
        break;
      }

      MOZ_DIAGNOSTIC_ASSERT(readCount <= segmentLen);
      segment += readCount;
      segmentLen -= readCount;
      aCount -= readCount;
      *aWriteCount += readCount;
      mLogicalOffset += readCount;
    }

    if (segmentLen < originalLen) {
      mPipe->AdvanceWriteCursor(originalLen - segmentLen);
    }
  }

  return rv;
}

NS_IMETHODIMP
nsPipeOutputStream::Write(const char* aFromBuf, uint32_t aBufLen,
                          uint32_t* aWriteCount) {
  return WriteSegments(NS_CopyBufferToSegment, (void*)aFromBuf, aBufLen,
                       aWriteCount);
}

NS_IMETHODIMP
nsPipeOutputStream::Flush() {
  // nothing to do
  return NS_OK;
}

NS_IMETHODIMP
nsPipeOutputStream::StreamStatus() {
  ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);
  return mPipe->mStatus;
}

NS_IMETHODIMP
nsPipeOutputStream::WriteFrom(nsIInputStream* aFromStream, uint32_t aCount,
                              uint32_t* aWriteCount) {
  return WriteSegments(NS_CopyStreamToSegment, aFromStream, aCount,
                       aWriteCount);
}

NS_IMETHODIMP
nsPipeOutputStream::IsNonBlocking(bool* aNonBlocking) {
  *aNonBlocking = !mBlocking;
  return NS_OK;
}

NS_IMETHODIMP
nsPipeOutputStream::AsyncWait(nsIOutputStreamCallback* aCallback,
                              uint32_t aFlags, uint32_t aRequestedCount,
                              nsIEventTarget* aTarget) {
  LOG(("OOO AsyncWait [this=%p]\n", this));

  nsPipeEvents pipeEvents;
  {
    ReentrantMonitorAutoEnter mon(mPipe->mReentrantMonitor);

    // replace a pending callback
    mCallback = nullptr;

    if (!aCallback) {
      return NS_OK;
    }

    CallbackHolder callback(this, aCallback, aFlags, aTarget);

    if (NS_FAILED(mPipe->mStatus) ||
        (mWritable && !(aFlags & WAIT_CLOSURE_ONLY))) {
      // stream is already closed or writable; post event.
      pipeEvents.NotifyReady(std::move(callback));
    } else {
      // queue up callback object to be notified when data becomes available
      mCallback = std::move(callback);
    }
  }
  return NS_OK;
}

////////////////////////////////////////////////////////////////////////////////

void NS_NewPipe(nsIInputStream** aPipeIn, nsIOutputStream** aPipeOut,
                uint32_t aSegmentSize, uint32_t aMaxSize,
                bool aNonBlockingInput, bool aNonBlockingOutput) {
  if (aSegmentSize == 0) {
    aSegmentSize = DEFAULT_SEGMENT_SIZE;
  }

  // Handle aMaxSize of UINT32_MAX as a special case
  uint32_t segmentCount;
  if (aMaxSize == UINT32_MAX) {
    segmentCount = UINT32_MAX;
  } else {
    segmentCount = aMaxSize / aSegmentSize;
  }

  nsIAsyncInputStream* in;
  nsIAsyncOutputStream* out;
  NS_NewPipe2(&in, &out, aNonBlockingInput, aNonBlockingOutput, aSegmentSize,
              segmentCount);

  *aPipeIn = in;
  *aPipeOut = out;
}

// Disable thread safety analysis as this is logically a constructor, and no
// additional threads can observe these objects yet.
void NS_NewPipe2(nsIAsyncInputStream** aPipeIn, nsIAsyncOutputStream** aPipeOut,
                 bool aNonBlockingInput, bool aNonBlockingOutput,
                 uint32_t aSegmentSize,
                 uint32_t aSegmentCount) MOZ_NO_THREAD_SAFETY_ANALYSIS {
  RefPtr<nsPipe> pipe =
      new nsPipe(aSegmentSize ? aSegmentSize : DEFAULT_SEGMENT_SIZE,
                 aSegmentCount ? aSegmentCount : DEFAULT_SEGMENT_COUNT);

  RefPtr<nsPipeInputStream> pipeIn = new nsPipeInputStream(pipe);
  pipe->mInputList.AppendElement(pipeIn);
  RefPtr<nsPipeOutputStream> pipeOut = &pipe->mOutput;

  pipeIn->SetNonBlocking(aNonBlockingInput);
  pipeOut->SetNonBlocking(aNonBlockingOutput);

  pipeIn.forget(aPipeIn);
  pipeOut.forget(aPipeOut);
}

////////////////////////////////////////////////////////////////////////////////

// Thin nsIPipe implementation for consumers of the component manager interface
// for creating pipes. Acts as a thin wrapper around NS_NewPipe2 for JS callers.
class nsPipeHolder final : public nsIPipe {
 public:
  NS_DECL_THREADSAFE_ISUPPORTS
  NS_DECL_NSIPIPE

 private:
  ~nsPipeHolder() = default;

  nsCOMPtr<nsIAsyncInputStream> mInput;
  nsCOMPtr<nsIAsyncOutputStream> mOutput;
};

NS_IMPL_ISUPPORTS(nsPipeHolder, nsIPipe)

NS_IMETHODIMP
nsPipeHolder::Init(bool aNonBlockingInput, bool aNonBlockingOutput,
                   uint32_t aSegmentSize, uint32_t aSegmentCount) {
  if (mInput || mOutput) {
    return NS_ERROR_ALREADY_INITIALIZED;
  }
  NS_NewPipe2(getter_AddRefs(mInput), getter_AddRefs(mOutput),
              aNonBlockingInput, aNonBlockingOutput, aSegmentSize,
              aSegmentCount);
  return NS_OK;
}

NS_IMETHODIMP
nsPipeHolder::GetInputStream(nsIAsyncInputStream** aInputStream) {
  if (mInput) {
    *aInputStream = do_AddRef(mInput).take();
    return NS_OK;
  }
  return NS_ERROR_NOT_INITIALIZED;
}

NS_IMETHODIMP
nsPipeHolder::GetOutputStream(nsIAsyncOutputStream** aOutputStream) {
  if (mOutput) {
    *aOutputStream = do_AddRef(mOutput).take();
    return NS_OK;
  }
  return NS_ERROR_NOT_INITIALIZED;
}

nsresult nsPipeConstructor(REFNSIID aIID, void** aResult) {
  RefPtr<nsPipeHolder> pipe = new nsPipeHolder();
  nsresult rv = pipe->QueryInterface(aIID, aResult);
  return rv;
}

////////////////////////////////////////////////////////////////////////////////