summaryrefslogtreecommitdiffstats
path: root/xpcom/threads/Queue.h
blob: fa36433fdfeb7c692a0a7c52a02456e6ff94f29d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_Queue_h
#define mozilla_Queue_h

#include <utility>
#include <stdint.h>
#include "mozilla/MemoryReporting.h"
#include "mozilla/Assertions.h"
#include "mozalloc.h"

namespace mozilla {

// define to turn on additional (DEBUG) asserts
// #define EXTRA_ASSERTS 1

// A queue implements a singly linked list of pages, each of which contains some
// number of elements. Since the queue needs to store a "next" pointer, the
// actual number of elements per page won't be quite as many as were requested.
//
// Each page consists of N entries.  We use the head buffer as a circular buffer
// if it's the only buffer; if we have more than one buffer when the head is
// empty we release it.  This avoids occasional freeing and reallocating buffers
// every N entries.  We'll still allocate and free every N if the normal queue
// depth is greated than N.  A fancier solution would be to move an empty Head
// buffer to be an empty tail buffer, freeing if we have multiple empty tails,
// but that probably isn't worth it.
//
// Cases:
//   a) single buffer, circular
//      Push: if not full:
//              Add to tail, bump tail and reset to 0 if at end
//            full:
//              Add new page, insert there and set tail to 1
//      Pop:
//            take entry and bump head, reset to 0 if at end
//   b) multiple buffers:
//      Push: if not full:
//              Add to tail, bump tail
//            full:
//              Add new page, insert there and set tail to 1
//      Pop:
//            take entry and bump head, reset to 0 if at end
//            if buffer is empty, free head buffer and promote next to head
//
template <class T, size_t RequestedItemsPerPage = 256>
class Queue {
 public:
  Queue() = default;

  Queue(Queue&& aOther) noexcept
      : mHead(std::exchange(aOther.mHead, nullptr)),
        mTail(std::exchange(aOther.mTail, nullptr)),
        mOffsetHead(std::exchange(aOther.mOffsetHead, 0)),
        mHeadLength(std::exchange(aOther.mHeadLength, 0)),
        mTailLength(std::exchange(aOther.mTailLength, 0)) {}

  Queue& operator=(Queue&& aOther) noexcept {
    Clear();

    mHead = std::exchange(aOther.mHead, nullptr);
    mTail = std::exchange(aOther.mTail, nullptr);
    mOffsetHead = std::exchange(aOther.mOffsetHead, 0);
    mHeadLength = std::exchange(aOther.mHeadLength, 0);
    mTailLength = std::exchange(aOther.mTailLength, 0);
    return *this;
  }

  ~Queue() { Clear(); }

  // Discard all elements form the queue, clearing it to be empty.
  void Clear() {
    while (!IsEmpty()) {
      Pop();
    }
    if (mHead) {
      free(mHead);
      mHead = nullptr;
    }
  }

  T& Push(T&& aElement) {
#if defined(EXTRA_ASSERTS) && DEBUG
    size_t original_length = Count();
#endif
    if (!mHead) {
      mHead = NewPage();
      MOZ_ASSERT(mHead);

      mTail = mHead;
      T* eltPtr = &mTail->mEvents[0];
      new (eltPtr) T(std::move(aElement));
      mOffsetHead = 0;
      mHeadLength = 1;
#ifdef EXTRA_ASSERTS
      MOZ_ASSERT(Count() == original_length + 1);
#endif
      return *eltPtr;
    }
    if ((mHead == mTail && mHeadLength == ItemsPerPage) ||
        (mHead != mTail && mTailLength == ItemsPerPage)) {
      // either we have one (circular) buffer and it's full, or
      // we have multiple buffers and the last buffer is full
      Page* page = NewPage();
      MOZ_ASSERT(page);

      mTail->mNext = page;
      mTail = page;
      T* eltPtr = &page->mEvents[0];
      new (eltPtr) T(std::move(aElement));
      mTailLength = 1;
#ifdef EXTRA_ASSERTS
      MOZ_ASSERT(Count() == original_length + 1);
#endif
      return *eltPtr;
    }
    if (mHead == mTail) {
      // we have space in the (single) head buffer
      uint16_t offset = (mOffsetHead + mHeadLength++) % ItemsPerPage;
      T* eltPtr = &mTail->mEvents[offset];
      new (eltPtr) T(std::move(aElement));
#ifdef EXTRA_ASSERTS
      MOZ_ASSERT(Count() == original_length + 1);
#endif
      return *eltPtr;
    }
    // else we have space to insert into last buffer
    T* eltPtr = &mTail->mEvents[mTailLength++];
    new (eltPtr) T(std::move(aElement));
#ifdef EXTRA_ASSERTS
    MOZ_ASSERT(Count() == original_length + 1);
#endif
    return *eltPtr;
  }

  bool IsEmpty() const {
    return !mHead || (mHead == mTail && mHeadLength == 0);
  }

  T Pop() {
#if defined(EXTRA_ASSERTS) && DEBUG
    size_t original_length = Count();
#endif
    MOZ_ASSERT(!IsEmpty());

    T result = std::move(mHead->mEvents[mOffsetHead]);
    mHead->mEvents[mOffsetHead].~T();
    mOffsetHead = (mOffsetHead + 1) % ItemsPerPage;
    mHeadLength -= 1;

    // Check if mHead points to empty (circular) Page and we have more
    // pages
    if (mHead != mTail && mHeadLength == 0) {
      Page* dead = mHead;
      mHead = mHead->mNext;
      free(dead);
      mOffsetHead = 0;
      // if there are still >1 pages, the new head is full.
      if (mHead != mTail) {
        mHeadLength = ItemsPerPage;
      } else {
        mHeadLength = mTailLength;
        mTailLength = 0;
      }
    }

#ifdef EXTRA_ASSERTS
    MOZ_ASSERT(Count() == original_length - 1);
#endif
    return result;
  }

  T& FirstElement() {
    MOZ_ASSERT(!IsEmpty());
    return mHead->mEvents[mOffsetHead];
  }

  const T& FirstElement() const {
    MOZ_ASSERT(!IsEmpty());
    return mHead->mEvents[mOffsetHead];
  }

  T& LastElement() {
    MOZ_ASSERT(!IsEmpty());
    uint16_t offset =
        mHead == mTail ? mOffsetHead + mHeadLength - 1 : mTailLength - 1;
    return mTail->mEvents[offset];
  }

  const T& LastElement() const {
    MOZ_ASSERT(!IsEmpty());
    uint16_t offset =
        mHead == mTail ? mOffsetHead + mHeadLength - 1 : mTailLength - 1;
    return mTail->mEvents[offset];
  }

  size_t Count() const {
    // It is obvious count is 0 when the queue is empty.
    if (!mHead) {
      return 0;
    }

    // Compute full (intermediate) pages; Doesn't count first or last page
    int count = 0;
    // 1 buffer will have mHead == mTail; 2 will have mHead->mNext == mTail
    for (Page* page = mHead; page != mTail && page->mNext != mTail;
         page = page->mNext) {
      count += ItemsPerPage;
    }
    // add first and last page
    count += mHeadLength + mTailLength;
    MOZ_ASSERT(count >= 0);

    return count;
  }

  size_t ShallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
    size_t n = 0;
    if (mHead) {
      for (Page* page = mHead; page != mTail; page = page->mNext) {
        n += aMallocSizeOf(page);
      }
    }
    return n;
  }

  size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
    return aMallocSizeOf(this) + ShallowSizeOfExcludingThis(aMallocSizeOf);
  }

 private:
  static_assert(
      (RequestedItemsPerPage & (RequestedItemsPerPage - 1)) == 0,
      "RequestedItemsPerPage should be a power of two to avoid heap slop.");

  // Since a Page must also contain a "next" pointer, we use one of the items to
  // store this pointer. If sizeof(T) > sizeof(Page*), then some space will be
  // wasted. So be it.
  static const size_t ItemsPerPage = RequestedItemsPerPage - 1;

  // Page objects are linked together to form a simple deque.
  struct Page {
    struct Page* mNext;
    T mEvents[ItemsPerPage];
  };

  static Page* NewPage() {
    return static_cast<Page*>(moz_xcalloc(1, sizeof(Page)));
  }

  Page* mHead = nullptr;
  Page* mTail = nullptr;

  uint16_t mOffsetHead = 0;  // Read position in head page
  uint16_t mHeadLength = 0;  // Number of items in the head page
  uint16_t mTailLength = 0;  // Number of items in the tail page
};

}  // namespace mozilla

#endif  // mozilla_Queue_h