summaryrefslogtreecommitdiffstats
path: root/xpcom/threads/MozPromise.h
blob: c53037e11917951a034c546d78ffd4963c208873 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef XPCOM_THREADS_MOZPROMISE_H_
#define XPCOM_THREADS_MOZPROMISE_H_

#include <type_traits>
#include <utility>

#include "mozilla/Attributes.h"
#include "mozilla/ErrorNames.h"
#include "mozilla/Logging.h"
#include "mozilla/Maybe.h"
#include "mozilla/Monitor.h"
#include "mozilla/Mutex.h"
#include "mozilla/RefPtr.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/Variant.h"
#include "nsIDirectTaskDispatcher.h"
#include "nsISerialEventTarget.h"
#include "nsTArray.h"
#include "nsThreadUtils.h"

#ifdef MOZ_WIDGET_ANDROID
#  include "mozilla/jni/GeckoResultUtils.h"
#endif

#if MOZ_DIAGNOSTIC_ASSERT_ENABLED
#  define PROMISE_DEBUG
#endif

#ifdef PROMISE_DEBUG
#  define PROMISE_ASSERT MOZ_RELEASE_ASSERT
#else
#  define PROMISE_ASSERT(...) \
    do {                      \
    } while (0)
#endif

#if DEBUG
#  include "nsPrintfCString.h"
#endif

namespace mozilla {

namespace dom {
class Promise;
}

extern LazyLogModule gMozPromiseLog;

#define PROMISE_LOG(x, ...) \
  MOZ_LOG(gMozPromiseLog, mozilla::LogLevel::Debug, (x, ##__VA_ARGS__))

namespace detail {
template <typename F>
struct MethodTraitsHelper : MethodTraitsHelper<decltype(&F::operator())> {};
template <typename ThisType, typename Ret, typename... ArgTypes>
struct MethodTraitsHelper<Ret (ThisType::*)(ArgTypes...)> {
  using ReturnType = Ret;
  static const size_t ArgSize = sizeof...(ArgTypes);
};
template <typename ThisType, typename Ret, typename... ArgTypes>
struct MethodTraitsHelper<Ret (ThisType::*)(ArgTypes...) const> {
  using ReturnType = Ret;
  static const size_t ArgSize = sizeof...(ArgTypes);
};
template <typename ThisType, typename Ret, typename... ArgTypes>
struct MethodTraitsHelper<Ret (ThisType::*)(ArgTypes...) volatile> {
  using ReturnType = Ret;
  static const size_t ArgSize = sizeof...(ArgTypes);
};
template <typename ThisType, typename Ret, typename... ArgTypes>
struct MethodTraitsHelper<Ret (ThisType::*)(ArgTypes...) const volatile> {
  using ReturnType = Ret;
  static const size_t ArgSize = sizeof...(ArgTypes);
};
template <typename T>
struct MethodTrait : MethodTraitsHelper<std::remove_reference_t<T>> {};

}  // namespace detail

template <typename T>
using MethodReturnType = typename detail::MethodTrait<T>::ReturnType;

template <typename MethodType>
constexpr bool TakesAnyArguments =
    detail::MethodTrait<MethodType>::ArgSize != 0;

template <typename ResolveValueT, typename RejectValueT, bool IsExclusive>
class MozPromise;

template <typename T>
constexpr bool IsMozPromise = false;

template <typename ResolveValueT, typename RejectValueT, bool IsExclusive>
constexpr bool
    IsMozPromise<MozPromise<ResolveValueT, RejectValueT, IsExclusive>> = true;

/*
 * A promise manages an asynchronous request that may or may not be able to be
 * fulfilled immediately. When an API returns a promise, the consumer may attach
 * callbacks to be invoked (asynchronously, on a specified thread) when the
 * request is either completed (resolved) or cannot be completed (rejected).
 * Whereas JS promise callbacks are dispatched from Microtask checkpoints,
 * MozPromises resolution/rejection make a normal round-trip through the event
 * loop, which simplifies their ordering semantics relative to other native
 * code.
 *
 * MozPromises attempt to mirror the spirit of JS Promises to the extent that
 * is possible (and desirable) in C++. While the intent is that MozPromises
 * feel familiar to programmers who are accustomed to their JS-implemented
 * cousin, we don't shy away from imposing restrictions and adding features that
 * make sense for the use cases we encounter.
 *
 * A MozPromise is ThreadSafe, and may be ->Then()ed on any thread. The Then()
 * call accepts resolve and reject callbacks, and returns a magic object which
 * will be implicitly converted to a MozPromise::Request or a MozPromise object
 * depending on how the return value is used. The magic object serves several
 * purposes for the consumer.
 *
 *   (1) When converting to a MozPromise::Request, it allows the caller to
 *       cancel the delivery of the resolve/reject value if it has not already
 *       occurred, via Disconnect() (this must be done on the target thread to
 *       avoid racing).
 *
 *   (2) When converting to a MozPromise (which is called a completion promise),
 *       it allows promise chaining so ->Then() can be called again to attach
 *       more resolve and reject callbacks. If the resolve/reject callback
 *       returns a new MozPromise, that promise is chained to the completion
 *       promise, such that its resolve/reject value will be forwarded along
 *       when it arrives. If the resolve/reject callback returns void, the
 *       completion promise is resolved/rejected with the same value that was
 *       passed to the callback.
 *
 * The MozPromise APIs skirt traditional XPCOM convention by returning nsRefPtrs
 * (rather than already_AddRefed) from various methods. This is done to allow
 * elegant chaining of calls without cluttering up the code with intermediate
 * variables, and without introducing separate API variants for callers that
 * want a return value (from, say, ->Then()) from those that don't.
 *
 * When IsExclusive is true, the MozPromise does a release-mode assertion that
 * there is at most one call to either Then(...) or ChainTo(...).
 */

class MozPromiseRefcountable {
 public:
  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(MozPromiseRefcountable)
 protected:
  virtual ~MozPromiseRefcountable() = default;
};

class MozPromiseBase : public MozPromiseRefcountable {
 public:
  virtual void AssertIsDead() = 0;
};

template <typename T>
class MozPromiseHolder;
template <typename T>
class MozPromiseRequestHolder;
template <typename ResolveValueT, typename RejectValueT, bool IsExclusive>
class MozPromise : public MozPromiseBase {
  static const uint32_t sMagic = 0xcecace11;

  // Return a |T&&| to enable move when IsExclusive is true or
  // a |const T&| to enforce copy otherwise.
  template <typename T,
            typename R = std::conditional_t<IsExclusive, T&&, const T&>>
  static R MaybeMove(T& aX) {
    return static_cast<R>(aX);
  }

 public:
  using ResolveValueType = ResolveValueT;
  using RejectValueType = RejectValueT;
  class ResolveOrRejectValue {
   public:
    template <typename ResolveValueType_>
    void SetResolve(ResolveValueType_&& aResolveValue) {
      MOZ_ASSERT(IsNothing());
      mValue = Storage(VariantIndex<ResolveIndex>{},
                       std::forward<ResolveValueType_>(aResolveValue));
    }

    template <typename RejectValueType_>
    void SetReject(RejectValueType_&& aRejectValue) {
      MOZ_ASSERT(IsNothing());
      mValue = Storage(VariantIndex<RejectIndex>{},
                       std::forward<RejectValueType_>(aRejectValue));
    }

    template <typename ResolveValueType_>
    static ResolveOrRejectValue MakeResolve(ResolveValueType_&& aResolveValue) {
      ResolveOrRejectValue val;
      val.SetResolve(std::forward<ResolveValueType_>(aResolveValue));
      return val;
    }

    template <typename RejectValueType_>
    static ResolveOrRejectValue MakeReject(RejectValueType_&& aRejectValue) {
      ResolveOrRejectValue val;
      val.SetReject(std::forward<RejectValueType_>(aRejectValue));
      return val;
    }

    bool IsResolve() const { return mValue.template is<ResolveIndex>(); }
    bool IsReject() const { return mValue.template is<RejectIndex>(); }
    bool IsNothing() const { return mValue.template is<NothingIndex>(); }

    const ResolveValueType& ResolveValue() const {
      return mValue.template as<ResolveIndex>();
    }
    ResolveValueType& ResolveValue() {
      return mValue.template as<ResolveIndex>();
    }
    const RejectValueType& RejectValue() const {
      return mValue.template as<RejectIndex>();
    }
    RejectValueType& RejectValue() { return mValue.template as<RejectIndex>(); }

   private:
    enum { NothingIndex, ResolveIndex, RejectIndex };
    using Storage = Variant<Nothing, ResolveValueType, RejectValueType>;
    Storage mValue = Storage(VariantIndex<NothingIndex>{});
  };

 protected:
  // MozPromise is the public type, and never constructed directly. Construct
  // a MozPromise::Private, defined below.
  MozPromise(const char* aCreationSite, bool aIsCompletionPromise)
      : mCreationSite(aCreationSite),
        mMutex("MozPromise Mutex"),
        mHaveRequest(false),
        mIsCompletionPromise(aIsCompletionPromise)
#ifdef PROMISE_DEBUG
        ,
        mMagic4(&mMutex)
#endif
  {
    PROMISE_LOG("%s creating MozPromise (%p)", mCreationSite, this);
  }

 public:
  // MozPromise::Private allows us to separate the public interface (upon which
  // consumers of the promise may invoke methods like Then()) from the private
  // interface (upon which the creator of the promise may invoke Resolve() or
  // Reject()). APIs should create and store a MozPromise::Private (usually
  // via a MozPromiseHolder), and return a MozPromise to consumers.
  //
  // NB: We can include the definition of this class inline once B2G ICS is
  // gone.
  class Private;

  template <typename ResolveValueType_>
  [[nodiscard]] static RefPtr<MozPromise> CreateAndResolve(
      ResolveValueType_&& aResolveValue, const char* aResolveSite) {
    static_assert(std::is_convertible_v<ResolveValueType_, ResolveValueT>,
                  "Resolve() argument must be implicitly convertible to "
                  "MozPromise's ResolveValueT");
    RefPtr<typename MozPromise::Private> p =
        new MozPromise::Private(aResolveSite);
    p->Resolve(std::forward<ResolveValueType_>(aResolveValue), aResolveSite);
    return p;
  }

  template <typename RejectValueType_>
  [[nodiscard]] static RefPtr<MozPromise> CreateAndReject(
      RejectValueType_&& aRejectValue, const char* aRejectSite) {
    static_assert(std::is_convertible_v<RejectValueType_, RejectValueT>,
                  "Reject() argument must be implicitly convertible to "
                  "MozPromise's RejectValueT");
    RefPtr<typename MozPromise::Private> p =
        new MozPromise::Private(aRejectSite);
    p->Reject(std::forward<RejectValueType_>(aRejectValue), aRejectSite);
    return p;
  }

  template <typename ResolveOrRejectValueType_>
  [[nodiscard]] static RefPtr<MozPromise> CreateAndResolveOrReject(
      ResolveOrRejectValueType_&& aValue, const char* aSite) {
    RefPtr<typename MozPromise::Private> p = new MozPromise::Private(aSite);
    p->ResolveOrReject(std::forward<ResolveOrRejectValueType_>(aValue), aSite);
    return p;
  }

  using AllPromiseType = MozPromise<CopyableTArray<ResolveValueType>,
                                    RejectValueType, IsExclusive>;
  using AllSettledPromiseType =
      MozPromise<CopyableTArray<ResolveOrRejectValue>, bool, IsExclusive>;

 private:
  class AllPromiseHolder : public MozPromiseRefcountable {
   public:
    explicit AllPromiseHolder(size_t aDependentPromises)
        : mPromise(new typename AllPromiseType::Private(__func__)),
          mOutstandingPromises(aDependentPromises) {
      MOZ_ASSERT(aDependentPromises > 0);
      mResolveValues.SetLength(aDependentPromises);
    }

    template <typename ResolveValueType_>
    void Resolve(size_t aIndex, ResolveValueType_&& aResolveValue) {
      if (!mPromise) {
        // Already rejected.
        return;
      }

      mResolveValues[aIndex].emplace(
          std::forward<ResolveValueType_>(aResolveValue));
      if (--mOutstandingPromises == 0) {
        nsTArray<ResolveValueType> resolveValues;
        resolveValues.SetCapacity(mResolveValues.Length());
        for (auto&& resolveValue : mResolveValues) {
          resolveValues.AppendElement(std::move(resolveValue.ref()));
        }

        mPromise->Resolve(std::move(resolveValues), __func__);
        mPromise = nullptr;
        mResolveValues.Clear();
      }
    }

    template <typename RejectValueType_>
    void Reject(RejectValueType_&& aRejectValue) {
      if (!mPromise) {
        // Already rejected.
        return;
      }

      mPromise->Reject(std::forward<RejectValueType_>(aRejectValue), __func__);
      mPromise = nullptr;
      mResolveValues.Clear();
    }

    AllPromiseType* Promise() { return mPromise; }

   private:
    nsTArray<Maybe<ResolveValueType>> mResolveValues;
    RefPtr<typename AllPromiseType::Private> mPromise;
    size_t mOutstandingPromises;
  };

  // Trying to pass ResolveOrRejectValue by value fails static analysis checks,
  // so we need to use either a const& or an rvalue reference, depending on
  // whether IsExclusive is true or not.
  using ResolveOrRejectValueParam =
      std::conditional_t<IsExclusive, ResolveOrRejectValue&&,
                         const ResolveOrRejectValue&>;

  using ResolveValueTypeParam =
      std::conditional_t<IsExclusive, ResolveValueType&&,
                         const ResolveValueType&>;

  using RejectValueTypeParam =
      std::conditional_t<IsExclusive, RejectValueType&&,
                         const RejectValueType&>;

  class AllSettledPromiseHolder : public MozPromiseRefcountable {
   public:
    explicit AllSettledPromiseHolder(size_t aDependentPromises)
        : mPromise(new typename AllSettledPromiseType::Private(__func__)),
          mOutstandingPromises(aDependentPromises) {
      MOZ_ASSERT(aDependentPromises > 0);
      mValues.SetLength(aDependentPromises);
    }

    void Settle(size_t aIndex, ResolveOrRejectValueParam aValue) {
      if (!mPromise) {
        // Already rejected.
        return;
      }

      mValues[aIndex].emplace(MaybeMove(aValue));
      if (--mOutstandingPromises == 0) {
        nsTArray<ResolveOrRejectValue> values;
        values.SetCapacity(mValues.Length());
        for (auto&& value : mValues) {
          values.AppendElement(std::move(value.ref()));
        }

        mPromise->Resolve(std::move(values), __func__);
        mPromise = nullptr;
        mValues.Clear();
      }
    }

    AllSettledPromiseType* Promise() { return mPromise; }

   private:
    nsTArray<Maybe<ResolveOrRejectValue>> mValues;
    RefPtr<typename AllSettledPromiseType::Private> mPromise;
    size_t mOutstandingPromises;
  };

 public:
  [[nodiscard]] static RefPtr<AllPromiseType> All(
      nsISerialEventTarget* aProcessingTarget,
      nsTArray<RefPtr<MozPromise>>& aPromises) {
    if (aPromises.Length() == 0) {
      return AllPromiseType::CreateAndResolve(
          CopyableTArray<ResolveValueType>(), __func__);
    }

    RefPtr<AllPromiseHolder> holder = new AllPromiseHolder(aPromises.Length());
    RefPtr<AllPromiseType> promise = holder->Promise();
    for (size_t i = 0; i < aPromises.Length(); ++i) {
      aPromises[i]->Then(
          aProcessingTarget, __func__,
          [holder, i](ResolveValueTypeParam aResolveValue) -> void {
            holder->Resolve(i, MaybeMove(aResolveValue));
          },
          [holder](RejectValueTypeParam aRejectValue) -> void {
            holder->Reject(MaybeMove(aRejectValue));
          });
    }
    return promise;
  }

  [[nodiscard]] static RefPtr<AllSettledPromiseType> AllSettled(
      nsISerialEventTarget* aProcessingTarget,
      nsTArray<RefPtr<MozPromise>>& aPromises) {
    if (aPromises.Length() == 0) {
      return AllSettledPromiseType::CreateAndResolve(
          CopyableTArray<ResolveOrRejectValue>(), __func__);
    }

    RefPtr<AllSettledPromiseHolder> holder =
        new AllSettledPromiseHolder(aPromises.Length());
    RefPtr<AllSettledPromiseType> promise = holder->Promise();
    for (size_t i = 0; i < aPromises.Length(); ++i) {
      aPromises[i]->Then(aProcessingTarget, __func__,
                         [holder, i](ResolveOrRejectValueParam aValue) -> void {
                           holder->Settle(i, MaybeMove(aValue));
                         });
    }
    return promise;
  }

  class Request : public MozPromiseRefcountable {
   public:
    virtual void Disconnect() = 0;

   protected:
    Request() : mComplete(false), mDisconnected(false) {}
    virtual ~Request() = default;

    bool mComplete;
    bool mDisconnected;
  };

 protected:
  /*
   * A ThenValue tracks a single consumer waiting on the promise. When a
   * consumer invokes promise->Then(...), a ThenValue is created. Once the
   * Promise is resolved or rejected, a {Resolve,Reject}Runnable is dispatched,
   * which invokes the resolve/reject method and then deletes the ThenValue.
   */
  class ThenValueBase : public Request {
    friend class MozPromise;
    static const uint32_t sMagic = 0xfadece11;

   public:
    class ResolveOrRejectRunnable final
        : public PrioritizableCancelableRunnable {
     public:
      ResolveOrRejectRunnable(ThenValueBase* aThenValue, MozPromise* aPromise)
          : PrioritizableCancelableRunnable(
                aPromise->mPriority,
                "MozPromise::ThenValueBase::ResolveOrRejectRunnable"),
            mThenValue(aThenValue),
            mPromise(aPromise) {
        MOZ_DIAGNOSTIC_ASSERT(!mPromise->IsPending());
      }

      ~ResolveOrRejectRunnable() {
        if (mThenValue) {
          mThenValue->AssertIsDead();
        }
      }

      NS_IMETHOD Run() override {
        PROMISE_LOG("ResolveOrRejectRunnable::Run() [this=%p]", this);
        mThenValue->DoResolveOrReject(mPromise->Value());
        mThenValue = nullptr;
        mPromise = nullptr;
        return NS_OK;
      }

      nsresult Cancel() override { return Run(); }

     private:
      RefPtr<ThenValueBase> mThenValue;
      RefPtr<MozPromise> mPromise;
    };

    ThenValueBase(nsISerialEventTarget* aResponseTarget, const char* aCallSite)
        : mResponseTarget(aResponseTarget), mCallSite(aCallSite) {
      MOZ_ASSERT(aResponseTarget);
    }

#ifdef PROMISE_DEBUG
    ~ThenValueBase() {
      mMagic1 = 0;
      mMagic2 = 0;
    }
#endif

    void AssertIsDead() {
      PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic);
      // We want to assert that this ThenValues is dead - that is to say, that
      // there are no consumers waiting for the result. In the case of a normal
      // ThenValue, we check that it has been disconnected, which is the way
      // that the consumer signals that it no longer wishes to hear about the
      // result. If this ThenValue has a completion promise (which is mutually
      // exclusive with being disconnectable), we recursively assert that every
      // ThenValue associated with the completion promise is dead.
      if (MozPromiseBase* p = CompletionPromise()) {
        p->AssertIsDead();
      } else {
#ifdef MOZ_DIAGNOSTIC_ASSERT_ENABLED
        if (MOZ_UNLIKELY(!Request::mDisconnected)) {
          MOZ_CRASH_UNSAFE_PRINTF(
              "MozPromise::ThenValue created from '%s' destroyed without being "
              "either disconnected, resolved, or rejected (dispatchRv: %s)",
              mCallSite,
              mDispatchRv ? GetStaticErrorName(*mDispatchRv)
                          : "not dispatched");
        }
#endif
      }
    }

    void Dispatch(MozPromise* aPromise) {
      PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic);
      aPromise->mMutex.AssertCurrentThreadOwns();
      MOZ_ASSERT(!aPromise->IsPending());

      nsCOMPtr<nsIRunnable> r = new ResolveOrRejectRunnable(this, aPromise);
      PROMISE_LOG(
          "%s Then() call made from %s [Runnable=%p, Promise=%p, ThenValue=%p] "
          "%s dispatch",
          aPromise->mValue.IsResolve() ? "Resolving" : "Rejecting", mCallSite,
          r.get(), aPromise, this,
          aPromise->mUseSynchronousTaskDispatch ? "synchronous"
          : aPromise->mUseDirectTaskDispatch    ? "directtask"
                                                : "normal");

      if (aPromise->mUseSynchronousTaskDispatch &&
          mResponseTarget->IsOnCurrentThread()) {
        PROMISE_LOG("ThenValue::Dispatch running task synchronously [this=%p]",
                    this);
        r->Run();
        return;
      }

      if (aPromise->mUseDirectTaskDispatch &&
          mResponseTarget->IsOnCurrentThread()) {
        PROMISE_LOG(
            "ThenValue::Dispatch dispatch task via direct task queue [this=%p]",
            this);
        nsCOMPtr<nsIDirectTaskDispatcher> dispatcher =
            do_QueryInterface(mResponseTarget);
        if (dispatcher) {
          SetDispatchRv(dispatcher->DispatchDirectTask(r.forget()));
          return;
        }
        NS_WARNING(
            nsPrintfCString(
                "Direct Task dispatching not available for thread \"%s\"",
                PR_GetThreadName(PR_GetCurrentThread()))
                .get());
        MOZ_DIAGNOSTIC_ASSERT(
            false,
            "mResponseTarget must implement nsIDirectTaskDispatcher for direct "
            "task dispatching");
      }

      // Promise consumers are allowed to disconnect the Request object and
      // then shut down the thread or task queue that the promise result would
      // be dispatched on. So we unfortunately can't assert that promise
      // dispatch succeeds. :-(
      // We do record whether or not it succeeds so that if the ThenValueBase is
      // then destroyed and it was not disconnected, we can include that
      // information in the assertion message.
      SetDispatchRv(mResponseTarget->Dispatch(r.forget()));
    }

    void Disconnect() override {
      MOZ_DIAGNOSTIC_ASSERT(mResponseTarget->IsOnCurrentThread());
      MOZ_DIAGNOSTIC_ASSERT(!Request::mComplete);
      Request::mDisconnected = true;

      // We could support rejecting the completion promise on disconnection, but
      // then we'd need to have some sort of default reject value. The use cases
      // of disconnection and completion promise chaining seem pretty
      // orthogonal, so let's use assert against it.
      MOZ_DIAGNOSTIC_ASSERT(!CompletionPromise());
    }

   protected:
    virtual MozPromiseBase* CompletionPromise() const = 0;
    virtual void DoResolveOrRejectInternal(ResolveOrRejectValue& aValue) = 0;

    void DoResolveOrReject(ResolveOrRejectValue& aValue) {
      PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic);
      MOZ_DIAGNOSTIC_ASSERT(mResponseTarget->IsOnCurrentThread());
      Request::mComplete = true;
      if (Request::mDisconnected) {
        PROMISE_LOG(
            "ThenValue::DoResolveOrReject disconnected - bailing out [this=%p]",
            this);
        return;
      }

      // Invoke the resolve or reject method.
      DoResolveOrRejectInternal(aValue);
    }

    void SetDispatchRv(nsresult aRv) {
#ifdef MOZ_DIAGNOSTIC_ASSERT_ENABLED
      mDispatchRv = Some(aRv);
#endif
    }

    nsCOMPtr<nsISerialEventTarget>
        mResponseTarget;  // May be released on any thread.
#ifdef PROMISE_DEBUG
    uint32_t mMagic1 = sMagic;
#endif
    const char* mCallSite;
#ifdef PROMISE_DEBUG
    uint32_t mMagic2 = sMagic;
#endif
#ifdef MOZ_DIAGNOSTIC_ASSERT_ENABLED
    Maybe<nsresult> mDispatchRv;
#endif
  };

  /*
   * We create two overloads for invoking Resolve/Reject Methods so as to
   * make the resolve/reject value argument "optional".
   */
  template <typename ThisType, typename MethodType, typename ValueType>
  static std::enable_if_t<TakesAnyArguments<MethodType>,
                          MethodReturnType<MethodType>>
  InvokeMethod(ThisType* aThisVal, MethodType aMethod, ValueType&& aValue) {
    return (aThisVal->*aMethod)(std::forward<ValueType>(aValue));
  }

  template <typename ThisType, typename MethodType, typename ValueType>
  static std::enable_if_t<!TakesAnyArguments<MethodType>,
                          MethodReturnType<MethodType>>
  InvokeMethod(ThisType* aThisVal, MethodType aMethod, ValueType&& aValue) {
    return (aThisVal->*aMethod)();
  }

  // Called when promise chaining is supported.
  template <bool SupportChaining, typename ThisType, typename MethodType,
            typename ValueType, typename CompletionPromiseType>
  static std::enable_if_t<SupportChaining, void> InvokeCallbackMethod(
      ThisType* aThisVal, MethodType aMethod, ValueType&& aValue,
      CompletionPromiseType&& aCompletionPromise) {
    auto p = InvokeMethod(aThisVal, aMethod, std::forward<ValueType>(aValue));
    if (aCompletionPromise) {
      p->ChainTo(aCompletionPromise.forget(), "<chained completion promise>");
    }
  }

  // Called when promise chaining is not supported.
  template <bool SupportChaining, typename ThisType, typename MethodType,
            typename ValueType, typename CompletionPromiseType>
  static std::enable_if_t<!SupportChaining, void> InvokeCallbackMethod(
      ThisType* aThisVal, MethodType aMethod, ValueType&& aValue,
      CompletionPromiseType&& aCompletionPromise) {
    MOZ_DIAGNOSTIC_ASSERT(
        !aCompletionPromise,
        "Can't do promise chaining for a non-promise-returning method.");
    InvokeMethod(aThisVal, aMethod, std::forward<ValueType>(aValue));
  }

  template <typename>
  class ThenCommand;

  template <typename...>
  class ThenValue;

  template <typename ThisType, typename ResolveMethodType,
            typename RejectMethodType>
  class ThenValue<ThisType*, ResolveMethodType, RejectMethodType>
      : public ThenValueBase {
    friend class ThenCommand<ThenValue>;

    using R1 = RemoveSmartPointer<MethodReturnType<ResolveMethodType>>;
    using R2 = RemoveSmartPointer<MethodReturnType<RejectMethodType>>;
    constexpr static bool SupportChaining =
        IsMozPromise<R1> && std::is_same_v<R1, R2>;

    // Fall back to MozPromise when promise chaining is not supported to make
    // code compile.
    using PromiseType = std::conditional_t<SupportChaining, R1, MozPromise>;

   public:
    ThenValue(nsISerialEventTarget* aResponseTarget, ThisType* aThisVal,
              ResolveMethodType aResolveMethod, RejectMethodType aRejectMethod,
              const char* aCallSite)
        : ThenValueBase(aResponseTarget, aCallSite),
          mThisVal(aThisVal),
          mResolveMethod(aResolveMethod),
          mRejectMethod(aRejectMethod) {}

    void Disconnect() override {
      ThenValueBase::Disconnect();

      // If a Request has been disconnected, we don't guarantee that the
      // resolve/reject runnable will be dispatched. Null out our refcounted
      // this-value now so that it's released predictably on the dispatch
      // thread.
      mThisVal = nullptr;
    }

   protected:
    MozPromiseBase* CompletionPromise() const override {
      return mCompletionPromise;
    }

    void DoResolveOrRejectInternal(ResolveOrRejectValue& aValue) override {
      if (aValue.IsResolve()) {
        InvokeCallbackMethod<SupportChaining>(mThisVal.get(), mResolveMethod,
                                              MaybeMove(aValue.ResolveValue()),
                                              std::move(mCompletionPromise));
      } else {
        InvokeCallbackMethod<SupportChaining>(mThisVal.get(), mRejectMethod,
                                              MaybeMove(aValue.RejectValue()),
                                              std::move(mCompletionPromise));
      }

      // Null out mThisVal after invoking the callback so that any references
      // are released predictably on the dispatch thread. Otherwise, it would be
      // released on whatever thread last drops its reference to the ThenValue,
      // which may or may not be ok.
      mThisVal = nullptr;
    }

   private:
    RefPtr<ThisType>
        mThisVal;  // Only accessed and refcounted on dispatch thread.
    ResolveMethodType mResolveMethod;
    RejectMethodType mRejectMethod;
    RefPtr<typename PromiseType::Private> mCompletionPromise;
  };

  template <typename ThisType, typename ResolveRejectMethodType>
  class ThenValue<ThisType*, ResolveRejectMethodType> : public ThenValueBase {
    friend class ThenCommand<ThenValue>;

    using R1 = RemoveSmartPointer<MethodReturnType<ResolveRejectMethodType>>;
    constexpr static bool SupportChaining = IsMozPromise<R1>;

    // Fall back to MozPromise when promise chaining is not supported to make
    // code compile.
    using PromiseType = std::conditional_t<SupportChaining, R1, MozPromise>;

   public:
    ThenValue(nsISerialEventTarget* aResponseTarget, ThisType* aThisVal,
              ResolveRejectMethodType aResolveRejectMethod,
              const char* aCallSite)
        : ThenValueBase(aResponseTarget, aCallSite),
          mThisVal(aThisVal),
          mResolveRejectMethod(aResolveRejectMethod) {}

    void Disconnect() override {
      ThenValueBase::Disconnect();

      // If a Request has been disconnected, we don't guarantee that the
      // resolve/reject runnable will be dispatched. Null out our refcounted
      // this-value now so that it's released predictably on the dispatch
      // thread.
      mThisVal = nullptr;
    }

   protected:
    MozPromiseBase* CompletionPromise() const override {
      return mCompletionPromise;
    }

    void DoResolveOrRejectInternal(ResolveOrRejectValue& aValue) override {
      InvokeCallbackMethod<SupportChaining>(
          mThisVal.get(), mResolveRejectMethod, MaybeMove(aValue),
          std::move(mCompletionPromise));

      // Null out mThisVal after invoking the callback so that any references
      // are released predictably on the dispatch thread. Otherwise, it would be
      // released on whatever thread last drops its reference to the ThenValue,
      // which may or may not be ok.
      mThisVal = nullptr;
    }

   private:
    RefPtr<ThisType>
        mThisVal;  // Only accessed and refcounted on dispatch thread.
    ResolveRejectMethodType mResolveRejectMethod;
    RefPtr<typename PromiseType::Private> mCompletionPromise;
  };

  // NB: We could use std::function here instead of a template if it were
  // supported. :-(
  template <typename ResolveFunction, typename RejectFunction>
  class ThenValue<ResolveFunction, RejectFunction> : public ThenValueBase {
    friend class ThenCommand<ThenValue>;

    using R1 = RemoveSmartPointer<MethodReturnType<ResolveFunction>>;
    using R2 = RemoveSmartPointer<MethodReturnType<RejectFunction>>;
    constexpr static bool SupportChaining =
        IsMozPromise<R1> && std::is_same_v<R1, R2>;

    // Fall back to MozPromise when promise chaining is not supported to make
    // code compile.
    using PromiseType = std::conditional_t<SupportChaining, R1, MozPromise>;

   public:
    ThenValue(nsISerialEventTarget* aResponseTarget,
              ResolveFunction&& aResolveFunction,
              RejectFunction&& aRejectFunction, const char* aCallSite)
        : ThenValueBase(aResponseTarget, aCallSite) {
      mResolveFunction.emplace(std::move(aResolveFunction));
      mRejectFunction.emplace(std::move(aRejectFunction));
    }

    void Disconnect() override {
      ThenValueBase::Disconnect();

      // If a Request has been disconnected, we don't guarantee that the
      // resolve/reject runnable will be dispatched. Destroy our callbacks
      // now so that any references in closures are released predictable on
      // the dispatch thread.
      mResolveFunction.reset();
      mRejectFunction.reset();
    }

   protected:
    MozPromiseBase* CompletionPromise() const override {
      return mCompletionPromise;
    }

    void DoResolveOrRejectInternal(ResolveOrRejectValue& aValue) override {
      // Note: The usage of InvokeCallbackMethod here requires that
      // ResolveFunction/RejectFunction are capture-lambdas (i.e. anonymous
      // classes with ::operator()), since it allows us to share code more
      // easily. We could fix this if need be, though it's quite easy to work
      // around by just capturing something.
      if (aValue.IsResolve()) {
        InvokeCallbackMethod<SupportChaining>(
            mResolveFunction.ptr(), &ResolveFunction::operator(),
            MaybeMove(aValue.ResolveValue()), std::move(mCompletionPromise));
      } else {
        InvokeCallbackMethod<SupportChaining>(
            mRejectFunction.ptr(), &RejectFunction::operator(),
            MaybeMove(aValue.RejectValue()), std::move(mCompletionPromise));
      }

      // Destroy callbacks after invocation so that any references in closures
      // are released predictably on the dispatch thread. Otherwise, they would
      // be released on whatever thread last drops its reference to the
      // ThenValue, which may or may not be ok.
      mResolveFunction.reset();
      mRejectFunction.reset();
    }

   private:
    Maybe<ResolveFunction>
        mResolveFunction;  // Only accessed and deleted on dispatch thread.
    Maybe<RejectFunction>
        mRejectFunction;  // Only accessed and deleted on dispatch thread.
    RefPtr<typename PromiseType::Private> mCompletionPromise;
  };

  template <typename ResolveRejectFunction>
  class ThenValue<ResolveRejectFunction> : public ThenValueBase {
    friend class ThenCommand<ThenValue>;

    using R1 = RemoveSmartPointer<MethodReturnType<ResolveRejectFunction>>;
    constexpr static bool SupportChaining = IsMozPromise<R1>;

    // Fall back to MozPromise when promise chaining is not supported to make
    // code compile.
    using PromiseType = std::conditional_t<SupportChaining, R1, MozPromise>;

   public:
    ThenValue(nsISerialEventTarget* aResponseTarget,
              ResolveRejectFunction&& aResolveRejectFunction,
              const char* aCallSite)
        : ThenValueBase(aResponseTarget, aCallSite) {
      mResolveRejectFunction.emplace(std::move(aResolveRejectFunction));
    }

    void Disconnect() override {
      ThenValueBase::Disconnect();

      // If a Request has been disconnected, we don't guarantee that the
      // resolve/reject runnable will be dispatched. Destroy our callbacks
      // now so that any references in closures are released predictable on
      // the dispatch thread.
      mResolveRejectFunction.reset();
    }

   protected:
    MozPromiseBase* CompletionPromise() const override {
      return mCompletionPromise;
    }

    void DoResolveOrRejectInternal(ResolveOrRejectValue& aValue) override {
      // Note: The usage of InvokeCallbackMethod here requires that
      // ResolveRejectFunction is capture-lambdas (i.e. anonymous
      // classes with ::operator()), since it allows us to share code more
      // easily. We could fix this if need be, though it's quite easy to work
      // around by just capturing something.
      InvokeCallbackMethod<SupportChaining>(
          mResolveRejectFunction.ptr(), &ResolveRejectFunction::operator(),
          MaybeMove(aValue), std::move(mCompletionPromise));

      // Destroy callbacks after invocation so that any references in closures
      // are released predictably on the dispatch thread. Otherwise, they would
      // be released on whatever thread last drops its reference to the
      // ThenValue, which may or may not be ok.
      mResolveRejectFunction.reset();
    }

   private:
    Maybe<ResolveRejectFunction>
        mResolveRejectFunction;  // Only accessed and deleted on dispatch
                                 // thread.
    RefPtr<typename PromiseType::Private> mCompletionPromise;
  };

  template <typename ResolveFunction>
  class MapValue final : public ThenValueBase {
    friend class ThenCommand<MapValue>;
    constexpr static const bool SupportChaining = true;
    using ResolveValueT_ = std::invoke_result_t<ResolveFunction, ResolveValueT>;
    using PromiseType = MozPromise<ResolveValueT_, RejectValueT, IsExclusive>;

   public:
    explicit MapValue(nsISerialEventTarget* aResponseTarget,
                      ResolveFunction&& f, const char* aCallSite)
        : ThenValueBase(aResponseTarget, aCallSite),
          mResolveFunction(Some(std::forward<ResolveFunction>(f))) {}

   protected:
    void Disconnect() override {
      ThenValueBase::Disconnect();
      mResolveFunction.reset();
    }

    MozPromiseBase* CompletionPromise() const override {
      return mCompletionPromise;
    }

    void DoResolveOrRejectInternal(ResolveOrRejectValue& aValue) override {
      // Note that promise-chaining is always supported here; this function can
      // only transform from MozPromise<A, B, k> to MozPromise<A2, B, k>.
      auto value = MaybeMove(aValue);
      typename PromiseType::ResolveOrRejectValue output;

      if (value.IsResolve()) {
        output.SetResolve((*mResolveFunction)(std::move(value.ResolveValue())));
      } else {
        output.SetReject(std::move(value.RejectValue()));
      }

      if (mCompletionPromise) {
        mCompletionPromise->ResolveOrReject(std::move(output),
                                            ThenValueBase::mCallSite);
      }
    }

   private:
    Maybe<ResolveFunction> mResolveFunction;
    RefPtr<typename PromiseType::Private> mCompletionPromise;
  };

  template <typename RejectFunction>
  class MapErrValue final : public ThenValueBase {
    friend class ThenCommand<MapErrValue>;
    constexpr static const bool SupportChaining = true;
    using RejectValueT_ = std::invoke_result_t<RejectFunction, RejectValueT>;
    using PromiseType = MozPromise<ResolveValueT, RejectValueT_, IsExclusive>;

   public:
    explicit MapErrValue(nsISerialEventTarget* aResponseTarget,
                         RejectFunction&& f, const char* aCallSite)
        : ThenValueBase(aResponseTarget, aCallSite),
          mRejectFunction(Some(std::forward<RejectFunction>(f))) {}

   protected:
    void Disconnect() override {
      ThenValueBase::Disconnect();
      mRejectFunction.reset();
    }

    MozPromiseBase* CompletionPromise() const override {
      return mCompletionPromise;
    }

    void DoResolveOrRejectInternal(ResolveOrRejectValue& aValue) override {
      // Note that promise-chaining is always supported here; this function can
      // only transform from MozPromise<A, B, k> to MozPromise<A, B2, k>.
      auto value = MaybeMove(aValue);
      typename PromiseType::ResolveOrRejectValue output;

      if (value.IsResolve()) {
        output.SetResolve(std::move(value.ResolveValue()));
      } else {
        output.SetReject((*mRejectFunction)(std::move(value.RejectValue())));
      }

      if (mCompletionPromise) {
        mCompletionPromise->ResolveOrReject(std::move(output),
                                            ThenValueBase::mCallSite);
      }
    }

   private:
    Maybe<RejectFunction> mRejectFunction;
    RefPtr<typename PromiseType::Private> mCompletionPromise;
  };

 public:
  void ThenInternal(already_AddRefed<ThenValueBase> aThenValue,
                    const char* aCallSite) {
    PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic &&
                   mMagic3 == sMagic && mMagic4 == &mMutex);
    RefPtr<ThenValueBase> thenValue = aThenValue;
    MutexAutoLock lock(mMutex);
    MOZ_DIAGNOSTIC_ASSERT(
        !IsExclusive || !mHaveRequest,
        "Using an exclusive promise in a non-exclusive fashion");
    mHaveRequest = true;
    PROMISE_LOG("%s invoking Then() [this=%p, aThenValue=%p, isPending=%d]",
                aCallSite, this, thenValue.get(), (int)IsPending());
    if (!IsPending()) {
      thenValue->Dispatch(this);
    } else {
      mThenValues.AppendElement(thenValue.forget());
    }
  }

 protected:
  /*
   * A command object to store all information needed to make a request to the
   * promise. This allows us to delay the request until further use is known
   * (whether it is ->Then() again for more promise chaining or ->Track() to
   * terminate chaining and issue the request).
   *
   * This allows a unified syntax for promise chaining and disconnection, and
   * feels more like its JS counterpart.
   *
   * Note that a ThenCommand is always exclusive, even if its source or result
   * promises are not. To attach multiple continuations, explicitly convert it
   * to a promise first.
   */
  template <typename ThenValueType>
  class MOZ_TEMPORARY_CLASS ThenCommand {
    // Allow Promise1::ThenCommand to access the private constructor
    // Promise2::ThenCommand(ThenCommand&&).
    template <typename, typename, bool>
    friend class MozPromise;

    using PromiseType = typename ThenValueType::PromiseType;
    using Private = typename PromiseType::Private;

    ThenCommand(const char* aCallSite,
                already_AddRefed<ThenValueType> aThenValue,
                MozPromise* aReceiver)
        : mCallSite(aCallSite), mThenValue(aThenValue), mReceiver(aReceiver) {}

    ThenCommand(ThenCommand&& aOther) noexcept = default;

   public:
    ~ThenCommand() {
      // Issue the request now if the return value of Then() is not used.
      if (mThenValue) {
        mReceiver->ThenInternal(mThenValue.forget(), mCallSite);
      }
    }

    // Allow RefPtr<MozPromise> p = somePromise->Then();
    //       p->Then(thread1, ...);
    //       p->Then(thread2, ...);
    operator RefPtr<PromiseType>() {
      static_assert(
          ThenValueType::SupportChaining,
          "The resolve/reject callback needs to return a RefPtr<MozPromise> "
          "in order to do promise chaining.");

      // mCompletionPromise must be created before ThenInternal() to avoid race.
      RefPtr<Private> p =
          new Private("<completion promise>", true /* aIsCompletionPromise */);
      mThenValue->mCompletionPromise = p;
      // Note ThenInternal() might nullify mCompletionPromise before return.
      // So we need to return p instead of mCompletionPromise.
      mReceiver->ThenInternal(mThenValue.forget(), mCallSite);
      return p;
    }

    template <typename... Ts>
    auto Then(Ts&&... aArgs) -> decltype(std::declval<PromiseType>().Then(
        std::forward<Ts>(aArgs)...)) {
      return static_cast<RefPtr<PromiseType>>(*this)->Then(
          std::forward<Ts>(aArgs)...);
    }

    template <typename... Ts>
    auto Map(Ts&&... aArgs) -> decltype(std::declval<PromiseType>().Map(
        std::forward<Ts>(aArgs)...)) {
      return static_cast<RefPtr<PromiseType>>(*this)->Map(
          std::forward<Ts>(aArgs)...);
    }

    template <typename... Ts>
    auto MapErr(Ts&&... aArgs) -> decltype(std::declval<PromiseType>().MapErr(
        std::forward<Ts>(aArgs)...)) {
      return static_cast<RefPtr<PromiseType>>(*this)->MapErr(
          std::forward<Ts>(aArgs)...);
    }

    void Track(MozPromiseRequestHolder<MozPromise>& aRequestHolder) {
      aRequestHolder.Track(do_AddRef(mThenValue));
      mReceiver->ThenInternal(mThenValue.forget(), mCallSite);
    }

    // Allow calling ->Then() again for more promise chaining or ->Track() to
    // end chaining and track the request for future disconnection.
    ThenCommand* operator->() { return this; }

   private:
    const char* mCallSite;
    RefPtr<ThenValueType> mThenValue;
    RefPtr<MozPromise> mReceiver;
  };

 public:
  template <typename ThisType, typename... Methods,
            typename ThenValueType = ThenValue<ThisType*, Methods...>,
            typename ReturnType = ThenCommand<ThenValueType>>
  ReturnType Then(nsISerialEventTarget* aResponseTarget, const char* aCallSite,
                  ThisType* aThisVal, Methods... aMethods) {
    RefPtr<ThenValueType> thenValue =
        new ThenValueType(aResponseTarget, aThisVal, aMethods..., aCallSite);
    return ReturnType(aCallSite, thenValue.forget(), this);
  }

  template <typename... Functions,
            typename ThenValueType = ThenValue<Functions...>,
            typename ReturnType = ThenCommand<ThenValueType>>
  ReturnType Then(nsISerialEventTarget* aResponseTarget, const char* aCallSite,
                  Functions&&... aFunctions) {
    RefPtr<ThenValueType> thenValue =
        new ThenValueType(aResponseTarget, std::move(aFunctions)..., aCallSite);
    return ReturnType(aCallSite, thenValue.forget(), this);
  }

  // Shorthand for a `Then` which simply forwards the reject-value, but performs
  // some additional work with the resolve-value.
  template <typename Function>
  auto Map(nsISerialEventTarget* aResponseTarget, const char* aCallSite,
           Function&& function) {
    RefPtr<MapValue<Function>> thenValue = new MapValue<Function>(
        aResponseTarget, std::forward<Function>(function), aCallSite);
    return ThenCommand<MapValue<Function>>(aCallSite, thenValue.forget(), this);
  }

  // Shorthand for a `Then` which simply forwards the resolve-value, but
  // performs some additional work with the reject-value.
  template <typename Function>
  auto MapErr(nsISerialEventTarget* aResponseTarget, const char* aCallSite,
              Function&& function) {
    RefPtr<MapErrValue<Function>> thenValue = new MapErrValue<Function>(
        aResponseTarget, std::forward<Function>(function), aCallSite);
    return ThenCommand<MapErrValue<Function>>(aCallSite, thenValue.forget(),
                                              this);
  }

  void ChainTo(already_AddRefed<Private> aChainedPromise,
               const char* aCallSite) {
    MutexAutoLock lock(mMutex);
    MOZ_DIAGNOSTIC_ASSERT(
        !IsExclusive || !mHaveRequest,
        "Using an exclusive promise in a non-exclusive fashion");
    mHaveRequest = true;
    RefPtr<Private> chainedPromise = aChainedPromise;
    PROMISE_LOG(
        "%s invoking Chain() [this=%p, chainedPromise=%p, isPending=%d]",
        aCallSite, this, chainedPromise.get(), (int)IsPending());

    // We want to use the same type of dispatching method with the chained
    // promises.

    // We need to ensure that the UseSynchronousTaskDispatch branch isn't taken
    // at compilation time to ensure we're not triggering the static_assert in
    // UseSynchronousTaskDispatch method. if constexpr (IsExclusive) ensures
    // that.
    if (mUseDirectTaskDispatch) {
      chainedPromise->UseDirectTaskDispatch(aCallSite);
    } else if constexpr (IsExclusive) {
      if (mUseSynchronousTaskDispatch) {
        chainedPromise->UseSynchronousTaskDispatch(aCallSite);
      }
    } else {
      chainedPromise->SetTaskPriority(mPriority, aCallSite);
    }

    if (!IsPending()) {
      ForwardTo(chainedPromise);
    } else {
      mChainedPromises.AppendElement(chainedPromise);
    }
  }

#ifdef MOZ_WIDGET_ANDROID
  // Creates a C++ MozPromise from its Java counterpart, GeckoResult.
  [[nodiscard]] static RefPtr<MozPromise> FromGeckoResult(
      java::GeckoResult::Param aGeckoResult) {
    using jni::GeckoResultCallback;
    RefPtr<Private> p = new Private("GeckoResult Glue", false);
    auto resolve = GeckoResultCallback::CreateAndAttach<ResolveValueType>(
        [p](ResolveValueType&& aArg) {
          p->Resolve(MaybeMove(aArg), __func__);
        });
    auto reject = GeckoResultCallback::CreateAndAttach<RejectValueType>(
        [p](RejectValueType&& aArg) { p->Reject(MaybeMove(aArg), __func__); });
    aGeckoResult->NativeThen(resolve, reject);
    return p;
  }
#endif

  // Note we expose the function AssertIsDead() instead of IsDead() since
  // checking IsDead() is a data race in the situation where the request is not
  // dead. Therefore we enforce the form |Assert(IsDead())| by exposing
  // AssertIsDead() only.
  void AssertIsDead() override {
    PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic &&
                   mMagic3 == sMagic && mMagic4 == &mMutex);
    MutexAutoLock lock(mMutex);
    for (auto&& then : mThenValues) {
      then->AssertIsDead();
    }
    for (auto&& chained : mChainedPromises) {
      chained->AssertIsDead();
    }
  }

  bool IsResolved() const { return mValue.IsResolve(); }

 protected:
  bool IsPending() const { return mValue.IsNothing(); }

  ResolveOrRejectValue& Value() {
    // This method should only be called once the value has stabilized. As
    // such, we don't need to acquire the lock here.
    MOZ_DIAGNOSTIC_ASSERT(!IsPending());
    return mValue;
  }

  void DispatchAll() {
    mMutex.AssertCurrentThreadOwns();
    for (auto&& thenValue : mThenValues) {
      thenValue->Dispatch(this);
    }
    mThenValues.Clear();

    for (auto&& chainedPromise : mChainedPromises) {
      ForwardTo(chainedPromise);
    }
    mChainedPromises.Clear();
  }

  void ForwardTo(Private* aOther) {
    MOZ_ASSERT(!IsPending());
    if (mValue.IsResolve()) {
      aOther->Resolve(MaybeMove(mValue.ResolveValue()), "<chained promise>");
    } else {
      aOther->Reject(MaybeMove(mValue.RejectValue()), "<chained promise>");
    }
  }

  virtual ~MozPromise() {
    PROMISE_LOG("MozPromise::~MozPromise [this=%p]", this);
    AssertIsDead();
    // We can't guarantee a completion promise will always be revolved or
    // rejected since ResolveOrRejectRunnable might not run when dispatch fails.
    if (!mIsCompletionPromise) {
      MOZ_ASSERT(!IsPending());
      MOZ_ASSERT(mThenValues.IsEmpty());
      MOZ_ASSERT(mChainedPromises.IsEmpty());
    }
#ifdef PROMISE_DEBUG
    mMagic1 = 0;
    mMagic2 = 0;
    mMagic3 = 0;
    mMagic4 = nullptr;
#endif
  };

  const char* mCreationSite;  // For logging
  Mutex mMutex MOZ_UNANNOTATED;
  ResolveOrRejectValue mValue;
  bool mUseSynchronousTaskDispatch = false;
  bool mUseDirectTaskDispatch = false;
  uint32_t mPriority = nsIRunnablePriority::PRIORITY_NORMAL;
#ifdef PROMISE_DEBUG
  uint32_t mMagic1 = sMagic;
#endif
  // Try shows we never have more than 3 elements when IsExclusive is false.
  // So '3' is a good value to avoid heap allocation in most cases.
  AutoTArray<RefPtr<ThenValueBase>, IsExclusive ? 1 : 3> mThenValues;
#ifdef PROMISE_DEBUG
  uint32_t mMagic2 = sMagic;
#endif
  nsTArray<RefPtr<Private>> mChainedPromises;
#ifdef PROMISE_DEBUG
  uint32_t mMagic3 = sMagic;
#endif
  bool mHaveRequest;
  const bool mIsCompletionPromise;
#ifdef PROMISE_DEBUG
  void* mMagic4;
#endif
};

template <typename ResolveValueT, typename RejectValueT, bool IsExclusive>
class MozPromise<ResolveValueT, RejectValueT, IsExclusive>::Private
    : public MozPromise<ResolveValueT, RejectValueT, IsExclusive> {
 public:
  explicit Private(const char* aCreationSite, bool aIsCompletionPromise = false)
      : MozPromise(aCreationSite, aIsCompletionPromise) {}

  template <typename ResolveValueT_>
  void Resolve(ResolveValueT_&& aResolveValue, const char* aResolveSite) {
    PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic &&
                   mMagic3 == sMagic && mMagic4 == &mMutex);
    MutexAutoLock lock(mMutex);
    PROMISE_LOG("%s resolving MozPromise (%p created at %s)", aResolveSite,
                this, mCreationSite);
    if (!IsPending()) {
      PROMISE_LOG(
          "%s ignored already resolved or rejected MozPromise (%p created at "
          "%s)",
          aResolveSite, this, mCreationSite);
      return;
    }
    mValue.SetResolve(std::forward<ResolveValueT_>(aResolveValue));
    DispatchAll();
  }

  template <typename RejectValueT_>
  void Reject(RejectValueT_&& aRejectValue, const char* aRejectSite) {
    PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic &&
                   mMagic3 == sMagic && mMagic4 == &mMutex);
    MutexAutoLock lock(mMutex);
    PROMISE_LOG("%s rejecting MozPromise (%p created at %s)", aRejectSite, this,
                mCreationSite);
    if (!IsPending()) {
      PROMISE_LOG(
          "%s ignored already resolved or rejected MozPromise (%p created at "
          "%s)",
          aRejectSite, this, mCreationSite);
      return;
    }
    mValue.SetReject(std::forward<RejectValueT_>(aRejectValue));
    DispatchAll();
  }

  template <typename ResolveOrRejectValue_>
  void ResolveOrReject(ResolveOrRejectValue_&& aValue, const char* aSite) {
    PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic &&
                   mMagic3 == sMagic && mMagic4 == &mMutex);
    MutexAutoLock lock(mMutex);
    PROMISE_LOG("%s resolveOrRejecting MozPromise (%p created at %s)", aSite,
                this, mCreationSite);
    if (!IsPending()) {
      PROMISE_LOG(
          "%s ignored already resolved or rejected MozPromise (%p created at "
          "%s)",
          aSite, this, mCreationSite);
      return;
    }
    mValue = std::forward<ResolveOrRejectValue_>(aValue);
    DispatchAll();
  }

  // If the caller and target are both on the same thread, run the the resolve
  // or reject callback synchronously. Otherwise, the task will be dispatched
  // via the target Dispatch method.
  void UseSynchronousTaskDispatch(const char* aSite) {
    static_assert(
        IsExclusive,
        "Synchronous dispatch can only be used with exclusive promises");
    PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic &&
                   mMagic3 == sMagic && mMagic4 == &mMutex);
    MutexAutoLock lock(mMutex);
    PROMISE_LOG("%s UseSynchronousTaskDispatch MozPromise (%p created at %s)",
                aSite, this, mCreationSite);
    MOZ_ASSERT(IsPending(),
               "A Promise must not have been already resolved or rejected to "
               "set dispatch state");
    mUseSynchronousTaskDispatch = true;
  }

  // If the caller and target are both on the same thread, run the
  // resolve/reject callback off the direct task queue instead. This avoids a
  // full trip to the back of the event queue for each additional asynchronous
  // step when using MozPromise, and is similar (but not identical to) the
  // microtask semantics of JS promises.
  void UseDirectTaskDispatch(const char* aSite) {
    PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic &&
                   mMagic3 == sMagic && mMagic4 == &mMutex);
    MutexAutoLock lock(mMutex);
    PROMISE_LOG("%s UseDirectTaskDispatch MozPromise (%p created at %s)", aSite,
                this, mCreationSite);
    MOZ_ASSERT(IsPending(),
               "A Promise must not have been already resolved or rejected to "
               "set dispatch state");
    MOZ_ASSERT(!mUseSynchronousTaskDispatch,
               "Promise already set for synchronous dispatch");
    mUseDirectTaskDispatch = true;
  }

  // If the resolve/reject will be handled on a thread supporting priorities,
  // one may want to tweak the priority of the task by passing a
  // nsIRunnablePriority::PRIORITY_* to SetTaskPriority.
  void SetTaskPriority(uint32_t aPriority, const char* aSite) {
    PROMISE_ASSERT(mMagic1 == sMagic && mMagic2 == sMagic &&
                   mMagic3 == sMagic && mMagic4 == &mMutex);
    MutexAutoLock lock(mMutex);
    PROMISE_LOG("%s TaskPriority MozPromise (%p created at %s)", aSite, this,
                mCreationSite);
    MOZ_ASSERT(IsPending(),
               "A Promise must not have been already resolved or rejected to "
               "set dispatch state");
    MOZ_ASSERT(!mUseSynchronousTaskDispatch,
               "Promise already set for synchronous dispatch");
    MOZ_ASSERT(!mUseDirectTaskDispatch,
               "Promise already set for direct dispatch");
    mPriority = aPriority;
  }
};

// A generic promise type that does the trick for simple use cases.
//
// Vaguely deprecated: prefer explicitly naming the resolve- and reject-type.
// Additionally, prefer `mozilla::Ok` as the resolve-type if the boolean's value
// is irrelevant.
using GenericPromise = MozPromise<bool, nsresult, /* IsExclusive = */ true>;

// A generic, non-exclusive promise type that does the trick for simple use
// cases.
//
// Vaguely deprecated, as above.
using GenericNonExclusivePromise =
    MozPromise<bool, nsresult, /* IsExclusive = */ false>;

/*
 * Class to encapsulate a promise for a particular role. Use this as the member
 * variable for a class whose method returns a promise.
 */
template <typename PromiseType, typename ImplType>
class MozPromiseHolderBase {
 public:
  MozPromiseHolderBase() = default;

  MozPromiseHolderBase(MozPromiseHolderBase&& aOther) noexcept = default;
  MozPromiseHolderBase& operator=(MozPromiseHolderBase&& aOther) noexcept =
      default;

  ~MozPromiseHolderBase() { MOZ_ASSERT(!mPromise); }

  already_AddRefed<PromiseType> Ensure(const char* aMethodName) {
    static_cast<ImplType*>(this)->Check();
    if (!mPromise) {
      mPromise = new (typename PromiseType::Private)(aMethodName);
    }
    RefPtr<PromiseType> p = mPromise.get();
    return p.forget();
  }

  bool IsEmpty() const {
    static_cast<const ImplType*>(this)->Check();
    return !mPromise;
  }

  already_AddRefed<typename PromiseType::Private> Steal() {
    static_cast<ImplType*>(this)->Check();
    return mPromise.forget();
  }

  template <typename ResolveValueType_>
  void Resolve(ResolveValueType_&& aResolveValue, const char* aMethodName) {
    static_assert(std::is_convertible_v<ResolveValueType_,
                                        typename PromiseType::ResolveValueType>,
                  "Resolve() argument must be implicitly convertible to "
                  "MozPromise's ResolveValueT");

    static_cast<ImplType*>(this)->Check();
    MOZ_ASSERT(mPromise);
    mPromise->Resolve(std::forward<ResolveValueType_>(aResolveValue),
                      aMethodName);
    mPromise = nullptr;
  }

  template <typename ResolveValueType_>
  void ResolveIfExists(ResolveValueType_&& aResolveValue,
                       const char* aMethodName) {
    if (!IsEmpty()) {
      Resolve(std::forward<ResolveValueType_>(aResolveValue), aMethodName);
    }
  }

  template <typename RejectValueType_>
  void Reject(RejectValueType_&& aRejectValue, const char* aMethodName) {
    static_assert(std::is_convertible_v<RejectValueType_,
                                        typename PromiseType::RejectValueType>,
                  "Reject() argument must be implicitly convertible to "
                  "MozPromise's RejectValueT");

    static_cast<ImplType*>(this)->Check();
    MOZ_ASSERT(mPromise);
    mPromise->Reject(std::forward<RejectValueType_>(aRejectValue), aMethodName);
    mPromise = nullptr;
  }

  template <typename RejectValueType_>
  void RejectIfExists(RejectValueType_&& aRejectValue,
                      const char* aMethodName) {
    if (!IsEmpty()) {
      Reject(std::forward<RejectValueType_>(aRejectValue), aMethodName);
    }
  }

  template <typename ResolveOrRejectValueType_>
  void ResolveOrReject(ResolveOrRejectValueType_&& aValue,
                       const char* aMethodName) {
    static_cast<ImplType*>(this)->Check();
    MOZ_ASSERT(mPromise);
    mPromise->ResolveOrReject(std::forward<ResolveOrRejectValueType_>(aValue),
                              aMethodName);
    mPromise = nullptr;
  }

  template <typename ResolveOrRejectValueType_>
  void ResolveOrRejectIfExists(ResolveOrRejectValueType_&& aValue,
                               const char* aMethodName) {
    if (!IsEmpty()) {
      ResolveOrReject(std::forward<ResolveOrRejectValueType_>(aValue),
                      aMethodName);
    }
  }

  void UseSynchronousTaskDispatch(const char* aSite) {
    MOZ_ASSERT(mPromise);
    mPromise->UseSynchronousTaskDispatch(aSite);
  }

  void UseDirectTaskDispatch(const char* aSite) {
    MOZ_ASSERT(mPromise);
    mPromise->UseDirectTaskDispatch(aSite);
  }

  void SetTaskPriority(uint32_t aPriority, const char* aSite) {
    MOZ_ASSERT(mPromise);
    mPromise->SetTaskPriority(aPriority, aSite);
  }

 private:
  RefPtr<typename PromiseType::Private> mPromise;
};

template <typename PromiseType>
class MozPromiseHolder
    : public MozPromiseHolderBase<PromiseType, MozPromiseHolder<PromiseType>> {
 public:
  using MozPromiseHolderBase<
      PromiseType, MozPromiseHolder<PromiseType>>::MozPromiseHolderBase;
  static constexpr void Check(){};
};

template <typename PromiseType>
class MozMonitoredPromiseHolder
    : public MozPromiseHolderBase<PromiseType,
                                  MozMonitoredPromiseHolder<PromiseType>> {
 public:
  // Provide a Monitor that should always be held when accessing this instance.
  explicit MozMonitoredPromiseHolder(Monitor* const aMonitor)
      : mMonitor(aMonitor) {
    MOZ_ASSERT(aMonitor);
  }

  MozMonitoredPromiseHolder(MozMonitoredPromiseHolder&& aOther) = delete;
  MozMonitoredPromiseHolder& operator=(MozMonitoredPromiseHolder&& aOther) =
      delete;

  void Check() const { mMonitor->AssertCurrentThreadOwns(); }

 private:
  Monitor* const mMonitor;
};

/*
 * Class to encapsulate a MozPromise::Request reference. Use this as the member
 * variable for a class waiting on a MozPromise.
 */
template <typename PromiseType>
class MozPromiseRequestHolder {
 public:
  MozPromiseRequestHolder() = default;
  ~MozPromiseRequestHolder() { MOZ_ASSERT(!mRequest); }

  void Track(already_AddRefed<typename PromiseType::Request> aRequest) {
    MOZ_DIAGNOSTIC_ASSERT(!Exists());
    mRequest = aRequest;
  }

  void Complete() {
    MOZ_DIAGNOSTIC_ASSERT(Exists());
    mRequest = nullptr;
  }

  // Disconnects and forgets an outstanding promise. The resolve/reject methods
  // will never be called.
  void Disconnect() {
    MOZ_ASSERT(Exists());
    RefPtr request = std::move(mRequest);
    request->Disconnect();
  }

  void DisconnectIfExists() {
    if (Exists()) {
      Disconnect();
    }
  }

  bool Exists() const { return !!mRequest; }

 private:
  RefPtr<typename PromiseType::Request> mRequest;
};

// Asynchronous Potentially-Cross-Thread Method Calls.
//
// This machinery allows callers to schedule a promise-returning function
// (a method and object, or a function object like a lambda) to be invoked
// asynchronously on a given thread, while at the same time receiving a
// promise upon which to invoke Then() immediately. InvokeAsync dispatches a
// task to invoke the function on the proper thread and also chain the
// resulting promise to the one that the caller received, so that resolve/
// reject values are forwarded through.

namespace detail {

// Non-templated base class to allow us to use MOZ_COUNT_{C,D}TOR, which cause
// assertions when used on templated types.
class MethodCallBase {
 public:
  MOZ_COUNTED_DEFAULT_CTOR(MethodCallBase)
  MOZ_COUNTED_DTOR_VIRTUAL(MethodCallBase)
};

template <typename PromiseType, typename MethodType, typename ThisType,
          typename... Storages>
class MethodCall : public MethodCallBase {
 public:
  template <typename... Args>
  MethodCall(MethodType aMethod, ThisType* aThisVal, Args&&... aArgs)
      : mMethod(aMethod),
        mThisVal(aThisVal),
        mArgs(std::forward<Args>(aArgs)...) {
    static_assert(sizeof...(Storages) == sizeof...(Args),
                  "Storages and Args should have equal sizes");
  }

  RefPtr<PromiseType> Invoke() { return mArgs.apply(mThisVal.get(), mMethod); }

 private:
  MethodType mMethod;
  RefPtr<ThisType> mThisVal;
  RunnableMethodArguments<Storages...> mArgs;
};

template <typename PromiseType, typename MethodType, typename ThisType,
          typename... Storages>
class ProxyRunnable : public CancelableRunnable {
 public:
  ProxyRunnable(
      typename PromiseType::Private* aProxyPromise,
      MethodCall<PromiseType, MethodType, ThisType, Storages...>* aMethodCall)
      : CancelableRunnable("detail::ProxyRunnable"),
        mProxyPromise(aProxyPromise),
        mMethodCall(aMethodCall) {}

  NS_IMETHOD Run() override {
    RefPtr<PromiseType> p = mMethodCall->Invoke();
    mMethodCall = nullptr;
    p->ChainTo(mProxyPromise.forget(), "<Proxy Promise>");
    return NS_OK;
  }

  nsresult Cancel() override { return Run(); }

 private:
  RefPtr<typename PromiseType::Private> mProxyPromise;
  UniquePtr<MethodCall<PromiseType, MethodType, ThisType, Storages...>>
      mMethodCall;
};

template <typename... Storages, typename PromiseType, typename ThisType,
          typename... ArgTypes, typename... ActualArgTypes>
static RefPtr<PromiseType> InvokeAsyncImpl(
    nsISerialEventTarget* aTarget, ThisType* aThisVal, const char* aCallerName,
    RefPtr<PromiseType> (ThisType::*aMethod)(ArgTypes...),
    ActualArgTypes&&... aArgs) {
  MOZ_ASSERT(aTarget);

  typedef RefPtr<PromiseType> (ThisType::*MethodType)(ArgTypes...);
  typedef detail::MethodCall<PromiseType, MethodType, ThisType, Storages...>
      MethodCallType;
  typedef detail::ProxyRunnable<PromiseType, MethodType, ThisType, Storages...>
      ProxyRunnableType;

  MethodCallType* methodCall = new MethodCallType(
      aMethod, aThisVal, std::forward<ActualArgTypes>(aArgs)...);
  RefPtr<typename PromiseType::Private> p =
      new (typename PromiseType::Private)(aCallerName);
  RefPtr<ProxyRunnableType> r = new ProxyRunnableType(p, methodCall);
  aTarget->Dispatch(r.forget());
  return p;
}

constexpr bool Any() { return false; }

template <typename T1>
constexpr bool Any(T1 a) {
  return static_cast<bool>(a);
}

template <typename T1, typename... Ts>
constexpr bool Any(T1 a, Ts... aOthers) {
  return a || Any(aOthers...);
}

}  // namespace detail

// InvokeAsync with explicitly-specified storages.
// See ParameterStorage in nsThreadUtils.h for help.
template <typename... Storages, typename PromiseType, typename ThisType,
          typename... ArgTypes, typename... ActualArgTypes,
          std::enable_if_t<sizeof...(Storages) != 0, int> = 0>
static RefPtr<PromiseType> InvokeAsync(
    nsISerialEventTarget* aTarget, ThisType* aThisVal, const char* aCallerName,
    RefPtr<PromiseType> (ThisType::*aMethod)(ArgTypes...),
    ActualArgTypes&&... aArgs) {
  static_assert(
      sizeof...(Storages) == sizeof...(ArgTypes),
      "Provided Storages and method's ArgTypes should have equal sizes");
  static_assert(sizeof...(Storages) == sizeof...(ActualArgTypes),
                "Provided Storages and ActualArgTypes should have equal sizes");
  return detail::InvokeAsyncImpl<Storages...>(
      aTarget, aThisVal, aCallerName, aMethod,
      std::forward<ActualArgTypes>(aArgs)...);
}

// InvokeAsync with no explicitly-specified storages, will copy arguments and
// then move them out of the runnable into the target method parameters.
template <typename... Storages, typename PromiseType, typename ThisType,
          typename... ArgTypes, typename... ActualArgTypes,
          std::enable_if_t<sizeof...(Storages) == 0, int> = 0>
static RefPtr<PromiseType> InvokeAsync(
    nsISerialEventTarget* aTarget, ThisType* aThisVal, const char* aCallerName,
    RefPtr<PromiseType> (ThisType::*aMethod)(ArgTypes...),
    ActualArgTypes&&... aArgs) {
  static_assert(
      !detail::Any(
          std::is_pointer_v<std::remove_reference_t<ActualArgTypes>>...),
      "Cannot pass pointer types through InvokeAsync, Storages must be "
      "provided");
  static_assert(sizeof...(ArgTypes) == sizeof...(ActualArgTypes),
                "Method's ArgTypes and ActualArgTypes should have equal sizes");
  return detail::InvokeAsyncImpl<
      StoreCopyPassByRRef<std::decay_t<ActualArgTypes>>...>(
      aTarget, aThisVal, aCallerName, aMethod,
      std::forward<ActualArgTypes>(aArgs)...);
}

namespace detail {

template <typename Function, typename PromiseType>
class ProxyFunctionRunnable : public CancelableRunnable {
  using FunctionStorage = std::decay_t<Function>;

 public:
  template <typename F>
  ProxyFunctionRunnable(typename PromiseType::Private* aProxyPromise,
                        F&& aFunction)
      : CancelableRunnable("detail::ProxyFunctionRunnable"),
        mProxyPromise(aProxyPromise),
        mFunction(new FunctionStorage(std::forward<F>(aFunction))) {}

  NS_IMETHOD Run() override {
    RefPtr<PromiseType> p = (*mFunction)();
    mFunction = nullptr;
    p->ChainTo(mProxyPromise.forget(), "<Proxy Promise>");
    return NS_OK;
  }

  nsresult Cancel() override { return Run(); }

 private:
  RefPtr<typename PromiseType::Private> mProxyPromise;
  UniquePtr<FunctionStorage> mFunction;
};

template <typename T>
constexpr static bool IsRefPtrMozPromise = false;
template <typename T, typename U, bool B>
constexpr static bool IsRefPtrMozPromise<RefPtr<MozPromise<T, U, B>>> = true;

}  // namespace detail

// Invoke a function object (e.g., lambda) asynchronously.
// Return a promise that the function should eventually resolve or reject.
template <typename Function>
static auto InvokeAsync(nsISerialEventTarget* aTarget, const char* aCallerName,
                        Function&& aFunction) -> decltype(aFunction()) {
  static_assert(!std::is_lvalue_reference_v<Function>,
                "Function object must not be passed by lvalue-ref (to avoid "
                "unplanned copies); Consider move()ing the object.");

  static_assert(detail::IsRefPtrMozPromise<decltype(aFunction())>,
                "Function object must return RefPtr<MozPromise>");
  MOZ_ASSERT(aTarget);
  typedef RemoveSmartPointer<decltype(aFunction())> PromiseType;
  typedef detail::ProxyFunctionRunnable<Function, PromiseType>
      ProxyRunnableType;

  auto p = MakeRefPtr<typename PromiseType::Private>(aCallerName);
  auto r = MakeRefPtr<ProxyRunnableType>(p, std::forward<Function>(aFunction));
  aTarget->Dispatch(r.forget());
  return p;
}

#undef PROMISE_LOG
#undef PROMISE_ASSERT
#undef PROMISE_DEBUG

}  // namespace mozilla

#endif