1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
|
/* sexputil.c - Utility functions for S-expressions.
* Copyright (C) 2005, 2007, 2009 Free Software Foundation, Inc.
* Copyright (C) 2013 Werner Koch
*
* This file is part of GnuPG.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either
*
* - the GNU Lesser General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* or
*
* - the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* or both in parallel, as here.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
*/
/* This file implements a few utility functions useful when working
with canonical encrypted S-expressions (i.e. not the S-exprssion
objects from libgcrypt). */
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#ifdef HAVE_LOCALE_H
#include <locale.h>
#endif
#include "util.h"
#include "tlv.h"
#include "sexp-parse.h"
#include "openpgpdefs.h" /* for pubkey_algo_t */
/* Return a malloced string with the S-expression CANON in advanced
format. Returns NULL on error. */
static char *
sexp_to_string (gcry_sexp_t sexp)
{
size_t n;
char *result;
if (!sexp)
return NULL;
n = gcry_sexp_sprint (sexp, GCRYSEXP_FMT_ADVANCED, NULL, 0);
if (!n)
return NULL;
result = xtrymalloc (n);
if (!result)
return NULL;
n = gcry_sexp_sprint (sexp, GCRYSEXP_FMT_ADVANCED, result, n);
if (!n)
BUG ();
return result;
}
/* Return a malloced string with the S-expression CANON in advanced
format. Returns NULL on error. */
char *
canon_sexp_to_string (const unsigned char *canon, size_t canonlen)
{
size_t n;
gcry_sexp_t sexp;
char *result;
n = gcry_sexp_canon_len (canon, canonlen, NULL, NULL);
if (!n)
return NULL;
if (gcry_sexp_sscan (&sexp, NULL, canon, n))
return NULL;
result = sexp_to_string (sexp);
gcry_sexp_release (sexp);
return result;
}
/* Print the canonical encoded S-expression in SEXP in advanced
format. SEXPLEN may be passed as 0 is SEXP is known to be valid.
With TEXT of NULL print just the raw S-expression, with TEXT just
an empty string, print a trailing linefeed, otherwise print an
entire debug line. */
void
log_printcanon (const char *text, const unsigned char *sexp, size_t sexplen)
{
if (text && *text)
log_debug ("%s ", text);
if (sexp)
{
char *buf = canon_sexp_to_string (sexp, sexplen);
log_printf ("%s", buf? buf : "[invalid S-expression]");
xfree (buf);
}
if (text)
log_printf ("\n");
}
/* Print the gcryp S-expression in SEXP in advanced format. With TEXT
of NULL print just the raw S-expression, with TEXT just an empty
string, print a trailing linefeed, otherwise print an entire debug
line. */
void
log_printsexp (const char *text, gcry_sexp_t sexp)
{
if (text && *text)
log_debug ("%s ", text);
if (sexp)
{
char *buf = sexp_to_string (sexp);
log_printf ("%s", buf? buf : "[invalid S-expression]");
xfree (buf);
}
if (text)
log_printf ("\n");
}
/* Helper function to create a canonical encoded S-expression from a
Libgcrypt S-expression object. The function returns 0 on success
and the malloced canonical S-expression is stored at R_BUFFER and
the allocated length at R_BUFLEN. On error an error code is
returned and (NULL, 0) stored at R_BUFFER and R_BUFLEN. If the
allocated buffer length is not required, NULL by be used for
R_BUFLEN. */
gpg_error_t
make_canon_sexp (gcry_sexp_t sexp, unsigned char **r_buffer, size_t *r_buflen)
{
size_t len;
unsigned char *buf;
*r_buffer = NULL;
if (r_buflen)
*r_buflen = 0;;
len = gcry_sexp_sprint (sexp, GCRYSEXP_FMT_CANON, NULL, 0);
if (!len)
return gpg_error (GPG_ERR_BUG);
buf = xtrymalloc (len);
if (!buf)
return gpg_error_from_syserror ();
len = gcry_sexp_sprint (sexp, GCRYSEXP_FMT_CANON, buf, len);
if (!len)
return gpg_error (GPG_ERR_BUG);
*r_buffer = buf;
if (r_buflen)
*r_buflen = len;
return 0;
}
/* Same as make_canon_sexp but pad the buffer to multiple of 64
bits. If SECURE is set, secure memory will be allocated. */
gpg_error_t
make_canon_sexp_pad (gcry_sexp_t sexp, int secure,
unsigned char **r_buffer, size_t *r_buflen)
{
size_t len;
unsigned char *buf;
*r_buffer = NULL;
if (r_buflen)
*r_buflen = 0;;
len = gcry_sexp_sprint (sexp, GCRYSEXP_FMT_CANON, NULL, 0);
if (!len)
return gpg_error (GPG_ERR_BUG);
len += (8 - len % 8) % 8;
buf = secure? xtrycalloc_secure (1, len) : xtrycalloc (1, len);
if (!buf)
return gpg_error_from_syserror ();
if (!gcry_sexp_sprint (sexp, GCRYSEXP_FMT_CANON, buf, len))
return gpg_error (GPG_ERR_BUG);
*r_buffer = buf;
if (r_buflen)
*r_buflen = len;
return 0;
}
/* Return the so called "keygrip" which is the SHA-1 hash of the
public key parameters expressed in a way depended on the algorithm.
KEY is expected to be an canonical encoded S-expression with a
public or private key. KEYLEN is the length of that buffer.
GRIP must be at least 20 bytes long. On success 0 is returned, on
error an error code. */
gpg_error_t
keygrip_from_canon_sexp (const unsigned char *key, size_t keylen,
unsigned char *grip)
{
gpg_error_t err;
gcry_sexp_t sexp;
if (!grip)
return gpg_error (GPG_ERR_INV_VALUE);
err = gcry_sexp_sscan (&sexp, NULL, (const char *)key, keylen);
if (err)
return err;
if (!gcry_pk_get_keygrip (sexp, grip))
err = gpg_error (GPG_ERR_INTERNAL);
gcry_sexp_release (sexp);
return err;
}
/* Compare two simple S-expressions like "(3:foo)". Returns 0 if they
are identical or !0 if they are not. Note that this function can't
be used for sorting. */
int
cmp_simple_canon_sexp (const unsigned char *a_orig,
const unsigned char *b_orig)
{
const char *a = (const char *)a_orig;
const char *b = (const char *)b_orig;
unsigned long n1, n2;
char *endp;
if (!a && !b)
return 0; /* Both are NULL, they are identical. */
if (!a || !b)
return 1; /* One is NULL, they are not identical. */
if (*a != '(' || *b != '(')
log_bug ("invalid S-exp in cmp_simple_canon_sexp\n");
a++;
n1 = strtoul (a, &endp, 10);
a = endp;
b++;
n2 = strtoul (b, &endp, 10);
b = endp;
if (*a != ':' || *b != ':' )
log_bug ("invalid S-exp in cmp_simple_canon_sexp\n");
if (n1 != n2)
return 1; /* Not the same. */
for (a++, b++; n1; n1--, a++, b++)
if (*a != *b)
return 1; /* Not the same. */
return 0;
}
/* Helper for cmp_canon_sexp. */
static int
cmp_canon_sexp_def_tcmp (void *ctx, int depth,
const unsigned char *aval, size_t alen,
const unsigned char *bval, size_t blen)
{
(void)ctx;
(void)depth;
if (alen > blen)
return 1;
else if (alen < blen)
return -1;
else
return memcmp (aval, bval, alen);
}
/* Compare the two canonical encoded s-expressions A with maximum
* length ALEN and B with maximum length BLEN.
*
* Returns 0 if they match.
*
* If TCMP is NULL, this is not different really different from a
* memcmp but does not consider any garbage after the last closing
* parentheses.
*
* If TCMP is not NULL, it is expected to be a function to compare the
* values of each token. TCMP is called for each token while parsing
* the s-expressions until TCMP return a non-zero value. Here the CTX
* receives the provided value TCMPCTX, DEPTH is the number of
* currently open parentheses and (AVAL,ALEN) and (BVAL,BLEN) the
* values of the current token. TCMP needs to return zero to indicate
* that the tokens match. */
int
cmp_canon_sexp (const unsigned char *a, size_t alen,
const unsigned char *b, size_t blen,
int (*tcmp)(void *ctx, int depth,
const unsigned char *aval, size_t avallen,
const unsigned char *bval, size_t bvallen),
void *tcmpctx)
{
const unsigned char *a_buf, *a_tok;
const unsigned char *b_buf, *b_tok;
size_t a_buflen, a_toklen;
size_t b_buflen, b_toklen;
int a_depth, b_depth, ret;
if ((!a && !b) || (!alen && !blen))
return 0; /* Both are NULL, they are identical. */
if (!a || !b)
return !!a - !!b; /* One is NULL, they are not identical. */
if (*a != '(' || *b != '(')
log_bug ("invalid S-exp in %s\n", __func__);
if (!tcmp)
tcmp = cmp_canon_sexp_def_tcmp;
a_depth = 0;
a_buf = a;
a_buflen = alen;
b_depth = 0;
b_buf = b;
b_buflen = blen;
for (;;)
{
if (parse_sexp (&a_buf, &a_buflen, &a_depth, &a_tok, &a_toklen))
return -1; /* A is invalid. */
if (parse_sexp (&b_buf, &b_buflen, &b_depth, &b_tok, &b_toklen))
return -1; /* B is invalid. */
if (!a_depth && !b_depth)
return 0; /* End of both expressions - they match. */
if (a_depth != b_depth)
return a_depth - b_depth; /* Not the same structure */
if (!a_tok && !b_tok)
; /* parens */
else if (a_tok && b_tok)
{
ret = tcmp (tcmpctx, a_depth, a_tok, a_toklen, b_tok, b_toklen);
if (ret)
return ret; /* Mismatch */
}
else /* One has a paren other has not. */
return !!a_tok - !!b_tok;
}
}
/* Create a simple S-expression from the hex string at LINE. Returns
a newly allocated buffer with that canonical encoded S-expression
or NULL in case of an error. On return the number of characters
scanned in LINE will be stored at NSCANNED. This functions stops
converting at the first character not representing a hexdigit. Odd
numbers of hex digits are allowed; a leading zero is then
assumed. If no characters have been found, NULL is returned.*/
unsigned char *
make_simple_sexp_from_hexstr (const char *line, size_t *nscanned)
{
size_t n, len;
const char *s;
unsigned char *buf;
unsigned char *p;
char numbuf[50], *numbufp;
size_t numbuflen;
for (n=0, s=line; hexdigitp (s); s++, n++)
;
if (nscanned)
*nscanned = n;
if (!n)
return NULL;
len = ((n+1) & ~0x01)/2;
numbufp = smklen (numbuf, sizeof numbuf, len, &numbuflen);
buf = xtrymalloc (1 + numbuflen + len + 1 + 1);
if (!buf)
return NULL;
buf[0] = '(';
p = (unsigned char *)stpcpy ((char *)buf+1, numbufp);
s = line;
if ((n&1))
{
*p++ = xtoi_1 (s);
s++;
n--;
}
for (; n > 1; n -=2, s += 2)
*p++ = xtoi_2 (s);
*p++ = ')';
*p = 0; /* (Not really neaded.) */
return buf;
}
/* Return the hash algorithm from a KSBA sig-val. SIGVAL is a
canonical encoded S-expression. Return 0 if the hash algorithm is
not encoded in SIG-VAL or it is not supported by libgcrypt. */
int
hash_algo_from_sigval (const unsigned char *sigval)
{
const unsigned char *s = sigval;
size_t n;
int depth;
char buffer[50];
if (!s || *s != '(')
return 0; /* Invalid S-expression. */
s++;
n = snext (&s);
if (!n)
return 0; /* Invalid S-expression. */
if (!smatch (&s, n, "sig-val"))
return 0; /* Not a sig-val. */
if (*s != '(')
return 0; /* Invalid S-expression. */
s++;
/* Skip over the algo+parameter list. */
depth = 1;
if (sskip (&s, &depth) || depth)
return 0; /* Invalid S-expression. */
if (*s != '(')
return 0; /* No further list. */
/* Check whether this is (hash ALGO). */
s++;
n = snext (&s);
if (!n)
return 0; /* Invalid S-expression. */
if (!smatch (&s, n, "hash"))
return 0; /* Not a "hash" keyword. */
n = snext (&s);
if (!n || n+1 >= sizeof (buffer))
return 0; /* Algorithm string is missing or too long. */
memcpy (buffer, s, n);
buffer[n] = 0;
return gcry_md_map_name (buffer);
}
/* Create a public key S-expression for an RSA public key from the
modulus M with length MLEN and the public exponent E with length
ELEN. Returns a newly allocated buffer of NULL in case of a memory
allocation problem. If R_LEN is not NULL, the length of the
canonical S-expression is stored there. */
unsigned char *
make_canon_sexp_from_rsa_pk (const void *m_arg, size_t mlen,
const void *e_arg, size_t elen,
size_t *r_len)
{
const unsigned char *m = m_arg;
const unsigned char *e = e_arg;
int m_extra = 0;
int e_extra = 0;
char mlen_str[35];
char elen_str[35];
unsigned char *keybuf, *p;
const char part1[] = "(10:public-key(3:rsa(1:n";
const char part2[] = ")(1:e";
const char part3[] = ")))";
/* Remove leading zeroes. */
for (; mlen && !*m; mlen--, m++)
;
for (; elen && !*e; elen--, e++)
;
/* Insert a leading zero if the number would be zero or interpreted
as negative. */
if (!mlen || (m[0] & 0x80))
m_extra = 1;
if (!elen || (e[0] & 0x80))
e_extra = 1;
/* Build the S-expression. */
snprintf (mlen_str, sizeof mlen_str, "%u:", (unsigned int)mlen+m_extra);
snprintf (elen_str, sizeof elen_str, "%u:", (unsigned int)elen+e_extra);
keybuf = xtrymalloc (strlen (part1) + strlen (mlen_str) + mlen + m_extra
+ strlen (part2) + strlen (elen_str) + elen + e_extra
+ strlen (part3) + 1);
if (!keybuf)
return NULL;
p = stpcpy (keybuf, part1);
p = stpcpy (p, mlen_str);
if (m_extra)
*p++ = 0;
memcpy (p, m, mlen);
p += mlen;
p = stpcpy (p, part2);
p = stpcpy (p, elen_str);
if (e_extra)
*p++ = 0;
memcpy (p, e, elen);
p += elen;
p = stpcpy (p, part3);
if (r_len)
*r_len = p - keybuf;
return keybuf;
}
/* Return the parameters of a public RSA key expressed as an
canonical encoded S-expression. */
gpg_error_t
get_rsa_pk_from_canon_sexp (const unsigned char *keydata, size_t keydatalen,
unsigned char const **r_n, size_t *r_nlen,
unsigned char const **r_e, size_t *r_elen)
{
gpg_error_t err;
const unsigned char *buf, *tok;
size_t buflen, toklen;
int depth, last_depth1, last_depth2;
const unsigned char *rsa_n = NULL;
const unsigned char *rsa_e = NULL;
size_t rsa_n_len, rsa_e_len;
*r_n = NULL;
*r_nlen = 0;
*r_e = NULL;
*r_elen = 0;
buf = keydata;
buflen = keydatalen;
depth = 0;
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if (!tok || toklen != 10 || memcmp ("public-key", tok, toklen))
return gpg_error (GPG_ERR_BAD_PUBKEY);
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if (!tok || toklen != 3 || memcmp ("rsa", tok, toklen))
return gpg_error (GPG_ERR_WRONG_PUBKEY_ALGO);
last_depth1 = depth;
while (!(err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen))
&& depth && depth >= last_depth1)
{
if (tok)
return gpg_error (GPG_ERR_UNKNOWN_SEXP);
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if (tok && toklen == 1)
{
const unsigned char **mpi;
size_t *mpi_len;
switch (*tok)
{
case 'n': mpi = &rsa_n; mpi_len = &rsa_n_len; break;
case 'e': mpi = &rsa_e; mpi_len = &rsa_e_len; break;
default: mpi = NULL; mpi_len = NULL; break;
}
if (mpi && *mpi)
return gpg_error (GPG_ERR_DUP_VALUE);
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if (tok && mpi)
{
/* Strip off leading zero bytes and save. */
for (;toklen && !*tok; toklen--, tok++)
;
*mpi = tok;
*mpi_len = toklen;
}
}
/* Skip to the end of the list. */
last_depth2 = depth;
while (!(err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen))
&& depth && depth >= last_depth2)
;
if (err)
return err;
}
if (err)
return err;
if (!rsa_n || !rsa_n_len || !rsa_e || !rsa_e_len)
return gpg_error (GPG_ERR_BAD_PUBKEY);
*r_n = rsa_n;
*r_nlen = rsa_n_len;
*r_e = rsa_e;
*r_elen = rsa_e_len;
return 0;
}
/* Return the public key parameter Q of a public RSA or ECC key
* expressed as an canonical encoded S-expression. */
gpg_error_t
get_ecc_q_from_canon_sexp (const unsigned char *keydata, size_t keydatalen,
unsigned char const **r_q, size_t *r_qlen)
{
gpg_error_t err;
const unsigned char *buf, *tok;
size_t buflen, toklen;
int depth, last_depth1, last_depth2;
const unsigned char *ecc_q = NULL;
size_t ecc_q_len;
*r_q = NULL;
*r_qlen = 0;
buf = keydata;
buflen = keydatalen;
depth = 0;
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if (!tok || toklen != 10 || memcmp ("public-key", tok, toklen))
return gpg_error (GPG_ERR_BAD_PUBKEY);
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if (tok && toklen == 3 && !memcmp ("ecc", tok, toklen))
;
else if (tok && toklen == 5 && (!memcmp ("ecdsa", tok, toklen)
|| !memcmp ("eddsa", tok, toklen)))
;
else
return gpg_error (GPG_ERR_WRONG_PUBKEY_ALGO);
last_depth1 = depth;
while (!(err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen))
&& depth && depth >= last_depth1)
{
if (tok)
return gpg_error (GPG_ERR_UNKNOWN_SEXP);
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if (tok && toklen == 1)
{
const unsigned char **mpi;
size_t *mpi_len;
switch (*tok)
{
case 'q': mpi = &ecc_q; mpi_len = &ecc_q_len; break;
default: mpi = NULL; mpi_len = NULL; break;
}
if (mpi && *mpi)
return gpg_error (GPG_ERR_DUP_VALUE);
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if (tok && mpi)
{
*mpi = tok;
*mpi_len = toklen;
}
}
/* Skip to the end of the list. */
last_depth2 = depth;
while (!(err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen))
&& depth && depth >= last_depth2)
;
if (err)
return err;
}
if (err)
return err;
if (!ecc_q || !ecc_q_len)
return gpg_error (GPG_ERR_BAD_PUBKEY);
*r_q = ecc_q;
*r_qlen = ecc_q_len;
return 0;
}
/* Return an uncompressed point (X,Y) in P at R_BUF as a malloced
* buffer with its byte length stored at R_BUFLEN. May not be used
* for sensitive data. */
static gpg_error_t
ec2os (gcry_mpi_t x, gcry_mpi_t y, gcry_mpi_t p,
unsigned char **r_buf, unsigned int *r_buflen)
{
gpg_error_t err;
int pbytes = (mpi_get_nbits (p)+7)/8;
size_t n;
unsigned char *buf, *ptr;
*r_buf = NULL;
*r_buflen = 0;
buf = xtrymalloc (1 + 2*pbytes);
if (!buf)
return gpg_error_from_syserror ();
*buf = 04; /* Uncompressed point. */
ptr = buf+1;
err = gcry_mpi_print (GCRYMPI_FMT_USG, ptr, pbytes, &n, x);
if (err)
{
xfree (buf);
return err;
}
if (n < pbytes)
{
memmove (ptr+(pbytes-n), ptr, n);
memset (ptr, 0, (pbytes-n));
}
ptr += pbytes;
err = gcry_mpi_print (GCRYMPI_FMT_USG, ptr, pbytes, &n, y);
if (err)
{
xfree (buf);
return err;
}
if (n < pbytes)
{
memmove (ptr+(pbytes-n), ptr, n);
memset (ptr, 0, (pbytes-n));
}
*r_buf = buf;
*r_buflen = 1 + 2*pbytes;
return 0;
}
/* Convert the ECC parameter Q in the canonical s-expression
* (KEYDATA,KEYDATALEN) to uncompressed form. On success and if a
* conversion was done, the new canonical encoded s-expression is
* returned at (R_NEWKEYDAT,R_NEWKEYDATALEN); if a conversion was not
* required (NULL,0) is stored there. On error an error code is
* returned. The function may take any kind of key but will only do
* the conversion for ECC curves where compression is supported. */
gpg_error_t
uncompress_ecc_q_in_canon_sexp (const unsigned char *keydata,
size_t keydatalen,
unsigned char **r_newkeydata,
size_t *r_newkeydatalen)
{
gpg_error_t err;
const unsigned char *buf, *tok;
size_t buflen, toklen, n;
int depth, last_depth1, last_depth2;
const unsigned char *q_ptr; /* Points to the value of "q". */
size_t q_ptrlen; /* Remaining length in KEYDATA. */
size_t q_toklen; /* Q's length including prefix. */
const unsigned char *curve_ptr; /* Points to the value of "curve". */
size_t curve_ptrlen; /* Remaining length in KEYDATA. */
gcry_mpi_t x, y; /* Point Q */
gcry_mpi_t p, a, b; /* Curve parameters. */
gcry_mpi_t x3, t, p1_4; /* Helper */
int y_bit;
unsigned char *qvalue; /* Q in uncompressed form. */
unsigned int qvaluelen;
unsigned char *dst; /* Helper */
char lenstr[35]; /* Helper for a length prefix. */
*r_newkeydata = NULL;
*r_newkeydatalen = 0;
buf = keydata;
buflen = keydatalen;
depth = 0;
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if (!tok)
return gpg_error (GPG_ERR_BAD_PUBKEY);
else if (toklen == 10 || !memcmp ("public-key", tok, toklen))
;
else if (toklen == 11 || !memcmp ("private-key", tok, toklen))
;
else if (toklen == 20 || !memcmp ("shadowed-private-key", tok, toklen))
;
else
return gpg_error (GPG_ERR_BAD_PUBKEY);
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if (tok && toklen == 3 && !memcmp ("ecc", tok, toklen))
;
else if (tok && toklen == 5 && !memcmp ("ecdsa", tok, toklen))
;
else
return 0; /* Other algo - no need for conversion. */
last_depth1 = depth;
q_ptr = curve_ptr = NULL;
q_ptrlen = 0; /*(silence cc warning)*/
while (!(err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen))
&& depth && depth >= last_depth1)
{
if (tok)
return gpg_error (GPG_ERR_UNKNOWN_SEXP);
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if (tok && toklen == 1 && *tok == 'q' && !q_ptr)
{
q_ptr = buf;
q_ptrlen = buflen;
}
else if (tok && toklen == 5 && !memcmp (tok, "curve", 5) && !curve_ptr)
{
curve_ptr = buf;
curve_ptrlen = buflen;
}
if (q_ptr && curve_ptr)
break; /* We got all what we need. */
/* Skip to the end of the list. */
last_depth2 = depth;
while (!(err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen))
&& depth && depth >= last_depth2)
;
if (err)
return err;
}
if (err)
return err;
if (!q_ptr)
return 0; /* No Q - nothing to do. */
/* Get Q's value and check whether uncompressing is at all required. */
buf = q_ptr;
buflen = q_ptrlen;
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
return err;
if (toklen < 2 || !(*tok == 0x02 || *tok == 0x03))
return 0; /* Invalid length or not compressed. */
q_toklen = buf - q_ptr; /* We want the length with the prefix. */
/* Put the x-coordinate of q into X and remember the y bit */
y_bit = (*tok == 0x03);
err = gcry_mpi_scan (&x, GCRYMPI_FMT_USG, tok+1, toklen-1, NULL);
if (err)
return err;
/* For uncompressing we need to know the curve. */
if (!curve_ptr)
{
gcry_mpi_release (x);
return gpg_error (GPG_ERR_INV_CURVE);
}
buf = curve_ptr;
buflen = curve_ptrlen;
if ((err = parse_sexp (&buf, &buflen, &depth, &tok, &toklen)))
{
gcry_mpi_release (x);
return err;
}
{
char name[50];
gcry_sexp_t curveparam;
if (toklen + 1 > sizeof name)
{
gcry_mpi_release (x);
return gpg_error (GPG_ERR_TOO_LARGE);
}
mem2str (name, tok, toklen+1);
curveparam = gcry_pk_get_param (GCRY_PK_ECC, name);
if (!curveparam)
{
gcry_mpi_release (x);
return gpg_error (GPG_ERR_UNKNOWN_CURVE);
}
err = gcry_sexp_extract_param (curveparam, NULL, "pab", &p, &a, &b, NULL);
gcry_sexp_release (curveparam);
if (err)
{
gcry_mpi_release (x);
return gpg_error (GPG_ERR_INTERNAL);
}
}
if (!mpi_test_bit (p, 1))
{
/* No support for point compression for this curve. */
gcry_mpi_release (x);
gcry_mpi_release (p);
gcry_mpi_release (a);
gcry_mpi_release (b);
return gpg_error (GPG_ERR_NOT_IMPLEMENTED);
}
/*
* Recover Y. The Weierstrass curve: y^2 = x^3 + a*x + b
*/
x3 = mpi_new (0);
t = mpi_new (0);
p1_4 = mpi_new (0);
y = mpi_new (0);
/* Compute right hand side. */
mpi_powm (x3, x, GCRYMPI_CONST_THREE, p);
mpi_mul (t, a, x);
mpi_mod (t, t, p);
mpi_add (t, t, b);
mpi_mod (t, t, p);
mpi_add (t, t, x3);
mpi_mod (t, t, p);
/*
* When p mod 4 = 3, modular square root of A can be computed by
* A^((p+1)/4) mod p
*/
/* Compute (p+1)/4 into p1_4 */
mpi_rshift (p1_4, p, 2);
mpi_add_ui (p1_4, p1_4, 1);
mpi_powm (y, t, p1_4, p);
if (y_bit != mpi_test_bit (y, 0))
mpi_sub (y, p, y);
gcry_mpi_release (p1_4);
gcry_mpi_release (t);
gcry_mpi_release (x3);
gcry_mpi_release (a);
gcry_mpi_release (b);
err = ec2os (x, y, p, &qvalue, &qvaluelen);
gcry_mpi_release (x);
gcry_mpi_release (y);
gcry_mpi_release (p);
if (err)
return err;
snprintf (lenstr, sizeof lenstr, "%u:", (unsigned int)qvaluelen);
/* Note that for simplicity we do not subtract the old length of Q
* for the new buffer. */
*r_newkeydata = xtrymalloc (qvaluelen + strlen(lenstr) + qvaluelen);
if (!*r_newkeydata)
return gpg_error_from_syserror ();
dst = *r_newkeydata;
n = q_ptr - keydata;
memcpy (dst, keydata, n); /* Copy first part of original data. */
dst += n;
n = strlen (lenstr);
memcpy (dst, lenstr, n); /* Copy new prefix of Q's value. */
dst += n;
memcpy (dst, qvalue, qvaluelen); /* Copy new value of Q. */
dst += qvaluelen;
log_assert (q_toklen < q_ptrlen);
n = q_ptrlen - q_toklen;
memcpy (dst, q_ptr + q_toklen, n);/* Copy rest of original data. */
dst += n;
*r_newkeydatalen = dst - *r_newkeydata;
xfree (qvalue);
return 0;
}
/* Return the algo of a public KEY of SEXP. */
int
get_pk_algo_from_key (gcry_sexp_t key)
{
gcry_sexp_t list;
const char *s;
size_t n;
char algoname[6];
int algo = 0;
list = gcry_sexp_nth (key, 1);
if (!list)
goto out;
s = gcry_sexp_nth_data (list, 0, &n);
if (!s)
goto out;
if (n >= sizeof (algoname))
goto out;
memcpy (algoname, s, n);
algoname[n] = 0;
algo = gcry_pk_map_name (algoname);
if (algo == GCRY_PK_ECC)
{
gcry_sexp_t l1 = gcry_sexp_find_token (list, "flags", 0);
int i;
for (i = l1 ? gcry_sexp_length (l1)-1 : 0; i > 0; i--)
{
s = gcry_sexp_nth_data (l1, i, &n);
if (!s)
continue; /* Not a data element. */
if (n == 5 && !memcmp (s, "eddsa", 5))
{
algo = GCRY_PK_EDDSA;
break;
}
}
gcry_sexp_release (l1);
}
out:
gcry_sexp_release (list);
return algo;
}
/* This is a variant of get_pk_algo_from_key but takes an canonical
* encoded S-expression as input. Returns a GCRYPT public key
* identiier or 0 on error. */
int
get_pk_algo_from_canon_sexp (const unsigned char *keydata, size_t keydatalen)
{
gcry_sexp_t sexp;
int algo;
if (gcry_sexp_sscan (&sexp, NULL, keydata, keydatalen))
return 0;
algo = get_pk_algo_from_key (sexp);
gcry_sexp_release (sexp);
return algo;
}
/* Given the public key S_PKEY, return a new buffer with a descriptive
* string for its algorithm. This function may return NULL on memory
* error. If R_ALGOID is not NULL the gcrypt algo id is stored there. */
char *
pubkey_algo_string (gcry_sexp_t s_pkey, enum gcry_pk_algos *r_algoid)
{
const char *prefix;
gcry_sexp_t l1;
char *algoname;
int algo;
char *result;
if (r_algoid)
*r_algoid = 0;
l1 = gcry_sexp_find_token (s_pkey, "public-key", 0);
if (!l1)
return xtrystrdup ("E_no_key");
{
gcry_sexp_t l_tmp = gcry_sexp_cadr (l1);
gcry_sexp_release (l1);
l1 = l_tmp;
}
algoname = gcry_sexp_nth_string (l1, 0);
gcry_sexp_release (l1);
if (!algoname)
return xtrystrdup ("E_no_algo");
algo = gcry_pk_map_name (algoname);
switch (algo)
{
case GCRY_PK_RSA: prefix = "rsa"; break;
case GCRY_PK_ELG: prefix = "elg"; break;
case GCRY_PK_DSA: prefix = "dsa"; break;
case GCRY_PK_ECC: prefix = ""; break;
default: prefix = NULL; break;
}
if (prefix && *prefix)
result = xtryasprintf ("%s%u", prefix, gcry_pk_get_nbits (s_pkey));
else if (prefix)
{
const char *curve = gcry_pk_get_curve (s_pkey, 0, NULL);
const char *name = openpgp_oid_to_curve
(openpgp_curve_to_oid (curve, NULL, NULL), 0);
if (name)
result = xtrystrdup (name);
else if (curve)
result = xtryasprintf ("X_%s", curve);
else
result = xtrystrdup ("E_unknown");
}
else
result = xtryasprintf ("X_algo_%d", algo);
if (r_algoid)
*r_algoid = algo;
xfree (algoname);
return result;
}
/* Map a pubkey algo id from gcrypt to a string. This is the same as
* gcry_pk_algo_name but makes sure that the ECC algo identifiers are
* not all mapped to "ECC". */
const char *
pubkey_algo_to_string (int algo)
{
if (algo == GCRY_PK_ECDSA)
return "ECDSA";
else if (algo == GCRY_PK_ECDH)
return "ECDH";
else if (algo == GCRY_PK_EDDSA)
return "EdDSA";
else
return gcry_pk_algo_name (algo);
}
/* Map a hash algo id from gcrypt to a string. This is the same as
* gcry_md_algo_name but the returned string is lower case, as
* expected by libksba and it avoids some overhead. */
const char *
hash_algo_to_string (int algo)
{
static const struct
{
const char *name;
int algo;
} hashnames[] =
{
{ "sha256", GCRY_MD_SHA256 },
{ "sha512", GCRY_MD_SHA512 },
{ "sha1", GCRY_MD_SHA1 },
{ "sha384", GCRY_MD_SHA384 },
{ "sha224", GCRY_MD_SHA224 },
{ "sha3-224", GCRY_MD_SHA3_224 },
{ "sha3-256", GCRY_MD_SHA3_256 },
{ "sha3-384", GCRY_MD_SHA3_384 },
{ "sha3-512", GCRY_MD_SHA3_512 },
{ "ripemd160", GCRY_MD_RMD160 },
{ "rmd160", GCRY_MD_RMD160 },
{ "md2", GCRY_MD_MD2 },
{ "md4", GCRY_MD_MD4 },
{ "tiger", GCRY_MD_TIGER },
{ "haval", GCRY_MD_HAVAL },
#if GCRYPT_VERSION_NUMBER >= 0x010900
{ "sm3", GCRY_MD_SM3 },
#endif
{ "md5", GCRY_MD_MD5 }
};
int i;
for (i=0; i < DIM (hashnames); i++)
if (algo == hashnames[i].algo)
return hashnames[i].name;
return "?";
}
/* Map cipher modes to a string. */
const char *
cipher_mode_to_string (int mode)
{
switch (mode)
{
case GCRY_CIPHER_MODE_CFB: return "CFB";
case GCRY_CIPHER_MODE_CBC: return "CBC";
case GCRY_CIPHER_MODE_GCM: return "GCM";
case GCRY_CIPHER_MODE_OCB: return "OCB";
case 14: return "EAX"; /* Only in gcrypt 1.9 */
default: return "[?]";
}
}
|