summaryrefslogtreecommitdiffstats
path: root/lib/cspf.c
blob: c17d8e0929da940b971cea658b301375177426b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Constraints Shortest Path First algorithms - cspf.c
 *
 * Author: Olivier Dugeon <olivier.dugeon@orange.com>
 *
 * Copyright (C) 2022 Orange http://www.orange.com
 *
 * This file is part of Free Range Routing (FRR).
 */

#include <zebra.h>

#include "if.h"
#include "linklist.h"
#include "log.h"
#include "hash.h"
#include "memory.h"
#include "prefix.h"
#include "table.h"
#include "stream.h"
#include "printfrr.h"
#include "link_state.h"
#include "cspf.h"

/* Link State Memory allocation */
DEFINE_MTYPE_STATIC(LIB, PCA, "Path Computation Algorithms");

/**
 * Create new Constrained Path. Memory is dynamically allocated.
 *
 * @param key	Vertex key of the destination of this path
 *
 * @return	Pointer to a new Constrained Path structure
 */
static struct c_path *cpath_new(uint64_t key)
{
	struct c_path *path;

	/* Sanity Check */
	if (key == 0)
		return NULL;

	path = XCALLOC(MTYPE_PCA, sizeof(struct c_path));
	path->dst = key;
	path->status = IN_PROGRESS;
	path->edges = list_new();
	path->weight = MAX_COST;

	return path;
}

/**
 * Copy src Constrained Path into dst Constrained Path. A new Constrained Path
 * structure is dynamically allocated if dst is NULL. If src is NULL, the
 * function return the dst disregarding if it is NULL or not.
 *
 * @param dest	Destination Constrained Path structure
 * @param src	Source Constrained Path structure
 *
 * @return	Pointer to the destination Constrained Path structure
 */
static struct c_path *cpath_copy(struct c_path *dest, const struct c_path *src)
{
	struct c_path *new_path;

	if (!src)
		return dest;

	if (!dest) {
		new_path = XCALLOC(MTYPE_PCA, sizeof(struct c_path));
	} else {
		new_path = dest;
		if (dest->edges)
			list_delete(&new_path->edges);
	}

	new_path->dst = src->dst;
	new_path->weight = src->weight;
	new_path->edges = list_dup(src->edges);
	new_path->status = src->status;

	return new_path;
}

/**
 * Delete Constrained Path structure. Previous allocated memory is freed.
 *
 * @param path	Constrained Path structure to be deleted
 */
void cpath_del(struct c_path *path)
{
	if (!path)
		return;

	if (path->edges)
		list_delete(&path->edges);

	XFREE(MTYPE_PCA, path);
	path = NULL;
}

/**
 * Replace the list of edges in the next Constrained Path by the list of edges
 * in the current Constrained Path.
 *
 * @param next_path	next Constrained Path structure
 * @param cur_path	current Constrained Path structure
 */
static void cpath_replace(struct c_path *next_path, struct c_path *cur_path)
{

	if (next_path->edges)
		list_delete(&next_path->edges);

	next_path->edges = list_dup(cur_path->edges);
}

/**
 * Create a new Visited Node structure from the provided Vertex. Structure is
 * dynamically allocated.
 *
 * @param vertex	Vertex structure
 *
 * @return		Pointer to the new Visited Node structure
 */
static struct v_node *vnode_new(struct ls_vertex *vertex)
{
	struct v_node *vnode;

	if (!vertex)
		return NULL;

	vnode = XCALLOC(MTYPE_PCA, sizeof(struct v_node));
	vnode->vertex = vertex;
	vnode->key = vertex->key;

	return vnode;
}

/**
 * Delete Visited Node structure. Previous allocated memory is freed.
 *
 * @param vnode		Visited Node structure to be deleted
 */
static void vnode_del(struct v_node *vnode)
{
	if (!vnode)
		return;

	XFREE(MTYPE_PCA, vnode);
	vnode = NULL;
}

/**
 * Search Vertex in TED by IPv4 address. The function search vertex by browsing
 * the subnets table. It allows to find not only vertex by router ID, but also
 * vertex by interface IPv4 address.
 *
 * @param ted	Traffic Engineering Database
 * @param ipv4	IPv4 address
 *
 * @return	Vertex if found, NULL otherwise
 */
static struct ls_vertex *get_vertex_by_ipv4(struct ls_ted *ted,
					    struct in_addr ipv4)
{
	struct ls_subnet *subnet;
	struct prefix p;

	p.family = AF_INET;
	p.u.prefix4 = ipv4;

	frr_each (subnets, &ted->subnets, subnet) {
		if (subnet->key.family != AF_INET)
			continue;
		p.prefixlen = subnet->key.prefixlen;
		if (prefix_same(&subnet->key, &p))
			return subnet->vertex;
	}

	return NULL;
}

/**
 * Search Vertex in TED by IPv6 address. The function search vertex by browsing
 * the subnets table. It allows to find not only vertex by router ID, but also
 * vertex by interface IPv6 address.
 *
 * @param ted	Traffic Engineering Database
 * @param ipv6	IPv6 address
 *
 * @return	Vertex if found, NULL otherwise
 */
static struct ls_vertex *get_vertex_by_ipv6(struct ls_ted *ted,
					    struct in6_addr ipv6)
{
	struct ls_subnet *subnet;
	struct prefix p;

	p.family = AF_INET6;
	p.u.prefix6 = ipv6;

	frr_each (subnets, &ted->subnets, subnet) {
		if (subnet->key.family != AF_INET6)
			continue;
		p.prefixlen = subnet->key.prefixlen;
		if (prefix_cmp(&subnet->key, &p) == 0)
			return subnet->vertex;
	}

	return NULL;
}

struct cspf *cspf_new(void)
{
	struct cspf *algo;

	/* Allocate New CSPF structure */
	algo = XCALLOC(MTYPE_PCA, sizeof(struct cspf));

	/* Initialize RB-Trees */
	processed_init(&algo->processed);
	visited_init(&algo->visited);
	pqueue_init(&algo->pqueue);

	algo->path = NULL;
	algo->pdst = NULL;

	return algo;
}

struct cspf *cspf_init(struct cspf *algo, const struct ls_vertex *src,
		       const struct ls_vertex *dst, struct constraints *csts)
{
	struct cspf *new_algo;
	struct c_path *psrc;

	if (!csts)
		return NULL;

	if (!algo)
		new_algo = cspf_new();
	else
		new_algo = algo;

	/* Initialize Processed Path and Priority Queue with Src & Dst */
	if (src) {
		psrc = cpath_new(src->key);
		psrc->weight = 0;
		processed_add(&new_algo->processed, psrc);
		pqueue_add(&new_algo->pqueue, psrc);
		new_algo->path = psrc;
	}
	if (dst) {
		new_algo->pdst = cpath_new(dst->key);
		processed_add(&new_algo->processed, new_algo->pdst);
	}

	memcpy(&new_algo->csts, csts, sizeof(struct constraints));

	return new_algo;
}

struct cspf *cspf_init_v4(struct cspf *algo, struct ls_ted *ted,
			  const struct in_addr src, const struct in_addr dst,
			  struct constraints *csts)
{
	struct ls_vertex *vsrc;
	struct ls_vertex *vdst;
	struct cspf *new_algo;

	/* Sanity Check */
	if (!ted)
		return algo;

	if (!algo)
		new_algo = cspf_new();
	else
		new_algo = algo;

	/* Got Source and Destination Vertex from TED */
	vsrc = get_vertex_by_ipv4(ted, src);
	vdst = get_vertex_by_ipv4(ted, dst);
	csts->family = AF_INET;

	return cspf_init(new_algo, vsrc, vdst, csts);
}

struct cspf *cspf_init_v6(struct cspf *algo, struct ls_ted *ted,
			  const struct in6_addr src, const struct in6_addr dst,
			  struct constraints *csts)
{
	struct ls_vertex *vsrc;
	struct ls_vertex *vdst;
	struct cspf *new_algo;

	/* Sanity Check */
	if (!ted)
		return algo;

	if (!algo)
		new_algo = cspf_new();
	else
		new_algo = algo;

	/* Got Source and Destination Vertex from TED */
	vsrc = get_vertex_by_ipv6(ted, src);
	vdst = get_vertex_by_ipv6(ted, dst);
	csts->family = AF_INET6;

	return cspf_init(new_algo, vsrc, vdst, csts);
}

void cspf_clean(struct cspf *algo)
{
	struct c_path *path;
	struct v_node *vnode;

	if (!algo)
		return;

	/* Normally, Priority Queue is empty. Clean it in case of. */
	if (pqueue_count(&algo->pqueue)) {
		frr_each_safe (pqueue, &algo->pqueue, path) {
			pqueue_del(&algo->pqueue, path);
		}
	}

	/* Empty Processed Path tree and associated Path */
	if (processed_count(&algo->processed)) {
		frr_each_safe (processed, &algo->processed, path) {
			processed_del(&algo->processed, path);
			if (path == algo->pdst)
				algo->pdst = NULL;
			cpath_del(path);
		}
	}

	/* Empty visited Vertex tree and associated Node */
	if (visited_count(&algo->visited)) {
		frr_each_safe (visited, &algo->visited, vnode) {
			visited_del(&algo->visited, vnode);
			vnode_del(vnode);
		}
	}

	if (algo->pdst)
		cpath_del(algo->pdst);

	memset(&algo->csts, 0, sizeof(struct constraints));
	algo->path = NULL;
	algo->pdst = NULL;
}

void cspf_del(struct cspf *algo)
{
	if (!algo)
		return;

	/* Empty Priority Queue and Processes Path */
	cspf_clean(algo);

	/* Then, reset Priority Queue, Processed Path and Visited RB-Tree */
	pqueue_fini(&algo->pqueue);
	processed_fini(&algo->processed);
	visited_fini(&algo->visited);

	XFREE(MTYPE_PCA, algo);
	algo = NULL;
}

/**
 * Prune Edge if constraints are not met by testing Edge Attributes against
 * given constraints and cumulative cost of the given constrained path.
 *
 * @param path	On-going Computed Path with cumulative cost constraints
 * @param edge	Edge to be validate against Constraints
 * @param csts	Constraints for this path
 *
 * @return	True if Edge should be prune, false if Edge is valid
 */
static bool prune_edge(const struct c_path *path, const struct ls_edge *edge,
		       const struct constraints *csts)
{
	struct ls_vertex *dst;
	struct ls_attributes *attr;

	/* Check that Path, Edge and Constraints are valid */
	if (!path || !edge || !csts)
		return true;

	/* Check that Edge has a valid destination */
	if (!edge->destination)
		return true;
	dst = edge->destination;

	/* Check that Edge has valid attributes */
	if (!edge->attributes)
		return true;
	attr = edge->attributes;

	/* Check that Edge belongs to the requested Address Family and type */
	if (csts->family == AF_INET) {
		if (IPV4_NET0(attr->standard.local.s_addr))
			return true;
		if (csts->type == SR_TE)
			if (!CHECK_FLAG(attr->flags, LS_ATTR_ADJ_SID) ||
			    !CHECK_FLAG(dst->node->flags, LS_NODE_SR))
				return true;
	}
	if (csts->family == AF_INET6) {
		if (IN6_IS_ADDR_UNSPECIFIED(&attr->standard.local6))
			return true;
		if (csts->type == SR_TE)
			if (!CHECK_FLAG(attr->flags, LS_ATTR_ADJ_SID6) ||
			    !CHECK_FLAG(dst->node->flags, LS_NODE_SR))
				return true;
	}

	/*
	 * Check that total cost, up to this edge, respects the initial
	 * constraints
	 */
	switch (csts->ctype) {
	case CSPF_METRIC:
		if (!CHECK_FLAG(attr->flags, LS_ATTR_METRIC))
			return true;
		if ((attr->metric + path->weight) > csts->cost)
			return true;
		break;

	case CSPF_TE_METRIC:
		if (!CHECK_FLAG(attr->flags, LS_ATTR_TE_METRIC))
			return true;
		if ((attr->standard.te_metric + path->weight) > csts->cost)
			return true;
		break;

	case CSPF_DELAY:
		if (!CHECK_FLAG(attr->flags, LS_ATTR_DELAY))
			return true;
		if ((attr->extended.delay + path->weight) > csts->cost)
			return true;
		break;
	}

	/* If specified, check that Edge meet Bandwidth constraint */
	if (csts->bw > 0.0) {
		if (attr->standard.max_bw < csts->bw ||
		    attr->standard.max_rsv_bw < csts->bw ||
		    attr->standard.unrsv_bw[csts->cos] < csts->bw)
			return true;
	}

	/* All is fine. We can consider this Edge valid, so not to be prune */
	return false;
}

/**
 * Relax constraints of the current path up to the destination vertex of the
 * provided Edge. This function progress in the network topology by validating
 * the next vertex on the computed path. If Vertex has not already been visited,
 * list of edges of the current path is augmented with this edge if the new cost
 * is lower than prior path up to this vertex. Current path is re-inserted in
 * the Priority Queue with its new cost i.e. current cost + edge cost.
 *
 * @param algo	CSPF structure
 * @param edge	Next Edge to be added to the current computed path
 *
 * @return	True if current path reach destination, false otherwise
 */
static bool relax_constraints(struct cspf *algo, struct ls_edge *edge)
{

	struct c_path pkey = {};
	struct c_path *next_path;
	struct v_node vnode = {};
	uint32_t total_cost = MAX_COST;

	/* Verify that we have a current computed path */
	if (!algo->path)
		return false;

	/* Verify if we have not visited the next Vertex to avoid loop */
	vnode.key = edge->destination->key;
	if (visited_member(&algo->visited, &vnode)) {
		return false;
	}

	/*
	 * Get Next Computed Path from next vertex key
	 * or create a new one if it has not yet computed.
	 */
	pkey.dst = edge->destination->key;
	next_path = processed_find(&algo->processed, &pkey);
	if (!next_path) {
		next_path = cpath_new(pkey.dst);
		processed_add(&algo->processed, next_path);
	}

	/*
	 * Add or update the Computed Path in the Priority Queue if total cost
	 * is lower than cost associated to this next Vertex. This could occurs
	 * if we process a Vertex that as not yet been visited in the Graph
	 * or if we found a shortest path up to this Vertex.
	 */
	switch (algo->csts.ctype) {
	case CSPF_METRIC:
		total_cost = edge->attributes->metric + algo->path->weight;
		break;
	case CSPF_TE_METRIC:
		total_cost = edge->attributes->standard.te_metric +
			     algo->path->weight;
		break;
	case CSPF_DELAY:
		total_cost =
			edge->attributes->extended.delay + algo->path->weight;
		break;
	default:
		break;
	}
	if (total_cost < next_path->weight) {
		/*
		 * It is not possible to directly update the q_path in the
		 * Priority Queue. Indeed, if we modify the path weight, the
		 * Priority Queue must be re-ordered. So, we need fist to remove
		 * the q_path if it is present in the Priority Queue, then,
		 * update the Path, in particular the Weight, and finally
		 * (re-)insert it in the Priority Queue.
		 */
		struct c_path *path;
		frr_each_safe (pqueue, &algo->pqueue, path) {
			if (path->dst == pkey.dst) {
				pqueue_del(&algo->pqueue, path);
				break;
			}
		}
		next_path->weight = total_cost;
		cpath_replace(next_path, algo->path);
		listnode_add(next_path->edges, edge);
		pqueue_add(&algo->pqueue, next_path);
	}

	/* Return True if we reach the destination */
	return (next_path->dst == algo->pdst->dst);
}

struct c_path *compute_p2p_path(struct cspf *algo, struct ls_ted *ted)
{
	struct listnode *node;
	struct ls_vertex *vertex;
	struct ls_edge *edge;
	struct c_path *optim_path;
	struct v_node *vnode;
	uint32_t cur_cost;

	optim_path = cpath_new(0xFFFFFFFFFFFFFFFF);
	optim_path->status = FAILED;

	/* Check that all is correctly initialized */
	if (!algo)
		return optim_path;

	if (!algo->csts.ctype)
		return optim_path;

	if (!algo->pdst) {
		optim_path->status = NO_DESTINATION;
		return optim_path;
	}

	if (!algo->path) {
		optim_path->status = NO_SOURCE;
		return optim_path;
	}

	if (algo->pdst->dst == algo->path->dst) {
		optim_path->status = SAME_SRC_DST;
		return optim_path;
	}

	optim_path->dst = algo->pdst->dst;
	optim_path->status = IN_PROGRESS;

	/*
	 * Process all Connected Vertex until priority queue becomes empty.
	 * Connected Vertices are added into the priority queue when
	 * processing the next Connected Vertex: see relax_constraints()
	 */
	cur_cost = MAX_COST;
	while (pqueue_count(&algo->pqueue) != 0) {
		/* Got shortest current Path from the Priority Queue */
		algo->path = pqueue_pop(&algo->pqueue);

		/* Add destination Vertex of this path to the visited RB Tree */
		vertex = ls_find_vertex_by_key(ted, algo->path->dst);
		if (!vertex)
			continue;
		vnode = vnode_new(vertex);
		visited_add(&algo->visited, vnode);

		/* Process all outgoing links from this Vertex */
		for (ALL_LIST_ELEMENTS_RO(vertex->outgoing_edges, node, edge)) {
			/*
			 * Skip Connected Edges that must be prune i.e.
			 * Edges that not satisfy the given constraints,
			 * in particular the Bandwidth, TE Metric and Delay.
			 */
			if (prune_edge(algo->path, edge, &algo->csts))
				continue;

			/*
			 * Relax constraints and check if we got a shorter
			 * candidate path
			 */
			if (relax_constraints(algo, edge) &&
			    algo->pdst->weight < cur_cost) {
				cur_cost = algo->pdst->weight;
				cpath_copy(optim_path, algo->pdst);
				optim_path->status = SUCCESS;
			}
		}
	}

	/*
	 * The priority queue is empty => all the possible (vertex, path)
	 * elements have been explored. The optim_path contains the optimal
	 * path if it exists. Otherwise an empty path with status failed is
	 * returned.
	 */
	if (optim_path->status == IN_PROGRESS ||
	    listcount(optim_path->edges) == 0)
		optim_path->status = FAILED;
	cspf_clean(algo);

	return optim_path;
}