diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-09 13:16:35 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-09 13:16:35 +0000 |
commit | e2bbf175a2184bd76f6c54ccf8456babeb1a46fc (patch) | |
tree | f0b76550d6e6f500ada964a3a4ee933a45e5a6f1 /doc/developer/ospf-api.rst | |
parent | Initial commit. (diff) | |
download | frr-e2bbf175a2184bd76f6c54ccf8456babeb1a46fc.tar.xz frr-e2bbf175a2184bd76f6c54ccf8456babeb1a46fc.zip |
Adding upstream version 9.1.upstream/9.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'doc/developer/ospf-api.rst')
-rw-r--r-- | doc/developer/ospf-api.rst | 383 |
1 files changed, 383 insertions, 0 deletions
diff --git a/doc/developer/ospf-api.rst b/doc/developer/ospf-api.rst new file mode 100644 index 0000000..41c31b2 --- /dev/null +++ b/doc/developer/ospf-api.rst @@ -0,0 +1,383 @@ +OSPF API Documentation +====================== + +Disclaimer +---------- + +The OSPF daemon contains an API for application access to the LSA database. +This API and documentation was created by Ralph Keller, originally as patch for +Zebra. Unfortunately, the page containing documentation for the API is no +longer online. This page is an attempt to recreate documentation for the API +(with lots of help from the WayBackMachine). + +Ralph has kindly licensed this documentation under GPLv2+. Please preserve the +acknowledgements at the bottom of this document. + +Introduction +------------ + +This page describes an API that allows external applications to access the +link-state database (LSDB) of the OSPF daemon. The implementation is based on +the OSPF code from FRRouting (forked from Quagga and formerly Zebra) routing +protocol suite and is subject to the GNU General Public License. The OSPF API +provides you with the following functionality: + +- Retrieval of the full or partial link-state database of the OSPF daemon. + This allows applications to obtain an exact copy of the LSDB including router + LSAs, network LSAs and so on. Whenever a new LSA arrives at the OSPF daemon, + the API module immediately informs the application by sending a message. This + way, the application is always synchronized with the LSDB of the OSPF daemon. +- Origination of own opaque LSAs (of type 9, 10, or 11) which are then + distributed transparently to other routers within the flooding scope and + received by other applications through the OSPF API. + +Opaque LSAs, which are described in :rfc:`2370`, allow you to distribute +application-specific information within a network using the OSPF protocol. The +information contained in opaque LSAs is transparent for the routing process but +it can be processed by other modules such as traffic engineering (e.g., +MPLS-TE). + +Architecture +------------ + +The following picture depicts the architecture of the Quagga/Zebra protocol +suite. The OSPF daemon is extended with opaque LSA capabilities and an API for +external applications. The OSPF core module executes the OSPF protocol by +discovering neighbors and exchanging neighbor state. The opaque module, +implemented by Masahiko Endo, provides functions to exchange opaque LSAs +between routers. Opaque LSAs can be generated by several modules such as the +MPLS-TE module or the API server module. These modules then invoke the opaque +module to flood their data to neighbors within the flooding scope. + +The client, which is an application potentially running on a different node +than the OSPF daemon, links against the OSPF API client library. This client +library establishes a socket connection with the API server module of the OSPF +daemon and uses this connection to retrieve LSAs and originate opaque LSAs. + +.. figure:: ../figures/ospf_api_architecture.png + :alt: image + + image + +The OSPF API server module works like any other internal opaque module (such as +the MPLS-TE module), but listens to connections from external applications that +want to communicate with the OSPF daemon. The API server module can handle +multiple clients concurrently. + +One of the main objectives of the implementation is to make as little changes +to the existing Zebra code as possible. + +Installation & Configuration +---------------------------- + +Download FRRouting and unpack it. + +Configure and build FRR (note that ``--enable-opaque-lsa`` also enables the +ospfapi server and ospfclient). + +:: + + % sh ./configure --enable-opaque-lsa + % make + +This should also compile the client library and sample application in +ospfclient. + +Make sure that you have enabled opaque LSAs in your configuration. Add the +``ospf opaque-lsa`` statement to your :file:`ospfd.conf`: + +:: + + ! -*- ospf -*- + ! + ! OSPFd sample configuration file + ! + ! + hostname xxxxx + password xxxxx + + router ospf + router-id 10.0.0.1 + network 10.0.0.1/24 area 1 + neighbor 10.0.0.2 + network 10.0.1.2/24 area 1 + neighbor 10.0.1.1 + ospf opaque-lsa <============ add this statement! + +Usage +----- + +In the following we describe how you can use the sample application to +originate opaque LSAs. The sample application first registers with the OSPF +daemon the opaque type it wants to inject and then waits until the OSPF daemon +is ready to accept opaque LSAs of that type. Then the client application +originates an opaque LSA, waits 10 seconds and then updates the opaque LSA with +new opaque data. After another 20 seconds, the client application deletes the +opaque LSA from the LSDB. If the clients terminates unexpectedly, the OSPF API +module will remove all the opaque LSAs that the application registered. Since +the opaque LSAs are flooded to other routers, we will see the opaque LSAs in +all routers according to the flooding scope of the opaque LSA. + +We have a very simple demo setup, just two routers connected with an ATM +point-to-point link. Start the modified OSPF daemons on two adjacent routers. +First run on msr2: + +.. code-block:: console + + # ./ospfd --apiserver -f /usr/local/etc/ospfd.conf + +And on the neighboring router msr3: + +.. code-block:: console + + # ./ospfd --apiserver -f /usr/local/etc/ospfd.conf + +Now the two routers form adjacency and start exchanging their databases. +Looking at the OSPF daemon of msr2 (or msr3), you see this: + +.. code-block:: console + + ospfd> show ip ospf database + + OSPF Router with ID (10.0.0.1) + + Router Link States (Area 0.0.0.1) + + Link ID ADV Router Age Seq# CkSum Link count + 10.0.0.1 10.0.0.1 55 0x80000003 0xc62f 2 + 10.0.0.2 10.0.0.2 55 0x80000003 0xe3e4 3 + + Net Link States (Area 0.0.0.1) + + Link ID ADV Router Age Seq# CkSum + 10.0.0.2 10.0.0.2 60 0x80000001 0x5fcb + +Now we start the sample main application that originates an opaque LSA. + +.. code-block:: console + + # cd ospfapi/apiclient + # ./main msr2 10 250 20 0.0.0.0 0.0.0.1 + +This originates an opaque LSA of type 10 (area local), with opaque type 250 +(experimental), opaque id of 20 (chosen arbitrarily), interface address 0.0.0.0 +(which is used only for opaque LSAs type 9), and area 0.0.0.1 + +Again looking at the OSPF database you see: + +.. code-block:: console + + ospfd> show ip ospf database + + OSPF Router with ID (10.0.0.1) + + Router Link States (Area 0.0.0.1) + + Link ID ADV Router Age Seq# CkSum Link count + 10.0.0.1 10.0.0.1 437 0x80000003 0xc62f 2 + 10.0.0.2 10.0.0.2 437 0x80000003 0xe3e4 3 + + Net Link States (Area 0.0.0.1) + + Link ID ADV Router Age Seq# CkSum + 10.0.0.2 10.0.0.2 442 0x80000001 0x5fcb + + Area-Local Opaque-LSA (Area 0.0.0.1) + + Opaque-Type/Id ADV Router Age Seq# CkSum + 250.0.0.20 10.0.0.1 0 0x80000001 0x58a6 <=== opaque LSA + +You can take a closer look at this opaque LSA: + +.. code-block:: console + + ospfd> show ip ospf database opaque-area + + OSPF Router with ID (10.0.0.1) + + + Area-Local Opaque-LSA (Area 0.0.0.1) + + LS age: 4 + Options: 66 + LS Type: Area-Local Opaque-LSA + Link State ID: 250.0.0.20 (Area-Local Opaque-Type/ID) + Advertising Router: 10.0.0.1 + LS Seq Number: 80000001 + Checksum: 0x58a6 + Length: 24 + Opaque-Type 250 (Private/Experimental) + Opaque-ID 0x14 + Opaque-Info: 4 octets of data + Added using OSPF API: 4 octets of opaque data + Opaque data: 1 0 0 0 <==== counter is 1 + +Note that the main application updates the opaque LSA after 10 seconds, then it +looks as follows: + +.. code-block:: console + + ospfd> show ip ospf database opaque-area + + OSPF Router with ID (10.0.0.1) + + + Area-Local Opaque-LSA (Area 0.0.0.1) + + LS age: 1 + Options: 66 + LS Type: Area-Local Opaque-LSA + Link State ID: 250.0.0.20 (Area-Local Opaque-Type/ID) + Advertising Router: 10.0.0.1 + LS Seq Number: 80000002 + Checksum: 0x59a3 + Length: 24 + Opaque-Type 250 (Private/Experimental) + Opaque-ID 0x14 + Opaque-Info: 4 octets of data + Added using OSPF API: 4 octets of opaque data + Opaque data: 2 0 0 0 <==== counter is now 2 + +Note that the payload of the opaque LSA has changed as you can see above. + +Then, again after another 20 seconds, the opaque LSA is flushed from the LSDB. + +Important note: +^^^^^^^^^^^^^^^ + +In order to originate an opaque LSA, there must be at least one active +opaque-capable neighbor. Thus, you cannot originate opaque LSAs if no neighbors +are present. If you try to originate when no neighbors are ready, you will +receive a not ready error message. The reason for this restriction is that it +might be possible that some routers have an identical opaque LSA from a +previous origination in their LSDB that unfortunately could not be flushed due +to a crash, and now if the router comes up again and starts originating a new +opaque LSA, the new opaque LSA is considered older since it has a lower +sequence number and is ignored by other routers (that consider the stalled +opaque LSA as more recent). However, if the originating router first +synchronizes the database before originating opaque LSAs, it will detect the +older opaque LSA and can flush it first. + +Protocol and Message Formats +---------------------------- + +If you are developing your own client application and you don't want to make +use of the client library (due to the GNU license restriction or whatever +reason), you can implement your own client-side message handling. The OSPF API +uses two connections between the client and the OSPF API server: One connection +is used for a synchronous request /reply protocol and another connection is +used for asynchronous notifications (e.g., LSA update, neighbor status change). + +Each message begins with the following header: + +.. figure:: ../figures/ospf_api_msghdr.png + :alt: image + + image + +The message type field can take one of the following values: + ++-------------------------------+---------+ +| Messages to OSPF daemon | Value | ++===============================+=========+ +| MSG\_REGISTER\_OPAQUETYPE | 1 | ++-------------------------------+---------+ +| MSG\_UNREGISTER\_OPAQUETYPE | 2 | ++-------------------------------+---------+ +| MSG\_REGISTER\_EVENT | 3 | ++-------------------------------+---------+ +| MSG\_SYNC\_LSDB | 4 | ++-------------------------------+---------+ +| MSG\_ORIGINATE\_REQUEST | 5 | ++-------------------------------+---------+ +| MSG\_DELETE\_REQUEST | 6 | ++-------------------------------+---------+ + ++-----------------------------+---------+ +| Messages from OSPF daemon | Value | ++=============================+=========+ +| MSG\_REPLY | 10 | ++-----------------------------+---------+ +| MSG\_READY\_NOTIFY | 11 | ++-----------------------------+---------+ +| MSG\_LSA\_UPDATE\_NOTIFY | 12 | ++-----------------------------+---------+ +| MSG\_LSA\_DELETE\_NOTIFY | 13 | ++-----------------------------+---------+ +| MSG\_NEW\_IF | 14 | ++-----------------------------+---------+ +| MSG\_DEL\_IF | 15 | ++-----------------------------+---------+ +| MSG\_ISM\_CHANGE | 16 | ++-----------------------------+---------+ +| MSG\_NSM\_CHANGE | 17 | ++-----------------------------+---------+ + +The synchronous requests and replies have the following message formats: + +.. figure:: ../figures/ospf_api_msgs1.png + :alt: image + + image + +The origin field allows origin-based filtering using the following origin +types: + ++-------------------------+---------+ +| Origin | Value | ++=========================+=========+ +| NON\_SELF\_ORIGINATED | 0 | ++-------------------------+---------+ +| SELF\_ORIGINATED | 1 | ++-------------------------+---------+ +| ANY\_ORIGIN | 2 | ++-------------------------+---------+ + +The reply message has one of the following error codes: + ++--------------------------+---------+ +| Error code | Value | ++==========================+=========+ +| API\_OK | 0 | ++--------------------------+---------+ +| API\_NOSUCHINTERFACE | -1 | ++--------------------------+---------+ +| API\_NOSUCHAREA | -2 | ++--------------------------+---------+ +| API\_NOSUCHLSA | -3 | ++--------------------------+---------+ +| API\_ILLEGALSATYPE | -4 | ++--------------------------+---------+ +| API\_ILLEGALOPAQUETYPE | -5 | ++--------------------------+---------+ +| API\_OPAQUETYPEINUSE | -6 | ++--------------------------+---------+ +| API\_NOMEMORY | -7 | ++--------------------------+---------+ +| API\_ERROR | -99 | ++--------------------------+---------+ +| API\_UNDEF | -100 | ++--------------------------+---------+ + +The asynchronous notifications have the following message formats: + +.. figure:: ../figures/ospf_api_msgs2.png + :alt: image + + image + + +.. Do not delete these acknowledgements! + +Original Acknowledgments from Ralph Keller +------------------------------------------ + +I would like to thank Masahiko Endo, the author of the opaque LSA extension +module, for his great support. His wonderful ASCII graphs explaining the +internal workings of this code, and his invaluable input proved to be crucial +in designing a useful API for accessing the link state database of the OSPF +daemon. Once, he even decided to take the plane from Tokyo to Zurich so that we +could actually meet and have face-to-face discussions, which was a lot of fun. +Clearly, without Masahiko no API would ever be completed. I also would like to +thank Daniel Bauer who wrote an opaque LSA implementation too and was willing +to test the OSPF API code in one of his projects. |