1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
// SPDX-License-Identifier: MIT
/*
Copyright (c) 2007, 2008 by Juliusz Chroboczek
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <zebra.h>
#include "if.h"
#include "babel_main.h"
#include "babeld.h"
#include "util.h"
#include "babel_interface.h"
#include "neighbour.h"
#include "source.h"
#include "route.h"
#include "message.h"
#include "resend.h"
#include "babel_errors.h"
struct neighbour *neighs = NULL;
static struct neighbour *
find_neighbour_nocreate(const unsigned char *address, struct interface *ifp)
{
struct neighbour *neigh;
FOR_ALL_NEIGHBOURS(neigh) {
if(memcmp(address, neigh->address, 16) == 0 && neigh->ifp == ifp)
return neigh;
}
return NULL;
}
void flush_neighbour(struct neighbour *neigh)
{
debugf(BABEL_DEBUG_COMMON,"Flushing neighbour %s (reach 0x%04x)",
format_address(neigh->address), neigh->reach);
flush_neighbour_routes(neigh);
if(unicast_neighbour == neigh)
flush_unicast(1);
flush_resends(neigh);
if(neighs == neigh) {
neighs = neigh->next;
} else {
struct neighbour *previous = neighs;
while(previous->next != neigh)
previous = previous->next;
previous->next = neigh->next;
}
free(neigh);
}
struct neighbour *
find_neighbour(const unsigned char *address, struct interface *ifp)
{
struct neighbour *neigh;
const struct timeval zero = {0, 0};
neigh = find_neighbour_nocreate(address, ifp);
if(neigh)
return neigh;
debugf(BABEL_DEBUG_COMMON,"Creating neighbour %s on %s.",
format_address(address), ifp->name);
neigh = malloc(sizeof(struct neighbour));
if(neigh == NULL) {
flog_err(EC_BABEL_MEMORY, "malloc(neighbour): %s",
safe_strerror(errno));
return NULL;
}
neigh->hello_seqno = -1;
memcpy(neigh->address, address, 16);
neigh->reach = 0;
neigh->txcost = INFINITY;
neigh->ihu_time = babel_now;
neigh->hello_time = zero;
neigh->hello_interval = 0;
neigh->ihu_interval = 0;
neigh->hello_send_us = 0;
neigh->hello_rtt_receive_time = zero;
neigh->rtt = 0;
neigh->rtt_time = zero;
neigh->ifp = ifp;
neigh->next = neighs;
neighs = neigh;
send_hello(ifp);
return neigh;
}
/* Recompute a neighbour's rxcost. Return true if anything changed. */
int update_neighbour(struct neighbour *neigh, int hello, int hello_interval)
{
int missed_hellos;
int rc = 0;
if(hello < 0) {
if(neigh->hello_interval == 0)
return rc;
missed_hellos =
((int)timeval_minus_msec(&babel_now, &neigh->hello_time) -
neigh->hello_interval * 7) /
(neigh->hello_interval * 10);
if(missed_hellos <= 0)
return rc;
timeval_add_msec(&neigh->hello_time, &neigh->hello_time,
missed_hellos * neigh->hello_interval * 10);
} else {
if(neigh->hello_seqno >= 0 && neigh->reach > 0) {
missed_hellos = seqno_minus(hello, neigh->hello_seqno) - 1;
if(missed_hellos < -8) {
/* Probably a neighbour that rebooted and lost its seqno.
Reboot the universe. */
neigh->reach = 0;
missed_hellos = 0;
rc = 1;
} else if(missed_hellos < 0) {
if(hello_interval > neigh->hello_interval) {
/* This neighbour has increased its hello interval,
and we didn't notice. */
neigh->reach <<= -missed_hellos;
missed_hellos = 0;
} else {
/* Late hello. Probably due to the link layer buffering
packets during a link outage. Ignore it, but reset
the expected seqno. */
neigh->hello_seqno = hello;
hello = -1;
missed_hellos = 0;
}
rc = 1;
}
} else {
missed_hellos = 0;
}
neigh->hello_time = babel_now;
neigh->hello_interval = hello_interval;
}
if(missed_hellos > 0) {
neigh->reach >>= missed_hellos;
neigh->hello_seqno = seqno_plus(neigh->hello_seqno, missed_hellos);
rc = 1;
}
if(hello >= 0) {
neigh->hello_seqno = hello;
neigh->reach >>= 1;
SET_FLAG(neigh->reach, 0x8000);
if(CHECK_FLAG(neigh->reach, 0xFC00) != 0xFC00)
rc = 1;
}
/* Make sure to give neighbours some feedback early after association */
if(CHECK_FLAG(neigh->reach, 0xBF00) == 0x8000) {
/* A new neighbour */
send_hello(neigh->ifp);
} else {
/* Don't send hellos, in order to avoid a positive feedback loop. */
int a = CHECK_FLAG(neigh->reach, 0xC000);
int b = CHECK_FLAG(neigh->reach, 0x3000);
if((a == 0xC000 && b == 0) || (a == 0 && b == 0x3000)) {
/* Reachability is either 1100 or 0011 */
send_self_update(neigh->ifp);
}
}
if(CHECK_FLAG(neigh->reach, 0xFC00) == 0xC000) {
/* This is a newish neighbour, let's request a full route dump.
We ought to avoid this when the network is dense */
send_unicast_request(neigh, NULL, 0);
send_ihu(neigh, NULL);
}
return rc;
}
static int reset_txcost(struct neighbour *neigh)
{
unsigned delay;
delay = timeval_minus_msec(&babel_now, &neigh->ihu_time);
if(neigh->ihu_interval > 0 && delay < neigh->ihu_interval * 10U * 3U)
return 0;
/* If we're losing a lot of packets, we probably lost an IHU too */
if (delay >= 180000 || CHECK_FLAG(neigh->reach, 0xFFF0) == 0 ||
(neigh->ihu_interval > 0 && delay >= neigh->ihu_interval * 10U * 10U)) {
neigh->txcost = INFINITY;
neigh->ihu_time = babel_now;
return 1;
}
return 0;
}
unsigned neighbour_txcost(struct neighbour *neigh)
{
return neigh->txcost;
}
unsigned check_neighbours(void)
{
struct neighbour *neigh;
int changed, rc;
unsigned msecs = 50000;
debugf(BABEL_DEBUG_COMMON,"Checking neighbours.");
neigh = neighs;
while(neigh) {
changed = update_neighbour(neigh, -1, 0);
if(neigh->reach == 0 ||
neigh->hello_time.tv_sec > babel_now.tv_sec || /* clock stepped */
timeval_minus_msec(&babel_now, &neigh->hello_time) > 300000) {
struct neighbour *old = neigh;
neigh = neigh->next;
flush_neighbour(old);
continue;
}
rc = reset_txcost(neigh);
changed = changed || rc;
update_neighbour_metric(neigh, changed);
if(neigh->hello_interval > 0)
msecs = MIN(msecs, neigh->hello_interval * 10U);
if(neigh->ihu_interval > 0)
msecs = MIN(msecs, neigh->ihu_interval * 10U);
neigh = neigh->next;
}
return msecs;
}
unsigned neighbour_rxcost(struct neighbour *neigh)
{
unsigned delay;
unsigned short reach = neigh->reach;
delay = timeval_minus_msec(&babel_now, &neigh->hello_time);
if(CHECK_FLAG(reach, 0xFFF0) == 0 || delay >= 180000) {
return INFINITY;
} else if (CHECK_FLAG(babel_get_if_nfo(neigh->ifp)->flags, BABEL_IF_LQ)) {
int sreach =
(CHECK_FLAG(reach, 0x8000) >> 2) +
(CHECK_FLAG(reach, 0x4000) >> 1) +
CHECK_FLAG(reach, 0x3FFF);
/* 0 <= sreach <= 0x7FFF */
int cost = (0x8000 * babel_get_if_nfo(neigh->ifp)->cost) / (sreach + 1);
/* cost >= interface->cost */
if(delay >= 40000)
cost = (cost * (delay - 20000) + 10000) / 20000;
return MIN(cost, INFINITY);
} else {
/* To lose one hello is a misfortune, to lose two is carelessness. */
if (CHECK_FLAG(reach, 0xC000) == 0xC000)
return babel_get_if_nfo(neigh->ifp)->cost;
else if (CHECK_FLAG(reach, 0xC000) == 0)
return INFINITY;
else if (CHECK_FLAG(reach, 0x2000))
return babel_get_if_nfo(neigh->ifp)->cost;
else
return INFINITY;
}
}
unsigned neighbour_rttcost(struct neighbour *neigh)
{
struct interface *ifp = neigh->ifp;
babel_interface_nfo *babel_ifp = babel_get_if_nfo(ifp);
if(!babel_ifp->max_rtt_penalty || !valid_rtt(neigh))
return 0;
/* Function: linear behaviour between rtt_min and rtt_max. */
if(neigh->rtt <= babel_ifp->rtt_min) {
return 0;
} else if(neigh->rtt <= babel_ifp->rtt_max) {
unsigned long long tmp =
(unsigned long long)babel_ifp->max_rtt_penalty *
(neigh->rtt - babel_ifp->rtt_min) /
(babel_ifp->rtt_max - babel_ifp->rtt_min);
assert(CHECK_FLAG(tmp, 0x7FFFFFFF) == tmp);
return tmp;
} else {
return babel_ifp->max_rtt_penalty;
}
}
unsigned neighbour_cost(struct neighbour *neigh)
{
unsigned a, b, cost;
if(!if_up(neigh->ifp))
return INFINITY;
a = neighbour_txcost(neigh);
if(a >= INFINITY)
return INFINITY;
b = neighbour_rxcost(neigh);
if(b >= INFINITY)
return INFINITY;
if (!CHECK_FLAG(babel_get_if_nfo(neigh->ifp)->flags, BABEL_IF_LQ)
|| (a < 256 && b < 256)) {
cost = a;
} else {
/* a = 256/alpha, b = 256/beta, where alpha and beta are the expected
probabilities of a packet getting through in the direct and reverse
directions. */
a = MAX(a, 256);
b = MAX(b, 256);
/* 1/(alpha * beta), which is just plain ETX. */
/* Since a and b are capped to 16 bits, overflow is impossible. */
cost = (a * b + 128) >> 8;
}
cost += neighbour_rttcost(neigh);
return MIN(cost, INFINITY);
}
int valid_rtt(struct neighbour *neigh)
{
return (timeval_minus_msec(&babel_now, &neigh->rtt_time) < 180000) ? 1 : 0;
}
|