1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsTimerImpl.h"
#include "TimerThread.h"
#include "GeckoProfiler.h"
#include "nsThreadUtils.h"
#include "nsIObserverService.h"
#include "nsIPropertyBag2.h"
#include "mozilla/Services.h"
#include "mozilla/ChaosMode.h"
#include "mozilla/ArenaAllocator.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/OperatorNewExtensions.h"
#include "mozilla/StaticPrefs_timer.h"
#include "mozilla/glean/GleanMetrics.h"
#include <math.h>
using namespace mozilla;
#ifdef XP_WIN
// Include Windows header required for enabling high-precision timers.
# include <windows.h>
# include <mmsystem.h>
static constexpr UINT kTimerPeriodHiRes = 1;
static constexpr UINT kTimerPeriodLowRes = 16;
// Helper functions to determine what Windows timer resolution to target.
static constexpr UINT GetDesiredTimerPeriod(const bool aOnBatteryPower,
const bool aLowProcessPriority) {
const bool useLowResTimer = aOnBatteryPower || aLowProcessPriority;
return useLowResTimer ? kTimerPeriodLowRes : kTimerPeriodHiRes;
}
static_assert(GetDesiredTimerPeriod(true, false) == kTimerPeriodLowRes);
static_assert(GetDesiredTimerPeriod(false, true) == kTimerPeriodLowRes);
static_assert(GetDesiredTimerPeriod(true, true) == kTimerPeriodLowRes);
static_assert(GetDesiredTimerPeriod(false, false) == kTimerPeriodHiRes);
UINT TimerThread::ComputeDesiredTimerPeriod() const {
const bool lowPriorityProcess =
mCachedPriority.load(std::memory_order_relaxed) <
hal::PROCESS_PRIORITY_FOREGROUND;
// NOTE: Using short-circuiting here to avoid call to GetSystemPowerStatus()
// when we know that that result will not affect the final result. (As
// confirmed by the static_assert's above, onBatteryPower does not affect the
// result when the lowPriorityProcess is true.)
SYSTEM_POWER_STATUS status;
const bool onBatteryPower = !lowPriorityProcess &&
GetSystemPowerStatus(&status) &&
(status.ACLineStatus == 0);
return GetDesiredTimerPeriod(onBatteryPower, lowPriorityProcess);
}
#endif
// Uncomment the following line to enable runtime stats during development.
// #define TIMERS_RUNTIME_STATS
#ifdef TIMERS_RUNTIME_STATS
// This class gathers durations and displays some basic stats when destroyed.
// It is intended to be used as a static variable (see `AUTO_TIMERS_STATS`
// below), to display stats at the end of the program.
class StaticTimersStats {
public:
explicit StaticTimersStats(const char* aName) : mName(aName) {}
~StaticTimersStats() {
// Using unsigned long long for computations and printfs.
using ULL = unsigned long long;
ULL n = static_cast<ULL>(mCount);
if (n == 0) {
printf("[%d] Timers stats `%s`: (nothing)\n",
int(profiler_current_process_id().ToNumber()), mName);
} else if (ULL sumNs = static_cast<ULL>(mSumDurationsNs); sumNs == 0) {
printf("[%d] Timers stats `%s`: %llu\n",
int(profiler_current_process_id().ToNumber()), mName, n);
} else {
printf("[%d] Timers stats `%s`: %llu ns / %llu = %llu ns, max %llu ns\n",
int(profiler_current_process_id().ToNumber()), mName, sumNs, n,
sumNs / n, static_cast<ULL>(mLongestDurationNs));
}
}
void AddDurationFrom(TimeStamp aStart) {
// Duration between aStart and now, rounded to the nearest nanosecond.
DurationNs duration = static_cast<DurationNs>(
(TimeStamp::Now() - aStart).ToMicroseconds() * 1000 + 0.5);
mSumDurationsNs += duration;
++mCount;
// Update mLongestDurationNs if this one is longer.
for (;;) {
DurationNs longest = mLongestDurationNs;
if (MOZ_LIKELY(longest >= duration)) {
// This duration is not the longest, nothing to do.
break;
}
if (MOZ_LIKELY(mLongestDurationNs.compareExchange(longest, duration))) {
// Successfully updated `mLongestDurationNs` with the new value.
break;
}
// Otherwise someone else just updated `mLongestDurationNs`, we need to
// try again by looping.
}
}
void AddCount() {
MOZ_ASSERT(mSumDurationsNs == 0, "Don't mix counts and durations");
++mCount;
}
private:
using DurationNs = uint64_t;
using Count = uint32_t;
Atomic<DurationNs> mSumDurationsNs{0};
Atomic<DurationNs> mLongestDurationNs{0};
Atomic<Count> mCount{0};
const char* mName;
};
// RAII object that measures its scoped lifetime duration and reports it to a
// `StaticTimersStats`.
class MOZ_RAII AutoTimersStats {
public:
explicit AutoTimersStats(StaticTimersStats& aStats)
: mStats(aStats), mStart(TimeStamp::Now()) {}
~AutoTimersStats() { mStats.AddDurationFrom(mStart); }
private:
StaticTimersStats& mStats;
TimeStamp mStart;
};
// Macro that should be used to collect basic statistics from measurements of
// block durations, from where this macro is, until the end of its enclosing
// scope. The name is used in the static variable name and when displaying stats
// at the end of the program; Another location could use the same name but their
// stats will not be combined, so use different name if these locations should
// be distinguished.
# define AUTO_TIMERS_STATS(name) \
static ::StaticTimersStats sStat##name(#name); \
::AutoTimersStats autoStat##name(sStat##name);
// This macro only counts the number of times it's used, not durations.
// Don't mix with AUTO_TIMERS_STATS!
# define COUNT_TIMERS_STATS(name) \
static ::StaticTimersStats sStat##name(#name); \
sStat##name.AddCount();
#else // TIMERS_RUNTIME_STATS
# define AUTO_TIMERS_STATS(name)
# define COUNT_TIMERS_STATS(name)
#endif // TIMERS_RUNTIME_STATS else
NS_IMPL_ISUPPORTS_INHERITED(TimerThread, Runnable, nsIObserver)
TimerThread::TimerThread()
: Runnable("TimerThread"),
mInitialized(false),
mMonitor("TimerThread.mMonitor"),
mShutdown(false),
mWaiting(false),
mNotified(false),
mSleeping(false),
mAllowedEarlyFiringMicroseconds(0) {}
TimerThread::~TimerThread() {
mThread = nullptr;
NS_ASSERTION(mTimers.IsEmpty(), "Timers remain in TimerThread::~TimerThread");
#if TIMER_THREAD_STATISTICS
{
MonitorAutoLock lock(mMonitor);
PrintStatistics();
}
#endif
}
namespace {
class TimerObserverRunnable : public Runnable {
public:
explicit TimerObserverRunnable(nsIObserver* aObserver)
: mozilla::Runnable("TimerObserverRunnable"), mObserver(aObserver) {}
NS_DECL_NSIRUNNABLE
private:
nsCOMPtr<nsIObserver> mObserver;
};
NS_IMETHODIMP
TimerObserverRunnable::Run() {
nsCOMPtr<nsIObserverService> observerService =
mozilla::services::GetObserverService();
if (observerService) {
observerService->AddObserver(mObserver, "sleep_notification", false);
observerService->AddObserver(mObserver, "wake_notification", false);
observerService->AddObserver(mObserver, "suspend_process_notification",
false);
observerService->AddObserver(mObserver, "resume_process_notification",
false);
observerService->AddObserver(mObserver, "ipc:process-priority-changed",
false);
}
return NS_OK;
}
} // namespace
namespace {
// TimerEventAllocator is a thread-safe allocator used only for nsTimerEvents.
// It's needed to avoid contention over the default allocator lock when
// firing timer events (see bug 733277). The thread-safety is required because
// nsTimerEvent objects are allocated on the timer thread, and freed on another
// thread. Because TimerEventAllocator has its own lock, contention over that
// lock is limited to the allocation and deallocation of nsTimerEvent objects.
//
// Because this is layered over ArenaAllocator, it never shrinks -- even
// "freed" nsTimerEvents aren't truly freed, they're just put onto a free-list
// for later recycling. So the amount of memory consumed will always be equal
// to the high-water mark consumption. But nsTimerEvents are small and it's
// unusual to have more than a few hundred of them, so this shouldn't be a
// problem in practice.
class TimerEventAllocator {
private:
struct FreeEntry {
FreeEntry* mNext;
};
ArenaAllocator<4096> mPool MOZ_GUARDED_BY(mMonitor);
FreeEntry* mFirstFree MOZ_GUARDED_BY(mMonitor);
mozilla::Monitor mMonitor;
public:
TimerEventAllocator()
: mFirstFree(nullptr), mMonitor("TimerEventAllocator") {}
~TimerEventAllocator() = default;
void* Alloc(size_t aSize);
void Free(void* aPtr);
};
} // namespace
// This is a nsICancelableRunnable because we can dispatch it to Workers and
// those can be shut down at any time, and in these cases, Cancel() is called
// instead of Run().
class nsTimerEvent final : public CancelableRunnable {
public:
NS_IMETHOD Run() override;
nsresult Cancel() override {
mTimer->Cancel();
return NS_OK;
}
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
NS_IMETHOD GetName(nsACString& aName) override;
#endif
explicit nsTimerEvent(already_AddRefed<nsTimerImpl> aTimer,
ProfilerThreadId aTimerThreadId)
: mozilla::CancelableRunnable("nsTimerEvent"),
mTimer(aTimer),
mGeneration(mTimer->GetGeneration()),
mTimerThreadId(aTimerThreadId) {
// Note: We override operator new for this class, and the override is
// fallible!
sAllocatorUsers++;
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug) ||
profiler_thread_is_being_profiled_for_markers(mTimerThreadId)) {
mInitTime = TimeStamp::Now();
}
}
static void Init();
static void Shutdown();
static void DeleteAllocatorIfNeeded();
static void* operator new(size_t aSize) noexcept(true) {
return sAllocator->Alloc(aSize);
}
void operator delete(void* aPtr) {
sAllocator->Free(aPtr);
sAllocatorUsers--;
DeleteAllocatorIfNeeded();
}
already_AddRefed<nsTimerImpl> ForgetTimer() { return mTimer.forget(); }
private:
nsTimerEvent(const nsTimerEvent&) = delete;
nsTimerEvent& operator=(const nsTimerEvent&) = delete;
nsTimerEvent& operator=(const nsTimerEvent&&) = delete;
~nsTimerEvent() {
MOZ_ASSERT(!sCanDeleteAllocator || sAllocatorUsers > 0,
"This will result in us attempting to deallocate the "
"nsTimerEvent allocator twice");
}
TimeStamp mInitTime;
RefPtr<nsTimerImpl> mTimer;
const int32_t mGeneration;
ProfilerThreadId mTimerThreadId;
static TimerEventAllocator* sAllocator;
static Atomic<int32_t, SequentiallyConsistent> sAllocatorUsers;
static Atomic<bool, SequentiallyConsistent> sCanDeleteAllocator;
};
TimerEventAllocator* nsTimerEvent::sAllocator = nullptr;
Atomic<int32_t, SequentiallyConsistent> nsTimerEvent::sAllocatorUsers;
Atomic<bool, SequentiallyConsistent> nsTimerEvent::sCanDeleteAllocator;
namespace {
void* TimerEventAllocator::Alloc(size_t aSize) {
MOZ_ASSERT(aSize == sizeof(nsTimerEvent));
mozilla::MonitorAutoLock lock(mMonitor);
void* p;
if (mFirstFree) {
p = mFirstFree;
mFirstFree = mFirstFree->mNext;
} else {
p = mPool.Allocate(aSize, fallible);
}
return p;
}
void TimerEventAllocator::Free(void* aPtr) {
mozilla::MonitorAutoLock lock(mMonitor);
FreeEntry* entry = reinterpret_cast<FreeEntry*>(aPtr);
entry->mNext = mFirstFree;
mFirstFree = entry;
}
} // namespace
struct TimerMarker {
static constexpr Span<const char> MarkerTypeName() {
return MakeStringSpan("Timer");
}
static void StreamJSONMarkerData(baseprofiler::SpliceableJSONWriter& aWriter,
uint32_t aDelay, uint8_t aType,
MarkerThreadId aThreadId, bool aCanceled) {
aWriter.IntProperty("delay", aDelay);
if (!aThreadId.IsUnspecified()) {
// Tech note: If `ToNumber()` returns a uint64_t, the conversion to
// int64_t is "implementation-defined" before C++20. This is
// acceptable here, because this is a one-way conversion to a unique
// identifier that's used to visually separate data by thread on the
// front-end.
aWriter.IntProperty(
"threadId", static_cast<int64_t>(aThreadId.ThreadId().ToNumber()));
}
if (aCanceled) {
aWriter.BoolProperty("canceled", true);
// Show a red 'X' as a prefix on the marker chart for canceled timers.
aWriter.StringProperty("prefix", "❌");
}
// The string property for the timer type is not written when the type is
// one shot, as that's the type used almost all the time, and that would
// consume space in the profiler buffer and then in the profile JSON,
// getting in the way of capturing long power profiles.
// Bug 1815677 might make this cheap to capture.
if (aType != nsITimer::TYPE_ONE_SHOT) {
if (aType == nsITimer::TYPE_REPEATING_SLACK) {
aWriter.StringProperty("ttype", "repeating slack");
} else if (aType == nsITimer::TYPE_REPEATING_PRECISE) {
aWriter.StringProperty("ttype", "repeating precise");
} else if (aType == nsITimer::TYPE_REPEATING_PRECISE_CAN_SKIP) {
aWriter.StringProperty("ttype", "repeating precise can skip");
} else if (aType == nsITimer::TYPE_REPEATING_SLACK_LOW_PRIORITY) {
aWriter.StringProperty("ttype", "repeating slack low priority");
} else if (aType == nsITimer::TYPE_ONE_SHOT_LOW_PRIORITY) {
aWriter.StringProperty("ttype", "low priority");
}
}
}
static MarkerSchema MarkerTypeDisplay() {
using MS = MarkerSchema;
MS schema{MS::Location::MarkerChart, MS::Location::MarkerTable};
schema.AddKeyLabelFormat("delay", "Delay", MS::Format::Milliseconds);
schema.AddKeyLabelFormat("ttype", "Timer Type", MS::Format::String);
schema.AddKeyLabelFormat("canceled", "Canceled", MS::Format::String);
schema.SetChartLabel("{marker.data.prefix} {marker.data.delay}");
schema.SetTableLabel(
"{marker.name} - {marker.data.prefix} {marker.data.delay}");
return schema;
}
};
struct AddRemoveTimerMarker {
static constexpr Span<const char> MarkerTypeName() {
return MakeStringSpan("AddRemoveTimer");
}
static void StreamJSONMarkerData(baseprofiler::SpliceableJSONWriter& aWriter,
const ProfilerString8View& aTimerName,
uint32_t aDelay, MarkerThreadId aThreadId) {
aWriter.StringProperty("name", aTimerName);
aWriter.IntProperty("delay", aDelay);
if (!aThreadId.IsUnspecified()) {
// Tech note: If `ToNumber()` returns a uint64_t, the conversion to
// int64_t is "implementation-defined" before C++20. This is
// acceptable here, because this is a one-way conversion to a unique
// identifier that's used to visually separate data by thread on the
// front-end.
aWriter.IntProperty(
"threadId", static_cast<int64_t>(aThreadId.ThreadId().ToNumber()));
}
}
static MarkerSchema MarkerTypeDisplay() {
using MS = MarkerSchema;
MS schema{MS::Location::MarkerChart, MS::Location::MarkerTable};
schema.AddKeyLabelFormatSearchable("name", "Name", MS::Format::String,
MS::Searchable::Searchable);
schema.AddKeyLabelFormat("delay", "Delay", MS::Format::Milliseconds);
schema.SetTableLabel(
"{marker.name} - {marker.data.name} - {marker.data.delay}");
return schema;
}
};
void nsTimerEvent::Init() { sAllocator = new TimerEventAllocator(); }
void nsTimerEvent::Shutdown() {
sCanDeleteAllocator = true;
DeleteAllocatorIfNeeded();
}
void nsTimerEvent::DeleteAllocatorIfNeeded() {
if (sCanDeleteAllocator && sAllocatorUsers == 0) {
delete sAllocator;
sAllocator = nullptr;
}
}
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
NS_IMETHODIMP
nsTimerEvent::GetName(nsACString& aName) {
bool current;
MOZ_RELEASE_ASSERT(
NS_SUCCEEDED(mTimer->mEventTarget->IsOnCurrentThread(¤t)) &&
current);
mTimer->GetName(aName);
return NS_OK;
}
#endif
NS_IMETHODIMP
nsTimerEvent::Run() {
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
TimeStamp now = TimeStamp::Now();
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("[this=%p] time between PostTimerEvent() and Fire(): %fms\n", this,
(now - mInitTime).ToMilliseconds()));
}
if (profiler_thread_is_being_profiled_for_markers(mTimerThreadId)) {
MutexAutoLock lock(mTimer->mMutex);
nsAutoCString name;
mTimer->GetName(name, lock);
// This adds a marker with the timer name as the marker name, to make it
// obvious which timers are being used. This marker will be useful to
// understand which timers might be added and firing excessively often.
profiler_add_marker(
name, geckoprofiler::category::TIMER,
MarkerOptions(MOZ_LIKELY(mInitTime)
? MarkerTiming::Interval(
mTimer->mTimeout - mTimer->mDelay, mInitTime)
: MarkerTiming::IntervalUntilNowFrom(
mTimer->mTimeout - mTimer->mDelay),
MarkerThreadId(mTimerThreadId)),
TimerMarker{}, mTimer->mDelay.ToMilliseconds(), mTimer->mType,
MarkerThreadId::CurrentThread(), false);
// This marker is meant to help understand the behavior of the timer thread.
profiler_add_marker(
"PostTimerEvent", geckoprofiler::category::OTHER,
MarkerOptions(MOZ_LIKELY(mInitTime)
? MarkerTiming::IntervalUntilNowFrom(mInitTime)
: MarkerTiming::InstantNow(),
MarkerThreadId(mTimerThreadId)),
AddRemoveTimerMarker{}, name, mTimer->mDelay.ToMilliseconds(),
MarkerThreadId::CurrentThread());
}
mTimer->Fire(mGeneration);
return NS_OK;
}
nsresult TimerThread::Init() {
mMonitor.AssertCurrentThreadOwns();
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("TimerThread::Init [%d]\n", mInitialized));
if (!mInitialized) {
nsTimerEvent::Init();
// We hold on to mThread to keep the thread alive.
nsresult rv =
NS_NewNamedThread("Timer", getter_AddRefs(mThread), this,
{.stackSize = nsIThreadManager::DEFAULT_STACK_SIZE,
.blockDispatch = true});
if (NS_FAILED(rv)) {
mThread = nullptr;
} else {
RefPtr<TimerObserverRunnable> r = new TimerObserverRunnable(this);
if (NS_IsMainThread()) {
r->Run();
} else {
NS_DispatchToMainThread(r);
}
}
mInitialized = true;
}
if (!mThread) {
return NS_ERROR_FAILURE;
}
return NS_OK;
}
nsresult TimerThread::Shutdown() {
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown begin\n"));
if (!mThread) {
return NS_ERROR_NOT_INITIALIZED;
}
nsTArray<RefPtr<nsTimerImpl>> timers;
{
// lock scope
MonitorAutoLock lock(mMonitor);
mShutdown = true;
// notify the cond var so that Run() can return
if (mWaiting) {
mNotified = true;
mMonitor.Notify();
}
// Need to copy content of mTimers array to a local array
// because call to timers' Cancel() (and release its self)
// must not be done under the lock. Destructor of a callback
// might potentially call some code reentering the same lock
// that leads to unexpected behavior or deadlock.
// See bug 422472.
timers.SetCapacity(mTimers.Length());
for (Entry& entry : mTimers) {
if (entry.Value()) {
timers.AppendElement(entry.Take());
}
}
mTimers.Clear();
}
for (const RefPtr<nsTimerImpl>& timer : timers) {
MOZ_ASSERT(timer);
timer->Cancel();
}
mThread->Shutdown(); // wait for the thread to die
nsTimerEvent::Shutdown();
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown end\n"));
return NS_OK;
}
namespace {
struct MicrosecondsToInterval {
PRIntervalTime operator[](size_t aMs) const {
return PR_MicrosecondsToInterval(aMs);
}
};
struct IntervalComparator {
int operator()(PRIntervalTime aInterval) const {
return (0 < aInterval) ? -1 : 1;
}
};
} // namespace
#ifdef DEBUG
void TimerThread::VerifyTimerListConsistency() const {
mMonitor.AssertCurrentThreadOwns();
// Find the first non-canceled timer (and check its cached timeout if we find
// it).
const size_t timerCount = mTimers.Length();
size_t lastNonCanceledTimerIndex = 0;
while (lastNonCanceledTimerIndex < timerCount &&
!mTimers[lastNonCanceledTimerIndex].Value()) {
++lastNonCanceledTimerIndex;
}
MOZ_ASSERT(lastNonCanceledTimerIndex == timerCount ||
mTimers[lastNonCanceledTimerIndex].Value());
MOZ_ASSERT(lastNonCanceledTimerIndex == timerCount ||
mTimers[lastNonCanceledTimerIndex].Value()->mTimeout ==
mTimers[lastNonCanceledTimerIndex].Timeout());
// Verify that mTimers is sorted and the cached timeouts are consistent.
for (size_t timerIndex = lastNonCanceledTimerIndex + 1;
timerIndex < timerCount; ++timerIndex) {
if (mTimers[timerIndex].Value()) {
MOZ_ASSERT(mTimers[timerIndex].Timeout() ==
mTimers[timerIndex].Value()->mTimeout);
MOZ_ASSERT(mTimers[timerIndex].Timeout() >=
mTimers[lastNonCanceledTimerIndex].Timeout());
lastNonCanceledTimerIndex = timerIndex;
}
}
}
#endif
size_t TimerThread::ComputeTimerInsertionIndex(const TimeStamp& timeout) const {
mMonitor.AssertCurrentThreadOwns();
const size_t timerCount = mTimers.Length();
size_t firstGtIndex = 0;
while (firstGtIndex < timerCount &&
(!mTimers[firstGtIndex].Value() ||
mTimers[firstGtIndex].Timeout() <= timeout)) {
++firstGtIndex;
}
return firstGtIndex;
}
TimeStamp TimerThread::ComputeWakeupTimeFromTimers() const {
mMonitor.AssertCurrentThreadOwns();
// Timer list should be non-empty and first timer should always be
// non-canceled at this point and we rely on that here.
MOZ_ASSERT(!mTimers.IsEmpty());
MOZ_ASSERT(mTimers[0].Value());
// Overview: Find the last timer in the list that can be "bundled" together in
// the same wake-up with mTimers[0] and use its timeout as our target wake-up
// time.
// bundleWakeup is when we should wake up in order to be able to fire all of
// the timers in our selected bundle. It will always be the timeout of the
// last timer in the bundle.
TimeStamp bundleWakeup = mTimers[0].Timeout();
// cutoffTime is the latest that we can wake up for the timers currently
// accepted into the bundle. These needs to be updated as we go through the
// list because later timers may have more strict delay tolerances.
const TimeDuration minTimerDelay = TimeDuration::FromMilliseconds(
StaticPrefs::timer_minimum_firing_delay_tolerance_ms());
const TimeDuration maxTimerDelay = TimeDuration::FromMilliseconds(
StaticPrefs::timer_maximum_firing_delay_tolerance_ms());
TimeStamp cutoffTime =
bundleWakeup + ComputeAcceptableFiringDelay(mTimers[0].Delay(),
minTimerDelay, maxTimerDelay);
const size_t timerCount = mTimers.Length();
for (size_t entryIndex = 1; entryIndex < timerCount; ++entryIndex) {
const Entry& curEntry = mTimers[entryIndex];
const nsTimerImpl* curTimer = curEntry.Value();
if (!curTimer) {
// Canceled timer - skip it
continue;
}
const TimeStamp curTimerDue = curEntry.Timeout();
if (curTimerDue > cutoffTime) {
// Can't include this timer in the bundle - it fires too late.
break;
}
// This timer can be included in the bundle. Update bundleWakeup and
// cutoffTime.
bundleWakeup = curTimerDue;
cutoffTime = std::min(
curTimerDue + ComputeAcceptableFiringDelay(
curEntry.Delay(), minTimerDelay, maxTimerDelay),
cutoffTime);
MOZ_ASSERT(bundleWakeup <= cutoffTime);
}
#if !defined(XP_WIN)
// Due to the fact that, on Windows, each TimeStamp object holds two distinct
// "values", this assert is not valid there. See bug 1829983 for the details.
MOZ_ASSERT(bundleWakeup - mTimers[0].Timeout() <=
ComputeAcceptableFiringDelay(mTimers[0].Delay(), minTimerDelay,
maxTimerDelay));
#endif
return bundleWakeup;
}
TimeDuration TimerThread::ComputeAcceptableFiringDelay(
TimeDuration timerDuration, TimeDuration minDelay,
TimeDuration maxDelay) const {
// Use the timer's duration divided by this value as a base for how much
// firing delay a timer can accept. 8 was chosen specifically because it is a
// power of two which means that this division turns nicely into a shift.
constexpr int64_t timerDurationDivider = 8;
static_assert(IsPowerOfTwo(static_cast<uint64_t>(timerDurationDivider)));
const TimeDuration tmp = timerDuration / timerDurationDivider;
return std::min(std::max(minDelay, tmp), maxDelay);
}
NS_IMETHODIMP
TimerThread::Run() {
MonitorAutoLock lock(mMonitor);
mProfilerThreadId = profiler_current_thread_id();
// TODO: Make mAllowedEarlyFiringMicroseconds const and initialize it in the
// constructor.
mAllowedEarlyFiringMicroseconds = 250;
const TimeDuration allowedEarlyFiring =
TimeDuration::FromMicroseconds(mAllowedEarlyFiringMicroseconds);
bool forceRunNextTimer = false;
// Queue for tracking of how many timers are fired on each wake-up. We need to
// buffer these locally and only send off to glean occasionally to avoid
// performance hit.
static constexpr size_t kMaxQueuedTimerFired = 128;
size_t queuedTimerFiredCount = 0;
AutoTArray<uint64_t, kMaxQueuedTimerFired> queuedTimersFiredPerWakeup;
queuedTimersFiredPerWakeup.SetLengthAndRetainStorage(kMaxQueuedTimerFired);
#ifdef XP_WIN
// kTimerPeriodEvalIntervalSec is the minimum amount of time that must pass
// before we will consider changing the timer period again.
static constexpr float kTimerPeriodEvalIntervalSec = 2.0f;
const TimeDuration timerPeriodEvalInterval =
TimeDuration::FromSeconds(kTimerPeriodEvalIntervalSec);
TimeStamp nextTimerPeriodEval = TimeStamp::Now() + timerPeriodEvalInterval;
// If this is false, we will perform all of the logic but will stop short of
// actually changing the timer period.
const bool adjustTimerPeriod =
StaticPrefs::timer_auto_increase_timer_resolution();
UINT lastTimePeriodSet = ComputeDesiredTimerPeriod();
if (adjustTimerPeriod) {
timeBeginPeriod(lastTimePeriodSet);
}
#endif
uint64_t timersFiredThisWakeup = 0;
while (!mShutdown) {
// Have to use PRIntervalTime here, since PR_WaitCondVar takes it
TimeDuration waitFor;
bool forceRunThisTimer = forceRunNextTimer;
forceRunNextTimer = false;
#ifdef DEBUG
VerifyTimerListConsistency();
#endif
if (mSleeping) {
// Sleep for 0.1 seconds while not firing timers.
uint32_t milliseconds = 100;
if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
milliseconds = ChaosMode::randomUint32LessThan(200);
}
waitFor = TimeDuration::FromMilliseconds(milliseconds);
} else {
waitFor = TimeDuration::Forever();
TimeStamp now = TimeStamp::Now();
#ifdef XP_WIN
if (now >= nextTimerPeriodEval) {
const UINT newTimePeriod = ComputeDesiredTimerPeriod();
if (newTimePeriod != lastTimePeriodSet) {
if (adjustTimerPeriod) {
timeEndPeriod(lastTimePeriodSet);
timeBeginPeriod(newTimePeriod);
}
lastTimePeriodSet = newTimePeriod;
}
nextTimerPeriodEval = now + timerPeriodEvalInterval;
}
#endif
#if TIMER_THREAD_STATISTICS
if (!mNotified && !mIntendedWakeupTime.IsNull() &&
now < mIntendedWakeupTime) {
++mEarlyWakeups;
const double earlinessms = (mIntendedWakeupTime - now).ToMilliseconds();
mTotalEarlyWakeupTime += earlinessms;
}
#endif
RemoveLeadingCanceledTimersInternal();
if (!mTimers.IsEmpty()) {
if (now + allowedEarlyFiring >= mTimers[0].Value()->mTimeout ||
forceRunThisTimer) {
next:
// NB: AddRef before the Release under RemoveTimerInternal to avoid
// mRefCnt passing through zero, in case all other refs than the one
// from mTimers have gone away (the last non-mTimers[i]-ref's Release
// must be racing with us, blocked in gThread->RemoveTimer waiting
// for TimerThread::mMonitor, under nsTimerImpl::Release.
RefPtr<nsTimerImpl> timerRef(mTimers[0].Take());
RemoveFirstTimerInternal();
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("Timer thread woke up %fms from when it was supposed to\n",
fabs((now - timerRef->mTimeout).ToMilliseconds())));
// We are going to let the call to PostTimerEvent here handle the
// release of the timer so that we don't end up releasing the timer
// on the TimerThread instead of on the thread it targets.
{
++timersFiredThisWakeup;
LogTimerEvent::Run run(timerRef.get());
PostTimerEvent(timerRef.forget());
}
if (mShutdown) {
break;
}
// Update now, as PostTimerEvent plus the locking may have taken a
// tick or two, and we may goto next below.
now = TimeStamp::Now();
}
}
RemoveLeadingCanceledTimersInternal();
if (!mTimers.IsEmpty()) {
TimeStamp timeout = mTimers[0].Value()->mTimeout;
// Don't wait at all (even for PR_INTERVAL_NO_WAIT) if the next timer
// is due now or overdue.
//
// Note that we can only sleep for integer values of a certain
// resolution. We use mAllowedEarlyFiringMicroseconds, calculated
// before, to do the optimal rounding (i.e., of how to decide what
// interval is so small we should not wait at all).
double microseconds = (timeout - now).ToMicroseconds();
// The mean value of sFractions must be 1 to ensure that the average of
// a long sequence of timeouts converges to the actual sum of their
// times.
static constexpr double sChaosFractions[] = {0.0, 0.25, 0.5, 0.75,
1.0, 1.75, 2.75};
if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
microseconds *= sChaosFractions[ChaosMode::randomUint32LessThan(
ArrayLength(sChaosFractions))];
forceRunNextTimer = true;
}
if (microseconds < mAllowedEarlyFiringMicroseconds) {
forceRunNextTimer = false;
goto next; // round down; execute event now
}
// TECHNICAL NOTE: Determining waitFor (by subtracting |now| from our
// desired wake-up time) at this point is not ideal. For one thing, the
// |now| that we have at this point is somewhat old. Secondly, there is
// quite a bit of code between here and where we actually use waitFor to
// request sleep. If I am thinking about this correctly, both of these
// will contribute to us requesting more sleep than is actually needed
// to wake up at our desired time. We could avoid this problem by only
// determining our desired wake-up time here and then calculating the
// wait time when we're actually about to sleep.
const TimeStamp wakeupTime = ComputeWakeupTimeFromTimers();
waitFor = wakeupTime - now;
// If this were to fail that would mean that we had more timers that we
// should have fired.
MOZ_ASSERT(!waitFor.IsZero());
if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
// If chaos mode is active then mess with the amount of time that we
// request to sleep (without changing what we record as our expected
// wake-up time). This will simulate unintended early/late wake-ups.
const double waitInMs = waitFor.ToMilliseconds();
const double chaosWaitInMs =
waitInMs * sChaosFractions[ChaosMode::randomUint32LessThan(
ArrayLength(sChaosFractions))];
waitFor = TimeDuration::FromMilliseconds(chaosWaitInMs);
}
mIntendedWakeupTime = wakeupTime;
} else {
mIntendedWakeupTime = TimeStamp{};
}
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
if (waitFor == TimeDuration::Forever())
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("waiting forever\n"));
else
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("waiting for %f\n", waitFor.ToMilliseconds()));
}
}
{
// About to sleep - let's make note of how many timers we processed and
// see if we should send out a new batch of telemetry.
queuedTimersFiredPerWakeup[queuedTimerFiredCount] = timersFiredThisWakeup;
++queuedTimerFiredCount;
if (queuedTimerFiredCount == kMaxQueuedTimerFired) {
glean::timer_thread::timers_fired_per_wakeup.AccumulateSamples(
queuedTimersFiredPerWakeup);
queuedTimerFiredCount = 0;
}
}
#if TIMER_THREAD_STATISTICS
{
size_t bucketIndex = 0;
while (bucketIndex < sTimersFiredPerWakeupBucketCount - 1 &&
timersFiredThisWakeup >
sTimersFiredPerWakeupThresholds[bucketIndex]) {
++bucketIndex;
}
MOZ_ASSERT(bucketIndex < sTimersFiredPerWakeupBucketCount);
++mTimersFiredPerWakeup[bucketIndex];
++mTotalWakeupCount;
if (mNotified) {
++mTimersFiredPerNotifiedWakeup[bucketIndex];
++mTotalNotifiedWakeupCount;
} else {
++mTimersFiredPerUnnotifiedWakeup[bucketIndex];
++mTotalUnnotifiedWakeupCount;
}
}
#endif
timersFiredThisWakeup = 0;
mWaiting = true;
mNotified = false;
{
AUTO_PROFILER_TRACING_MARKER("TimerThread", "Wait", OTHER);
mMonitor.Wait(waitFor);
}
if (mNotified) {
forceRunNextTimer = false;
}
mWaiting = false;
}
// About to shut down - let's send out the final batch of timers fired counts.
if (queuedTimerFiredCount != 0) {
queuedTimersFiredPerWakeup.SetLengthAndRetainStorage(queuedTimerFiredCount);
glean::timer_thread::timers_fired_per_wakeup.AccumulateSamples(
queuedTimersFiredPerWakeup);
}
#ifdef XP_WIN
// About to shut down - let's finish off the last time period that we set.
if (adjustTimerPeriod) {
timeEndPeriod(lastTimePeriodSet);
}
#endif
return NS_OK;
}
nsresult TimerThread::AddTimer(nsTimerImpl* aTimer,
const MutexAutoLock& aProofOfLock) {
MonitorAutoLock lock(mMonitor);
AUTO_TIMERS_STATS(TimerThread_AddTimer);
if (!aTimer->mEventTarget) {
return NS_ERROR_NOT_INITIALIZED;
}
nsresult rv = Init();
if (NS_FAILED(rv)) {
return rv;
}
// Awaken the timer thread if:
// - This timer needs to fire *before* the Timer Thread is scheduled to wake
// up.
// AND/OR
// - The delay is 0, which is usually meant to be run as soon as possible.
// Note: Even if the thread is scheduled to wake up now/soon, on some
// systems there could be a significant delay compared to notifying, which
// is almost immediate; and some users of 0-delay depend on it being this
// fast!
const TimeDuration minTimerDelay = TimeDuration::FromMilliseconds(
StaticPrefs::timer_minimum_firing_delay_tolerance_ms());
const TimeDuration maxTimerDelay = TimeDuration::FromMilliseconds(
StaticPrefs::timer_maximum_firing_delay_tolerance_ms());
const TimeDuration firingDelay = ComputeAcceptableFiringDelay(
aTimer->mDelay, minTimerDelay, maxTimerDelay);
const bool firingBeforeNextWakeup =
mIntendedWakeupTime.IsNull() ||
(aTimer->mTimeout + firingDelay < mIntendedWakeupTime);
const bool wakeUpTimerThread =
mWaiting && (firingBeforeNextWakeup || aTimer->mDelay.IsZero());
#if TIMER_THREAD_STATISTICS
if (mTotalTimersAdded == 0) {
mFirstTimerAdded = TimeStamp::Now();
}
++mTotalTimersAdded;
#endif
// Add the timer to our list.
if (!AddTimerInternal(*aTimer)) {
return NS_ERROR_OUT_OF_MEMORY;
}
if (wakeUpTimerThread) {
mNotified = true;
mMonitor.Notify();
}
if (profiler_thread_is_being_profiled_for_markers(mProfilerThreadId)) {
nsAutoCString name;
aTimer->GetName(name, aProofOfLock);
nsLiteralCString prefix("Anonymous_");
profiler_add_marker(
"AddTimer", geckoprofiler::category::OTHER,
MarkerOptions(MarkerThreadId(mProfilerThreadId),
MarkerStack::MaybeCapture(
name.Equals("nonfunction:JS") ||
StringHead(name, prefix.Length()) == prefix)),
AddRemoveTimerMarker{}, name, aTimer->mDelay.ToMilliseconds(),
MarkerThreadId::CurrentThread());
}
return NS_OK;
}
nsresult TimerThread::RemoveTimer(nsTimerImpl* aTimer,
const MutexAutoLock& aProofOfLock) {
MonitorAutoLock lock(mMonitor);
AUTO_TIMERS_STATS(TimerThread_RemoveTimer);
// Remove the timer from our array. Tell callers that aTimer was not found
// by returning NS_ERROR_NOT_AVAILABLE.
if (!RemoveTimerInternal(*aTimer)) {
return NS_ERROR_NOT_AVAILABLE;
}
#if TIMER_THREAD_STATISTICS
++mTotalTimersRemoved;
#endif
// Note: The timer thread is *not* awoken.
// The removed-timer entry is just left null, and will be reused (by a new or
// re-set timer) or discarded (when the timer thread logic handles non-null
// timers around it).
// If this was the front timer, and in the unlikely case that its entry is not
// soon reused by a re-set timer, the timer thread will wake up at the
// previously-scheduled time, but will quickly notice that there is no actual
// pending timer, and will restart its wait until the following real timeout.
if (profiler_thread_is_being_profiled_for_markers(mProfilerThreadId)) {
nsAutoCString name;
aTimer->GetName(name, aProofOfLock);
nsLiteralCString prefix("Anonymous_");
// This marker is meant to help understand the behavior of the timer thread.
profiler_add_marker(
"RemoveTimer", geckoprofiler::category::OTHER,
MarkerOptions(MarkerThreadId(mProfilerThreadId),
MarkerStack::MaybeCapture(
name.Equals("nonfunction:JS") ||
StringHead(name, prefix.Length()) == prefix)),
AddRemoveTimerMarker{}, name, aTimer->mDelay.ToMilliseconds(),
MarkerThreadId::CurrentThread());
// This adds a marker with the timer name as the marker name, to make it
// obvious which timers are being used. This marker will be useful to
// understand which timers might be added and removed excessively often.
profiler_add_marker(name, geckoprofiler::category::TIMER,
MarkerOptions(MarkerTiming::IntervalUntilNowFrom(
aTimer->mTimeout - aTimer->mDelay),
MarkerThreadId(mProfilerThreadId)),
TimerMarker{}, aTimer->mDelay.ToMilliseconds(),
aTimer->mType, MarkerThreadId::CurrentThread(), true);
}
return NS_OK;
}
TimeStamp TimerThread::FindNextFireTimeForCurrentThread(TimeStamp aDefault,
uint32_t aSearchBound) {
MonitorAutoLock lock(mMonitor);
AUTO_TIMERS_STATS(TimerThread_FindNextFireTimeForCurrentThread);
for (const Entry& entry : mTimers) {
const nsTimerImpl* timer = entry.Value();
if (timer) {
if (entry.Timeout() > aDefault) {
return aDefault;
}
// Don't yield to timers created with the *_LOW_PRIORITY type.
if (!timer->IsLowPriority()) {
bool isOnCurrentThread = false;
nsresult rv =
timer->mEventTarget->IsOnCurrentThread(&isOnCurrentThread);
if (NS_SUCCEEDED(rv) && isOnCurrentThread) {
return entry.Timeout();
}
}
if (aSearchBound == 0) {
// Couldn't find any non-low priority timers for the current thread.
// Return a compromise between a very short and a long idle time.
TimeStamp fallbackDeadline =
TimeStamp::Now() + TimeDuration::FromMilliseconds(16);
return fallbackDeadline < aDefault ? fallbackDeadline : aDefault;
}
--aSearchBound;
}
}
// No timers for this thread, return the default.
return aDefault;
}
// This function must be called from within a lock
// Also: we hold the mutex for the nsTimerImpl.
bool TimerThread::AddTimerInternal(nsTimerImpl& aTimer) {
mMonitor.AssertCurrentThreadOwns();
aTimer.mMutex.AssertCurrentThreadOwns();
AUTO_TIMERS_STATS(TimerThread_AddTimerInternal);
if (mShutdown) {
return false;
}
LogTimerEvent::LogDispatch(&aTimer);
const TimeStamp& timeout = aTimer.mTimeout;
const size_t insertionIndex = ComputeTimerInsertionIndex(timeout);
if (insertionIndex != 0 && !mTimers[insertionIndex - 1].Value()) {
// Very common scenario in practice: The timer just before the insertion
// point is canceled, overwrite it.
AUTO_TIMERS_STATS(TimerThread_AddTimerInternal_overwrite_before);
mTimers[insertionIndex - 1] = Entry{aTimer};
return true;
}
const size_t length = mTimers.Length();
if (insertionIndex == length) {
// We're at the end (including it's the very first insertion), add new timer
// at the end.
AUTO_TIMERS_STATS(TimerThread_AddTimerInternal_append);
return mTimers.AppendElement(Entry{aTimer}, mozilla::fallible);
}
if (!mTimers[insertionIndex].Value()) {
// The timer at the insertion point is canceled, overwrite it.
AUTO_TIMERS_STATS(TimerThread_AddTimerInternal_overwrite);
mTimers[insertionIndex] = Entry{aTimer};
return true;
}
// The new timer has to be inserted.
AUTO_TIMERS_STATS(TimerThread_AddTimerInternal_insert);
// The capacity should be checked first, because if it needs to be increased
// and the memory allocation fails, only the new timer should be lost.
if (length == mTimers.Capacity() && mTimers[length - 1].Value()) {
// We have reached capacity, and the last entry is not canceled, so we
// really want to increase the capacity in case the extra slot is required.
// To force-expand the array, append a canceled-timer entry with a timestamp
// far in the future.
// This empty Entry may be used below to receive the moved-from previous
// entry. If not, it may be used in a later call if we need to append a new
// timer at the end.
AUTO_TIMERS_STATS(TimerThread_AddTimerInternal_insert_expand);
if (!mTimers.AppendElement(
Entry{mTimers[length - 1].Timeout() +
TimeDuration::FromSeconds(365.0 * 24.0 * 60.0 * 60.0)},
mozilla::fallible)) {
return false;
}
}
// Extract the timer at the insertion point, and put the new timer in its
// place.
Entry extractedEntry = std::exchange(mTimers[insertionIndex], Entry{aTimer});
// Following entries can be pushed until we hit a canceled timer or the end.
for (size_t i = insertionIndex + 1; i < length; ++i) {
Entry& entryRef = mTimers[i];
if (!entryRef.Value()) {
// Canceled entry, overwrite it with the extracted entry from before.
COUNT_TIMERS_STATS(TimerThread_AddTimerInternal_insert_overwrite);
entryRef = std::move(extractedEntry);
return true;
}
// Write extracted entry from before, and extract current entry.
COUNT_TIMERS_STATS(TimerThread_AddTimerInternal_insert_shifts);
std::swap(entryRef, extractedEntry);
}
// We've reached the end of the list, with still one extracted entry to
// re-insert. We've checked the capacity above, this cannot fail.
COUNT_TIMERS_STATS(TimerThread_AddTimerInternal_insert_append);
mTimers.AppendElement(std::move(extractedEntry));
return true;
}
// This function must be called from within a lock
// Also: we hold the mutex for the nsTimerImpl.
bool TimerThread::RemoveTimerInternal(nsTimerImpl& aTimer) {
mMonitor.AssertCurrentThreadOwns();
aTimer.mMutex.AssertCurrentThreadOwns();
AUTO_TIMERS_STATS(TimerThread_RemoveTimerInternal);
if (!aTimer.IsInTimerThread()) {
COUNT_TIMERS_STATS(TimerThread_RemoveTimerInternal_not_in_list);
return false;
}
AUTO_TIMERS_STATS(TimerThread_RemoveTimerInternal_in_list);
for (auto& entry : mTimers) {
if (entry.Value() == &aTimer) {
entry.Forget();
return true;
}
}
MOZ_ASSERT(!aTimer.IsInTimerThread(),
"Not found in the list but it should be!?");
return false;
}
void TimerThread::RemoveLeadingCanceledTimersInternal() {
mMonitor.AssertCurrentThreadOwns();
AUTO_TIMERS_STATS(TimerThread_RemoveLeadingCanceledTimersInternal);
size_t toRemove = 0;
while (toRemove < mTimers.Length() && !mTimers[toRemove].Value()) {
++toRemove;
}
mTimers.RemoveElementsAt(0, toRemove);
}
void TimerThread::RemoveFirstTimerInternal() {
mMonitor.AssertCurrentThreadOwns();
AUTO_TIMERS_STATS(TimerThread_RemoveFirstTimerInternal);
MOZ_ASSERT(!mTimers.IsEmpty());
mTimers.RemoveElementAt(0);
}
void TimerThread::PostTimerEvent(already_AddRefed<nsTimerImpl> aTimerRef) {
mMonitor.AssertCurrentThreadOwns();
AUTO_TIMERS_STATS(TimerThread_PostTimerEvent);
RefPtr<nsTimerImpl> timer(aTimerRef);
#if TIMER_THREAD_STATISTICS
const double actualFiringDelay =
std::max((TimeStamp::Now() - timer->mTimeout).ToMilliseconds(), 0.0);
if (mNotified) {
++mTotalTimersFiredNotified;
mTotalActualTimerFiringDelayNotified += actualFiringDelay;
} else {
++mTotalTimersFiredUnnotified;
mTotalActualTimerFiringDelayUnnotified += actualFiringDelay;
}
#endif
if (!timer->mEventTarget) {
NS_ERROR("Attempt to post timer event to NULL event target");
return;
}
// XXX we may want to reuse this nsTimerEvent in the case of repeating timers.
// Since we already addref'd 'timer', we don't need to addref here.
// We will release either in ~nsTimerEvent(), or pass the reference back to
// the caller. We need to copy the generation number from this timer into the
// event, so we can avoid firing a timer that was re-initialized after being
// canceled.
nsCOMPtr<nsIEventTarget> target = timer->mEventTarget;
void* p = nsTimerEvent::operator new(sizeof(nsTimerEvent));
if (!p) {
return;
}
RefPtr<nsTimerEvent> event =
::new (KnownNotNull, p) nsTimerEvent(timer.forget(), mProfilerThreadId);
nsresult rv;
{
// We release mMonitor around the Dispatch because if the Dispatch interacts
// with the timer API we'll deadlock.
MonitorAutoUnlock unlock(mMonitor);
rv = target->Dispatch(event, NS_DISPATCH_NORMAL);
if (NS_FAILED(rv)) {
timer = event->ForgetTimer();
// We do this to avoid possible deadlock by taking the two locks in a
// different order than is used in RemoveTimer(). RemoveTimer() has
// aTimer->mMutex first. We use timer.get() to keep static analysis
// happy
// NOTE: I'm not sure that any of the below is actually necessary. It
// seems to me that the timer that we're trying to fire will have already
// been removed prior to this.
MutexAutoLock lock1(timer.get()->mMutex);
MonitorAutoLock lock2(mMonitor);
RemoveTimerInternal(*timer);
}
}
}
void TimerThread::DoBeforeSleep() {
// Mainthread
MonitorAutoLock lock(mMonitor);
mSleeping = true;
}
// Note: wake may be notified without preceding sleep notification
void TimerThread::DoAfterSleep() {
// Mainthread
MonitorAutoLock lock(mMonitor);
mSleeping = false;
// Wake up the timer thread to re-process the array to ensure the sleep delay
// is correct, and fire any expired timers (perhaps quite a few)
mNotified = true;
PROFILER_MARKER_UNTYPED("AfterSleep", OTHER,
MarkerThreadId(mProfilerThreadId));
mMonitor.Notify();
}
NS_IMETHODIMP
TimerThread::Observe(nsISupports* aSubject, const char* aTopic,
const char16_t* aData) {
if (strcmp(aTopic, "ipc:process-priority-changed") == 0) {
nsCOMPtr<nsIPropertyBag2> props = do_QueryInterface(aSubject);
MOZ_ASSERT(props != nullptr);
int32_t priority = static_cast<int32_t>(hal::PROCESS_PRIORITY_UNKNOWN);
props->GetPropertyAsInt32(u"priority"_ns, &priority);
mCachedPriority.store(static_cast<hal::ProcessPriority>(priority),
std::memory_order_relaxed);
}
if (StaticPrefs::timer_ignore_sleep_wake_notifications()) {
return NS_OK;
}
if (strcmp(aTopic, "sleep_notification") == 0 ||
strcmp(aTopic, "suspend_process_notification") == 0) {
DoBeforeSleep();
} else if (strcmp(aTopic, "wake_notification") == 0 ||
strcmp(aTopic, "resume_process_notification") == 0) {
DoAfterSleep();
}
return NS_OK;
}
uint32_t TimerThread::AllowedEarlyFiringMicroseconds() {
MonitorAutoLock lock(mMonitor);
return mAllowedEarlyFiringMicroseconds;
}
#if TIMER_THREAD_STATISTICS
void TimerThread::PrintStatistics() const {
mMonitor.AssertCurrentThreadOwns();
const TimeStamp freshNow = TimeStamp::Now();
const double timeElapsed = mFirstTimerAdded.IsNull()
? 0.0
: (freshNow - mFirstTimerAdded).ToSeconds();
printf_stderr("TimerThread Stats (Total time %8.2fs)\n", timeElapsed);
printf_stderr("Added: %6llu Removed: %6llu Fired: %6llu\n", mTotalTimersAdded,
mTotalTimersRemoved,
mTotalTimersFiredNotified + mTotalTimersFiredUnnotified);
auto PrintTimersFiredBucket =
[](const AutoTArray<size_t, sTimersFiredPerWakeupBucketCount>& buckets,
const size_t wakeupCount, const size_t timersFiredCount,
const double totalTimerDelay, const char* label) {
printf_stderr("%s : [", label);
for (size_t bucketVal : buckets) {
printf_stderr(" %5llu", bucketVal);
}
printf_stderr(
" ] Wake-ups/timer %6llu / %6llu (%7.4f) Avg Timer Delay %7.4f\n",
wakeupCount, timersFiredCount,
static_cast<double>(wakeupCount) / timersFiredCount,
totalTimerDelay / timersFiredCount);
};
printf_stderr("Wake-ups:\n");
PrintTimersFiredBucket(
mTimersFiredPerWakeup, mTotalWakeupCount,
mTotalTimersFiredNotified + mTotalTimersFiredUnnotified,
mTotalActualTimerFiringDelayNotified +
mTotalActualTimerFiringDelayUnnotified,
"Total ");
PrintTimersFiredBucket(mTimersFiredPerNotifiedWakeup,
mTotalNotifiedWakeupCount, mTotalTimersFiredNotified,
mTotalActualTimerFiringDelayNotified, "Notified ");
PrintTimersFiredBucket(mTimersFiredPerUnnotifiedWakeup,
mTotalUnnotifiedWakeupCount,
mTotalTimersFiredUnnotified,
mTotalActualTimerFiringDelayUnnotified, "Unnotified ");
printf_stderr("Early Wake-ups: %6llu Avg: %7.4fms\n", mEarlyWakeups,
mTotalEarlyWakeupTime / mEarlyWakeups);
}
#endif
/* This nsReadOnlyTimer class is used for the values returned by the
* TimerThread::GetTimers method.
* It is not possible to return a strong reference to the nsTimerImpl
* instance (that could extend the lifetime of the timer and cause it to fire
* a callback pointing to already freed memory) or a weak reference
* (nsSupportsWeakReference doesn't support freeing the referee on a thread
* that isn't the thread that owns the weak reference), so instead the timer
* name, delay and type are copied to a new object. */
class nsReadOnlyTimer final : public nsITimer {
public:
explicit nsReadOnlyTimer(const nsACString& aName, uint32_t aDelay,
uint32_t aType)
: mName(aName), mDelay(aDelay), mType(aType) {}
NS_DECL_ISUPPORTS
NS_IMETHOD Init(nsIObserver* aObserver, uint32_t aDelayInMs,
uint32_t aType) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD InitWithCallback(nsITimerCallback* aCallback, uint32_t aDelayInMs,
uint32_t aType) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD InitHighResolutionWithCallback(nsITimerCallback* aCallback,
const mozilla::TimeDuration& aDelay,
uint32_t aType) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD Cancel(void) override { return NS_ERROR_NOT_IMPLEMENTED; }
NS_IMETHOD InitWithNamedFuncCallback(nsTimerCallbackFunc aCallback,
void* aClosure, uint32_t aDelay,
uint32_t aType,
const char* aName) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD InitHighResolutionWithNamedFuncCallback(
nsTimerCallbackFunc aCallback, void* aClosure,
const mozilla::TimeDuration& aDelay, uint32_t aType,
const char* aName) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD GetName(nsACString& aName) override {
aName = mName;
return NS_OK;
}
NS_IMETHOD GetDelay(uint32_t* aDelay) override {
*aDelay = mDelay;
return NS_OK;
}
NS_IMETHOD SetDelay(uint32_t aDelay) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD GetType(uint32_t* aType) override {
*aType = mType;
return NS_OK;
}
NS_IMETHOD SetType(uint32_t aType) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD GetClosure(void** aClosure) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD GetCallback(nsITimerCallback** aCallback) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD GetTarget(nsIEventTarget** aTarget) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD SetTarget(nsIEventTarget* aTarget) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD GetAllowedEarlyFiringMicroseconds(
uint32_t* aAllowedEarlyFiringMicroseconds) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) override {
return sizeof(*this);
}
private:
nsCString mName;
uint32_t mDelay;
uint32_t mType;
~nsReadOnlyTimer() = default;
};
NS_IMPL_ISUPPORTS(nsReadOnlyTimer, nsITimer)
nsresult TimerThread::GetTimers(nsTArray<RefPtr<nsITimer>>& aRetVal) {
nsTArray<RefPtr<nsTimerImpl>> timers;
{
MonitorAutoLock lock(mMonitor);
for (const auto& entry : mTimers) {
nsTimerImpl* timer = entry.Value();
if (!timer) {
continue;
}
timers.AppendElement(timer);
}
}
for (nsTimerImpl* timer : timers) {
nsAutoCString name;
timer->GetName(name);
uint32_t delay;
timer->GetDelay(&delay);
uint32_t type;
timer->GetType(&type);
aRetVal.AppendElement(new nsReadOnlyTimer(name, delay, type));
}
return NS_OK;
}
|