1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
/* replaygain_synthesis - Routines for applying ReplayGain to a signal
* Copyright (C) 2002-2009 Josh Coalson
* Copyright (C) 2011-2023 Xiph.Org Foundation
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* This is an aggregation of pieces of code from John Edwards' WaveGain
* program. Mostly cosmetic changes were made; otherwise, the dithering
* code is almost untouched and the gain processing was converted from
* processing a whole file to processing chunks of samples.
*
* The original copyright notices for WaveGain's dither.c and wavegain.c
* appear below:
*/
/*
* (c) 2002 John Edwards
* mostly lifted from work by Frank Klemm
* random functions for dithering.
*/
/*
* Copyright (C) 2002 John Edwards
* Additional code by Magnus Holmgren and Gian-Carlo Pascutto
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <string.h> /* for memset() */
#include <math.h>
#include "share/compat.h"
#include "share/replaygain_synthesis.h"
#include "FLAC/assert.h"
#define FLAC__I64L(x) x##LL
/*
* the following is based on parts of dither.c
*/
/*
* This is a simple random number generator with good quality for audio purposes.
* It consists of two polycounters with opposite rotation direction and different
* periods. The periods are coprime, so the total period is the product of both.
*
* -------------------------------------------------------------------------------------------------
* +-> |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0|
* | -------------------------------------------------------------------------------------------------
* | | | | | | |
* | +--+--+--+-XOR-+--------+
* | |
* +--------------------------------------------------------------------------------------+
*
* -------------------------------------------------------------------------------------------------
* |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0| <-+
* ------------------------------------------------------------------------------------------------- |
* | | | | |
* +--+----XOR----+--+ |
* | |
* +----------------------------------------------------------------------------------------+
*
*
* The first has an period of 3*5*17*257*65537, the second of 7*47*73*178481,
* which gives a period of 18.410.713.077.675.721.215. The result is the
* XORed values of both generators.
*/
static uint32_t random_int_(void)
{
static const uint8_t parity_[256] = {
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,
1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0
};
static uint32_t r1_ = 1;
static uint32_t r2_ = 1;
uint32_t t1, t2, t3, t4;
/* Parity calculation is done via table lookup, this is also available
* on CPUs without parity, can be implemented in C and avoid unpredictable
* jumps and slow rotate through the carry flag operations.
*/
t3 = t1 = r1_; t4 = t2 = r2_;
t1 &= 0xF5; t2 >>= 25;
t1 = parity_[t1]; t2 &= 0x63;
t1 <<= 31; t2 = parity_[t2];
return (r1_ = (t3 >> 1) | t1 ) ^ (r2_ = (t4 + t4) | t2 );
}
/* gives a equal distributed random number */
/* between -2^31*mult and +2^31*mult */
static double random_equi_(double mult)
{
return mult * (int) random_int_();
}
/* gives a triangular distributed random number */
/* between -2^32*mult and +2^32*mult */
static double random_triangular_(double mult)
{
return mult * ( (double) (int) random_int_() + (double) (int) random_int_() );
}
static const float F44_0 [16 + 32] = {
(float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,
(float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,
(float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,
(float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,
(float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0,
(float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0, (float)0
};
static const float F44_1 [16 + 32] = { /* SNR(w) = 4.843163 dB, SNR = -3.192134 dB */
(float) 0.85018292704024355931, (float) 0.29089597350995344721, (float)-0.05021866022121039450, (float)-0.23545456294599161833,
(float)-0.58362726442227032096, (float)-0.67038978965193036429, (float)-0.38566861572833459221, (float)-0.15218663390367969967,
(float)-0.02577543084864530676, (float) 0.14119295297688728127, (float) 0.22398848581628781612, (float) 0.15401727203382084116,
(float) 0.05216161232906000929, (float)-0.00282237820999675451, (float)-0.03042794608323867363, (float)-0.03109780942998826024,
(float) 0.85018292704024355931, (float) 0.29089597350995344721, (float)-0.05021866022121039450, (float)-0.23545456294599161833,
(float)-0.58362726442227032096, (float)-0.67038978965193036429, (float)-0.38566861572833459221, (float)-0.15218663390367969967,
(float)-0.02577543084864530676, (float) 0.14119295297688728127, (float) 0.22398848581628781612, (float) 0.15401727203382084116,
(float) 0.05216161232906000929, (float)-0.00282237820999675451, (float)-0.03042794608323867363, (float)-0.03109780942998826024,
(float) 0.85018292704024355931, (float) 0.29089597350995344721, (float)-0.05021866022121039450, (float)-0.23545456294599161833,
(float)-0.58362726442227032096, (float)-0.67038978965193036429, (float)-0.38566861572833459221, (float)-0.15218663390367969967,
(float)-0.02577543084864530676, (float) 0.14119295297688728127, (float) 0.22398848581628781612, (float) 0.15401727203382084116,
(float) 0.05216161232906000929, (float)-0.00282237820999675451, (float)-0.03042794608323867363, (float)-0.03109780942998826024,
};
static const float F44_2 [16 + 32] = { /* SNR(w) = 10.060213 dB, SNR = -12.766730 dB */
(float) 1.78827593892108555290, (float) 0.95508210637394326553, (float)-0.18447626783899924429, (float)-0.44198126506275016437,
(float)-0.88404052492547413497, (float)-1.42218907262407452967, (float)-1.02037566838362314995, (float)-0.34861755756425577264,
(float)-0.11490230170431934434, (float) 0.12498899339968611803, (float) 0.38065885268563131927, (float) 0.31883491321310506562,
(float) 0.10486838686563442765, (float)-0.03105361685110374845, (float)-0.06450524884075370758, (float)-0.02939198261121969816,
(float) 1.78827593892108555290, (float) 0.95508210637394326553, (float)-0.18447626783899924429, (float)-0.44198126506275016437,
(float)-0.88404052492547413497, (float)-1.42218907262407452967, (float)-1.02037566838362314995, (float)-0.34861755756425577264,
(float)-0.11490230170431934434, (float) 0.12498899339968611803, (float) 0.38065885268563131927, (float) 0.31883491321310506562,
(float) 0.10486838686563442765, (float)-0.03105361685110374845, (float)-0.06450524884075370758, (float)-0.02939198261121969816,
(float) 1.78827593892108555290, (float) 0.95508210637394326553, (float)-0.18447626783899924429, (float)-0.44198126506275016437,
(float)-0.88404052492547413497, (float)-1.42218907262407452967, (float)-1.02037566838362314995, (float)-0.34861755756425577264,
(float)-0.11490230170431934434, (float) 0.12498899339968611803, (float) 0.38065885268563131927, (float) 0.31883491321310506562,
(float) 0.10486838686563442765, (float)-0.03105361685110374845, (float)-0.06450524884075370758, (float)-0.02939198261121969816,
};
static const float F44_3 [16 + 32] = { /* SNR(w) = 15.382598 dB, SNR = -29.402334 dB */
(float) 2.89072132015058161445, (float) 2.68932810943698754106, (float) 0.21083359339410251227, (float)-0.98385073324997617515,
(float)-1.11047823227097316719, (float)-2.18954076314139673147, (float)-2.36498032881953056225, (float)-0.95484132880101140785,
(float)-0.23924057925542965158, (float)-0.13865235703915925642, (float) 0.43587843191057992846, (float) 0.65903257226026665927,
(float) 0.24361815372443152787, (float)-0.00235974960154720097, (float) 0.01844166574603346289, (float) 0.01722945988740875099,
(float) 2.89072132015058161445, (float) 2.68932810943698754106, (float) 0.21083359339410251227, (float)-0.98385073324997617515,
(float)-1.11047823227097316719, (float)-2.18954076314139673147, (float)-2.36498032881953056225, (float)-0.95484132880101140785,
(float)-0.23924057925542965158, (float)-0.13865235703915925642, (float) 0.43587843191057992846, (float) 0.65903257226026665927,
(float) 0.24361815372443152787, (float)-0.00235974960154720097, (float) 0.01844166574603346289, (float) 0.01722945988740875099,
(float) 2.89072132015058161445, (float) 2.68932810943698754106, (float) 0.21083359339410251227, (float)-0.98385073324997617515,
(float)-1.11047823227097316719, (float)-2.18954076314139673147, (float)-2.36498032881953056225, (float)-0.95484132880101140785,
(float)-0.23924057925542965158, (float)-0.13865235703915925642, (float) 0.43587843191057992846, (float) 0.65903257226026665927,
(float) 0.24361815372443152787, (float)-0.00235974960154720097, (float) 0.01844166574603346289, (float) 0.01722945988740875099
};
static double scalar16_(const float* x, const float* y)
{
return
x[ 0]*y[ 0] + x[ 1]*y[ 1] + x[ 2]*y[ 2] + x[ 3]*y[ 3] +
x[ 4]*y[ 4] + x[ 5]*y[ 5] + x[ 6]*y[ 6] + x[ 7]*y[ 7] +
x[ 8]*y[ 8] + x[ 9]*y[ 9] + x[10]*y[10] + x[11]*y[11] +
x[12]*y[12] + x[13]*y[13] + x[14]*y[14] + x[15]*y[15];
}
void FLAC__replaygain_synthesis__init_dither_context(DitherContext *d, int bits, int shapingtype)
{
static uint8_t default_dither [] = { 92, 92, 88, 84, 81, 78, 74, 67, 0, 0 };
static const float* F [] = { F44_0, F44_1, F44_2, F44_3 };
int indx;
if (shapingtype < 0) shapingtype = 0;
if (shapingtype > 3) shapingtype = 3;
d->ShapingType = (NoiseShaping)shapingtype;
indx = bits - 11 - shapingtype;
if (indx < 0) indx = 0;
if (indx > 9) indx = 9;
memset ( d->ErrorHistory , 0, sizeof (d->ErrorHistory ) );
memset ( d->DitherHistory, 0, sizeof (d->DitherHistory) );
d->FilterCoeff = F [shapingtype];
d->Mask = ((FLAC__uint64)-1) << (32 - bits);
d->Add = 0.5 * ((1L << (32 - bits)) - 1);
d->Dither = 0.01f*default_dither[indx] / (((FLAC__int64)1) << bits);
d->LastHistoryIndex = 0;
}
static inline int64_t
ROUND64 (DitherContext *d, double x)
{
union {
double d;
int64_t i;
} doubletmp;
doubletmp.d = x + d->Add + (int64_t)FLAC__I64L(0x001FFFFD80000000);
return doubletmp.i - (int64_t)FLAC__I64L(0x433FFFFD80000000);
}
/*
* the following is based on parts of wavegain.c
*/
static int64_t dither_output_(DitherContext *d, FLAC__bool do_dithering, int shapingtype, int i, double Sum, int k)
{
double Sum2;
int64_t val;
if(do_dithering) {
if(shapingtype == 0) {
double tmp = random_equi_(d->Dither);
Sum2 = tmp - d->LastRandomNumber [k];
d->LastRandomNumber [k] = (int)tmp;
Sum2 = Sum += Sum2;
val = ROUND64(d, Sum2) & d->Mask;
}
else {
Sum2 = random_triangular_(d->Dither) - scalar16_(d->DitherHistory[k], d->FilterCoeff + i);
Sum += d->DitherHistory [k] [(-1-i)&15] = (float)Sum2;
Sum2 = Sum + scalar16_(d->ErrorHistory [k], d->FilterCoeff + i);
val = ROUND64(d, Sum2) & d->Mask;
d->ErrorHistory [k] [(-1-i)&15] = (float)(Sum - val);
}
return val;
}
return ROUND64(d, Sum);
}
#if 0
float peak = 0.f,
new_peak,
factor_clip
double scale,
dB;
...
peak is in the range -32768.0 .. 32767.0
/* calculate factors for ReplayGain and ClippingPrevention */
*track_gain = GetTitleGain() + settings->man_gain;
scale = (float) pow(10., *track_gain * 0.05);
if(settings->clip_prev) {
factor_clip = (float) (32767./( peak + 1));
if(scale < factor_clip)
factor_clip = 1.f;
else
factor_clip /= scale;
scale *= factor_clip;
}
new_peak = (float) peak * scale;
dB = 20. * log10(scale);
*track_gain = (float) dB;
const double scale = pow(10., (double)gain * 0.05);
#endif
size_t FLAC__replaygain_synthesis__apply_gain(FLAC__byte *data_out, FLAC__bool little_endian_data_out, FLAC__bool uint32_t_data_out, const FLAC__int32 * const input[], uint32_t wide_samples, uint32_t channels, const uint32_t source_bps, const uint32_t target_bps, const double scale, const FLAC__bool hard_limit, FLAC__bool do_dithering, DitherContext *dither_context)
{
static const FLAC__int64 hard_clip_factors_[33] = {
0, /* 0 bits-per-sample (not supported) */
0, /* 1 bits-per-sample (not supported) */
0, /* 2 bits-per-sample (not supported) */
0, /* 3 bits-per-sample (not supported) */
-8, /* 4 bits-per-sample */
-16, /* 5 bits-per-sample */
-32, /* 6 bits-per-sample */
-64, /* 7 bits-per-sample */
-128, /* 8 bits-per-sample */
-256, /* 9 bits-per-sample */
-512, /* 10 bits-per-sample */
-1024, /* 11 bits-per-sample */
-2048, /* 12 bits-per-sample */
-4096, /* 13 bits-per-sample */
-8192, /* 14 bits-per-sample */
-16384, /* 15 bits-per-sample */
-32768, /* 16 bits-per-sample */
-65536, /* 17 bits-per-sample */
-131072, /* 18 bits-per-sample */
-262144, /* 19 bits-per-sample */
-524288, /* 20 bits-per-sample */
-1048576, /* 21 bits-per-sample */
-2097152, /* 22 bits-per-sample */
-4194304, /* 23 bits-per-sample */
-8388608, /* 24 bits-per-sample */
-16777216, /* 25 bits-per-sample */
-33554432, /* 26 bits-per-sample */
-67108864, /* 27 bits-per-sample */
-134217728, /* 28 bits-per-sample */
-268435456, /* 29 bits-per-sample */
-536870912, /* 30 bits-per-sample */
-1073741824, /* 31 bits-per-sample */
(FLAC__int64)(-1073741824) * 2 /* 32 bits-per-sample */
};
const FLAC__int32 conv_shift = 32 - target_bps;
const FLAC__int64 hard_clip_factor = hard_clip_factors_[target_bps];
/*
* The integer input coming in has a varying range based on the
* source_bps. We want to normalize it to [-1.0, 1.0) so instead
* of doing two multiplies on each sample, we just multiple
* 'scale' by 1/(2^(source_bps-1))
*/
const double multi_scale = scale / (double)(1u << (source_bps-1));
FLAC__byte * const start = data_out;
uint32_t i, channel;
const FLAC__int32 *input_;
double sample;
const uint32_t bytes_per_sample = target_bps / 8;
const uint32_t last_history_index = dither_context->LastHistoryIndex;
NoiseShaping noise_shaping = dither_context->ShapingType;
FLAC__int64 val64;
FLAC__int32 val32;
FLAC__int32 uval32;
const FLAC__uint32 twiggle = 1u << (target_bps - 1);
FLAC__ASSERT(channels > 0 && channels <= FLAC_SHARE__MAX_SUPPORTED_CHANNELS);
FLAC__ASSERT(source_bps >= 4);
FLAC__ASSERT(target_bps >= 4);
FLAC__ASSERT(source_bps <= 32);
FLAC__ASSERT(target_bps < 32);
FLAC__ASSERT((target_bps & 7) == 0);
for(channel = 0; channel < channels; channel++) {
const uint32_t incr = bytes_per_sample * channels;
data_out = start + bytes_per_sample * channel;
input_ = input[channel];
for(i = 0; i < wide_samples; i++, data_out += incr) {
sample = (double)input_[i] * multi_scale;
if(hard_limit) {
/* hard 6dB limiting */
if(sample < -0.5)
sample = tanh((sample + 0.5) / (1-0.5)) * (1-0.5) - 0.5;
else if(sample > 0.5)
sample = tanh((sample - 0.5) / (1-0.5)) * (1-0.5) + 0.5;
}
sample *= 2147483647.;
val64 = dither_output_(dither_context, do_dithering, noise_shaping, (i + last_history_index) % 32, sample, channel) >> conv_shift;
val32 = (FLAC__int32)val64;
if(val64 >= -hard_clip_factor)
val32 = (FLAC__int32)(-(hard_clip_factor+1));
else if(val64 < hard_clip_factor)
val32 = (FLAC__int32)hard_clip_factor;
uval32 = (FLAC__uint32)val32;
if (uint32_t_data_out)
uval32 ^= twiggle;
if (little_endian_data_out) {
switch(target_bps) {
case 24:
data_out[2] = (FLAC__byte)(uval32 >> 16);
/* fall through */
case 16:
data_out[1] = (FLAC__byte)(uval32 >> 8);
/* fall through */
case 8:
data_out[0] = (FLAC__byte)uval32;
break;
}
}
else {
switch(target_bps) {
case 24:
data_out[0] = (FLAC__byte)(uval32 >> 16);
data_out[1] = (FLAC__byte)(uval32 >> 8);
data_out[2] = (FLAC__byte)uval32;
break;
case 16:
data_out[0] = (FLAC__byte)(uval32 >> 8);
data_out[1] = (FLAC__byte)uval32;
break;
case 8:
data_out[0] = (FLAC__byte)uval32;
break;
}
}
}
}
dither_context->LastHistoryIndex = (last_history_index + wide_samples) % 32;
return wide_samples * channels * (target_bps/8);
}
|