diff options
Diffstat (limited to 'src/libFLAC/fixed_intrin_avx2.c')
-rw-r--r-- | src/libFLAC/fixed_intrin_avx2.c | 343 |
1 files changed, 343 insertions, 0 deletions
diff --git a/src/libFLAC/fixed_intrin_avx2.c b/src/libFLAC/fixed_intrin_avx2.c new file mode 100644 index 0000000..85fc4a6 --- /dev/null +++ b/src/libFLAC/fixed_intrin_avx2.c @@ -0,0 +1,343 @@ +/* libFLAC - Free Lossless Audio Codec library + * Copyright (C) 2000-2009 Josh Coalson + * Copyright (C) 2011-2023 Xiph.Org Foundation + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * - Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * - Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * - Neither the name of the Xiph.org Foundation nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifdef HAVE_CONFIG_H +# include <config.h> +#endif + +#include "private/cpu.h" + +#ifndef FLAC__INTEGER_ONLY_LIBRARY +#ifndef FLAC__NO_ASM +#if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN +#include "private/fixed.h" +#ifdef FLAC__AVX2_SUPPORTED + +#include <immintrin.h> +#include <math.h> +#include "private/macros.h" +#include "share/compat.h" +#include "FLAC/assert.h" + +#ifdef local_abs +#undef local_abs +#endif +#define local_abs(x) ((uint32_t)((x)<0? -(x) : (x))) + +FLAC__SSE_TARGET("avx2") +uint32_t FLAC__fixed_compute_best_predictor_wide_intrin_avx2(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]) +{ + FLAC__uint64 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4; + FLAC__int32 i, data_len_int; + uint32_t order; + __m256i total_err0, total_err1, total_err2, total_err3, total_err4; + __m256i prev_err0, prev_err1, prev_err2, prev_err3; + __m256i tempA, tempB, bitmask; + FLAC__int64 data_scalar[4]; + FLAC__int64 prev_err0_scalar[4]; + FLAC__int64 prev_err1_scalar[4]; + FLAC__int64 prev_err2_scalar[4]; + FLAC__int64 prev_err3_scalar[4]; + total_err0 = _mm256_setzero_si256(); + total_err1 = _mm256_setzero_si256(); + total_err2 = _mm256_setzero_si256(); + total_err3 = _mm256_setzero_si256(); + total_err4 = _mm256_setzero_si256(); + data_len_int = data_len; + + for(i = 0; i < 4; i++){ + prev_err0_scalar[i] = data[-1+i*(data_len_int/4)]; + prev_err1_scalar[i] = data[-1+i*(data_len_int/4)] - data[-2+i*(data_len_int/4)]; + prev_err2_scalar[i] = prev_err1_scalar[i] - (data[-2+i*(data_len_int/4)] - data[-3+i*(data_len_int/4)]); + prev_err3_scalar[i] = prev_err2_scalar[i] - (data[-2+i*(data_len_int/4)] - 2*data[-3+i*(data_len_int/4)] + data[-4+i*(data_len_int/4)]); + } + prev_err0 = _mm256_loadu_si256((const __m256i*)(void*)prev_err0_scalar); + prev_err1 = _mm256_loadu_si256((const __m256i*)(void*)prev_err1_scalar); + prev_err2 = _mm256_loadu_si256((const __m256i*)(void*)prev_err2_scalar); + prev_err3 = _mm256_loadu_si256((const __m256i*)(void*)prev_err3_scalar); + for(i = 0; i < data_len_int / 4; i++){ + data_scalar[0] = data[i]; + data_scalar[1] = data[i+data_len/4]; + data_scalar[2] = data[i+2*data_len/4]; + data_scalar[3] = data[i+3*data_len/4]; + tempA = _mm256_loadu_si256((const __m256i*)(void*)data_scalar); + /* Next three intrinsics calculate tempB as abs of tempA */ + bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempA); + tempB = _mm256_xor_si256(tempA, bitmask); + tempB = _mm256_sub_epi64(tempB, bitmask); + total_err0 = _mm256_add_epi64(total_err0,tempB); + tempB = _mm256_sub_epi64(tempA,prev_err0); + prev_err0 = tempA; + /* Next three intrinsics calculate tempA as abs of tempB */ + bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempB); + tempA = _mm256_xor_si256(tempB, bitmask); + tempA = _mm256_sub_epi64(tempA, bitmask); + total_err1 = _mm256_add_epi64(total_err1,tempA); + tempA = _mm256_sub_epi64(tempB,prev_err1); + prev_err1 = tempB; + /* Next three intrinsics calculate tempB as abs of tempA */ + bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempA); + tempB = _mm256_xor_si256(tempA, bitmask); + tempB = _mm256_sub_epi64(tempB, bitmask); + total_err2 = _mm256_add_epi64(total_err2,tempB); + tempB = _mm256_sub_epi64(tempA,prev_err2); + prev_err2 = tempA; + /* Next three intrinsics calculate tempA as abs of tempB */ + bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempB); + tempA = _mm256_xor_si256(tempB, bitmask); + tempA = _mm256_sub_epi64(tempA, bitmask); + total_err3 = _mm256_add_epi64(total_err3,tempA); + tempA = _mm256_sub_epi64(tempB,prev_err3); + prev_err3 = tempB; + /* Next three intrinsics calculate tempB as abs of tempA */ + bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempA); + tempB = _mm256_xor_si256(tempA, bitmask); + tempB = _mm256_sub_epi64(tempB, bitmask); + total_err4 = _mm256_add_epi64(total_err4,tempB); + } + _mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err0); + total_error_0 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + _mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err1); + total_error_1 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + _mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err2); + total_error_2 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + _mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err3); + total_error_3 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + _mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err4); + total_error_4 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + + /* Ignore the remainder, we're ignore the first few samples too */ + + /* prefer lower order */ + if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4)) + order = 0; + else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4)) + order = 1; + else if(total_error_2 <= flac_min(total_error_3, total_error_4)) + order = 2; + else if(total_error_3 <= total_error_4) + order = 3; + else + order = 4; + + /* Estimate the expected number of bits per residual signal sample. */ + /* 'total_error*' is linearly related to the variance of the residual */ + /* signal, so we use it directly to compute E(|x|) */ + FLAC__ASSERT(data_len > 0 || total_error_0 == 0); + FLAC__ASSERT(data_len > 0 || total_error_1 == 0); + FLAC__ASSERT(data_len > 0 || total_error_2 == 0); + FLAC__ASSERT(data_len > 0 || total_error_3 == 0); + FLAC__ASSERT(data_len > 0 || total_error_4 == 0); + + residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0); + residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0); + + return order; +} + +#ifdef local_abs64 +#undef local_abs64 +#endif +#define local_abs64(x) ((uint64_t)((x)<0? -(x) : (x))) + +#define CHECK_ORDER_IS_VALID(macro_order) \ +if(shadow_error_##macro_order <= INT32_MAX) { \ + if(total_error_##macro_order < smallest_error) { \ + order = macro_order; \ + smallest_error = total_error_##macro_order ; \ + } \ + residual_bits_per_sample[ macro_order ] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); \ +} \ +else \ + residual_bits_per_sample[ macro_order ] = 34.0f; + +FLAC__SSE_TARGET("avx2") +uint32_t FLAC__fixed_compute_best_predictor_limit_residual_intrin_avx2(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]) +{ + FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0, smallest_error = UINT64_MAX; + FLAC__uint64 shadow_error_0 = 0, shadow_error_1 = 0, shadow_error_2 = 0, shadow_error_3 = 0, shadow_error_4 = 0; + FLAC__uint64 error_0, error_1, error_2, error_3, error_4; + FLAC__int32 i, data_len_int; + uint32_t order = 0; + __m256i total_err0, total_err1, total_err2, total_err3, total_err4; + __m256i shadow_err0, shadow_err1, shadow_err2, shadow_err3, shadow_err4; + __m256i prev_err0, prev_err1, prev_err2, prev_err3; + __m256i tempA, tempB, bitmask; + FLAC__int64 data_scalar[4]; + FLAC__int64 prev_err0_scalar[4]; + FLAC__int64 prev_err1_scalar[4]; + FLAC__int64 prev_err2_scalar[4]; + FLAC__int64 prev_err3_scalar[4]; + total_err0 = _mm256_setzero_si256(); + total_err1 = _mm256_setzero_si256(); + total_err2 = _mm256_setzero_si256(); + total_err3 = _mm256_setzero_si256(); + total_err4 = _mm256_setzero_si256(); + shadow_err0 = _mm256_setzero_si256(); + shadow_err1 = _mm256_setzero_si256(); + shadow_err2 = _mm256_setzero_si256(); + shadow_err3 = _mm256_setzero_si256(); + shadow_err4 = _mm256_setzero_si256(); + data_len_int = data_len; + + /* First take care of preceding samples */ + for(i = -4; i < 0; i++) { + error_0 = local_abs64((FLAC__int64)data[i]); + error_1 = (i > -4) ? local_abs64((FLAC__int64)data[i] - data[i-1]) : 0 ; + error_2 = (i > -3) ? local_abs64((FLAC__int64)data[i] - 2 * (FLAC__int64)data[i-1] + data[i-2]) : 0; + error_3 = (i > -2) ? local_abs64((FLAC__int64)data[i] - 3 * (FLAC__int64)data[i-1] + 3 * (FLAC__int64)data[i-2] - data[i-3]) : 0; + + total_error_0 += error_0; + total_error_1 += error_1; + total_error_2 += error_2; + total_error_3 += error_3; + + shadow_error_0 |= error_0; + shadow_error_1 |= error_1; + shadow_error_2 |= error_2; + shadow_error_3 |= error_3; + } + + for(i = 0; i < 4; i++){ + prev_err0_scalar[i] = data[-1+i*(data_len_int/4)]; + prev_err1_scalar[i] = (FLAC__int64)(data[-1+i*(data_len_int/4)]) - data[-2+i*(data_len_int/4)]; + prev_err2_scalar[i] = prev_err1_scalar[i] - ((FLAC__int64)(data[-2+i*(data_len_int/4)]) - data[-3+i*(data_len_int/4)]); + prev_err3_scalar[i] = prev_err2_scalar[i] - ((FLAC__int64)(data[-2+i*(data_len_int/4)]) - 2*(FLAC__int64)(data[-3+i*(data_len_int/4)]) + data[-4+i*(data_len_int/4)]); + } + prev_err0 = _mm256_loadu_si256((const __m256i*)(void*)prev_err0_scalar); + prev_err1 = _mm256_loadu_si256((const __m256i*)(void*)prev_err1_scalar); + prev_err2 = _mm256_loadu_si256((const __m256i*)(void*)prev_err2_scalar); + prev_err3 = _mm256_loadu_si256((const __m256i*)(void*)prev_err3_scalar); + for(i = 0; i < data_len_int / 4; i++){ + data_scalar[0] = data[i]; + data_scalar[1] = data[i+data_len/4]; + data_scalar[2] = data[i+2*data_len/4]; + data_scalar[3] = data[i+3*data_len/4]; + tempA = _mm256_loadu_si256((const __m256i*)(void*)data_scalar); + /* Next three intrinsics calculate tempB as abs of tempA */ + bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempA); + tempB = _mm256_xor_si256(tempA, bitmask); + tempB = _mm256_sub_epi64(tempB, bitmask); + total_err0 = _mm256_add_epi64(total_err0,tempB); + shadow_err0 = _mm256_or_si256(shadow_err0,tempB); + tempB = _mm256_sub_epi64(tempA,prev_err0); + prev_err0 = tempA; + /* Next three intrinsics calculate tempA as abs of tempB */ + bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempB); + tempA = _mm256_xor_si256(tempB, bitmask); + tempA = _mm256_sub_epi64(tempA, bitmask); + total_err1 = _mm256_add_epi64(total_err1,tempA); + shadow_err1 = _mm256_or_si256(shadow_err1,tempA); + tempA = _mm256_sub_epi64(tempB,prev_err1); + prev_err1 = tempB; + /* Next three intrinsics calculate tempB as abs of tempA */ + bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempA); + tempB = _mm256_xor_si256(tempA, bitmask); + tempB = _mm256_sub_epi64(tempB, bitmask); + total_err2 = _mm256_add_epi64(total_err2,tempB); + shadow_err2 = _mm256_or_si256(shadow_err2,tempB); + tempB = _mm256_sub_epi64(tempA,prev_err2); + prev_err2 = tempA; + /* Next three intrinsics calculate tempA as abs of tempB */ + bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempB); + tempA = _mm256_xor_si256(tempB, bitmask); + tempA = _mm256_sub_epi64(tempA, bitmask); + total_err3 = _mm256_add_epi64(total_err3,tempA); + shadow_err3 = _mm256_or_si256(shadow_err3,tempA); + tempA = _mm256_sub_epi64(tempB,prev_err3); + prev_err3 = tempB; + /* Next three intrinsics calculate tempB as abs of tempA */ + bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempA); + tempB = _mm256_xor_si256(tempA, bitmask); + tempB = _mm256_sub_epi64(tempB, bitmask); + total_err4 = _mm256_add_epi64(total_err4,tempB); + shadow_err4 = _mm256_or_si256(shadow_err4,tempB); + } + _mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err0); + total_error_0 += data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + _mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err1); + total_error_1 += data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + _mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err2); + total_error_2 += data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + _mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err3); + total_error_3 += data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + _mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err4); + total_error_4 += data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; + _mm256_storeu_si256((__m256i*)(void*)data_scalar,shadow_err0); + shadow_error_0 |= data_scalar[0] | data_scalar[1] | data_scalar[2] | data_scalar[3]; + _mm256_storeu_si256((__m256i*)(void*)data_scalar,shadow_err1); + shadow_error_1 |= data_scalar[0] | data_scalar[1] | data_scalar[2] | data_scalar[3]; + _mm256_storeu_si256((__m256i*)(void*)data_scalar,shadow_err2); + shadow_error_2 |= data_scalar[0] | data_scalar[1] | data_scalar[2] | data_scalar[3]; + _mm256_storeu_si256((__m256i*)(void*)data_scalar,shadow_err3); + shadow_error_3 |= data_scalar[0] | data_scalar[1] | data_scalar[2] | data_scalar[3]; + _mm256_storeu_si256((__m256i*)(void*)data_scalar,shadow_err4); + shadow_error_4 |= data_scalar[0] | data_scalar[1] | data_scalar[2] | data_scalar[3]; + + /* Take care of remaining sample */ + for(i = (data_len/4)*4; i < data_len_int; i++) { + error_0 = local_abs64((FLAC__int64)data[i]); + error_1 = local_abs64((FLAC__int64)data[i] - data[i-1]); + error_2 = local_abs64((FLAC__int64)data[i] - 2 * (FLAC__int64)data[i-1] + data[i-2]); + error_3 = local_abs64((FLAC__int64)data[i] - 3 * (FLAC__int64)data[i-1] + 3 * (FLAC__int64)data[i-2] - data[i-3]); + error_4 = local_abs64((FLAC__int64)data[i] - 4 * (FLAC__int64)data[i-1] + 6 * (FLAC__int64)data[i-2] - 4 * (FLAC__int64)data[i-3] + data[i-4]); + + total_error_0 += error_0; + total_error_1 += error_1; + total_error_2 += error_2; + total_error_3 += error_3; + total_error_4 += error_4; + + shadow_error_0 |= error_0; + shadow_error_1 |= error_1; + shadow_error_2 |= error_2; + shadow_error_3 |= error_3; + shadow_error_4 |= error_4; + } + + + CHECK_ORDER_IS_VALID(0); + CHECK_ORDER_IS_VALID(1); + CHECK_ORDER_IS_VALID(2); + CHECK_ORDER_IS_VALID(3); + CHECK_ORDER_IS_VALID(4); + + return order; +} + +#endif /* FLAC__AVX2_SUPPORTED */ +#endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */ +#endif /* FLAC__NO_ASM */ +#endif /* FLAC__INTEGER_ONLY_LIBRARY */ |