diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
commit | 43a123c1ae6613b3efeed291fa552ecd909d3acf (patch) | |
tree | fd92518b7024bc74031f78a1cf9e454b65e73665 /src/cmd/compile/internal/escape/solve.go | |
parent | Initial commit. (diff) | |
download | golang-1.20-upstream.tar.xz golang-1.20-upstream.zip |
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/compile/internal/escape/solve.go')
-rw-r--r-- | src/cmd/compile/internal/escape/solve.go | 289 |
1 files changed, 289 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/escape/solve.go b/src/cmd/compile/internal/escape/solve.go new file mode 100644 index 0000000..77d6b27 --- /dev/null +++ b/src/cmd/compile/internal/escape/solve.go @@ -0,0 +1,289 @@ +// Copyright 2018 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package escape + +import ( + "cmd/compile/internal/base" + "cmd/compile/internal/ir" + "cmd/compile/internal/logopt" + "cmd/internal/src" + "fmt" + "strings" +) + +// walkAll computes the minimal dereferences between all pairs of +// locations. +func (b *batch) walkAll() { + // We use a work queue to keep track of locations that we need + // to visit, and repeatedly walk until we reach a fixed point. + // + // We walk once from each location (including the heap), and + // then re-enqueue each location on its transition from + // transient->!transient and !escapes->escapes, which can each + // happen at most once. So we take Θ(len(e.allLocs)) walks. + + // LIFO queue, has enough room for e.allLocs and e.heapLoc. + todo := make([]*location, 0, len(b.allLocs)+1) + enqueue := func(loc *location) { + if !loc.queued { + todo = append(todo, loc) + loc.queued = true + } + } + + for _, loc := range b.allLocs { + enqueue(loc) + } + enqueue(&b.heapLoc) + + var walkgen uint32 + for len(todo) > 0 { + root := todo[len(todo)-1] + todo = todo[:len(todo)-1] + root.queued = false + + walkgen++ + b.walkOne(root, walkgen, enqueue) + } +} + +// walkOne computes the minimal number of dereferences from root to +// all other locations. +func (b *batch) walkOne(root *location, walkgen uint32, enqueue func(*location)) { + // The data flow graph has negative edges (from addressing + // operations), so we use the Bellman-Ford algorithm. However, + // we don't have to worry about infinite negative cycles since + // we bound intermediate dereference counts to 0. + + root.walkgen = walkgen + root.derefs = 0 + root.dst = nil + + todo := []*location{root} // LIFO queue + for len(todo) > 0 { + l := todo[len(todo)-1] + todo = todo[:len(todo)-1] + + derefs := l.derefs + + // If l.derefs < 0, then l's address flows to root. + addressOf := derefs < 0 + if addressOf { + // For a flow path like "root = &l; l = x", + // l's address flows to root, but x's does + // not. We recognize this by lower bounding + // derefs at 0. + derefs = 0 + + // If l's address flows to a non-transient + // location, then l can't be transiently + // allocated. + if !root.transient && l.transient { + l.transient = false + enqueue(l) + } + } + + if b.outlives(root, l) { + // l's value flows to root. If l is a function + // parameter and root is the heap or a + // corresponding result parameter, then record + // that value flow for tagging the function + // later. + if l.isName(ir.PPARAM) { + if (logopt.Enabled() || base.Flag.LowerM >= 2) && !l.escapes { + if base.Flag.LowerM >= 2 { + fmt.Printf("%s: parameter %v leaks to %s with derefs=%d:\n", base.FmtPos(l.n.Pos()), l.n, b.explainLoc(root), derefs) + } + explanation := b.explainPath(root, l) + if logopt.Enabled() { + var e_curfn *ir.Func // TODO(mdempsky): Fix. + logopt.LogOpt(l.n.Pos(), "leak", "escape", ir.FuncName(e_curfn), + fmt.Sprintf("parameter %v leaks to %s with derefs=%d", l.n, b.explainLoc(root), derefs), explanation) + } + } + l.leakTo(root, derefs) + } + + // If l's address flows somewhere that + // outlives it, then l needs to be heap + // allocated. + if addressOf && !l.escapes { + if logopt.Enabled() || base.Flag.LowerM >= 2 { + if base.Flag.LowerM >= 2 { + fmt.Printf("%s: %v escapes to heap:\n", base.FmtPos(l.n.Pos()), l.n) + } + explanation := b.explainPath(root, l) + if logopt.Enabled() { + var e_curfn *ir.Func // TODO(mdempsky): Fix. + logopt.LogOpt(l.n.Pos(), "escape", "escape", ir.FuncName(e_curfn), fmt.Sprintf("%v escapes to heap", l.n), explanation) + } + } + l.escapes = true + enqueue(l) + continue + } + } + + for i, edge := range l.edges { + if edge.src.escapes { + continue + } + d := derefs + edge.derefs + if edge.src.walkgen != walkgen || edge.src.derefs > d { + edge.src.walkgen = walkgen + edge.src.derefs = d + edge.src.dst = l + edge.src.dstEdgeIdx = i + todo = append(todo, edge.src) + } + } + } +} + +// explainPath prints an explanation of how src flows to the walk root. +func (b *batch) explainPath(root, src *location) []*logopt.LoggedOpt { + visited := make(map[*location]bool) + pos := base.FmtPos(src.n.Pos()) + var explanation []*logopt.LoggedOpt + for { + // Prevent infinite loop. + if visited[src] { + if base.Flag.LowerM >= 2 { + fmt.Printf("%s: warning: truncated explanation due to assignment cycle; see golang.org/issue/35518\n", pos) + } + break + } + visited[src] = true + dst := src.dst + edge := &dst.edges[src.dstEdgeIdx] + if edge.src != src { + base.Fatalf("path inconsistency: %v != %v", edge.src, src) + } + + explanation = b.explainFlow(pos, dst, src, edge.derefs, edge.notes, explanation) + + if dst == root { + break + } + src = dst + } + + return explanation +} + +func (b *batch) explainFlow(pos string, dst, srcloc *location, derefs int, notes *note, explanation []*logopt.LoggedOpt) []*logopt.LoggedOpt { + ops := "&" + if derefs >= 0 { + ops = strings.Repeat("*", derefs) + } + print := base.Flag.LowerM >= 2 + + flow := fmt.Sprintf(" flow: %s = %s%v:", b.explainLoc(dst), ops, b.explainLoc(srcloc)) + if print { + fmt.Printf("%s:%s\n", pos, flow) + } + if logopt.Enabled() { + var epos src.XPos + if notes != nil { + epos = notes.where.Pos() + } else if srcloc != nil && srcloc.n != nil { + epos = srcloc.n.Pos() + } + var e_curfn *ir.Func // TODO(mdempsky): Fix. + explanation = append(explanation, logopt.NewLoggedOpt(epos, "escflow", "escape", ir.FuncName(e_curfn), flow)) + } + + for note := notes; note != nil; note = note.next { + if print { + fmt.Printf("%s: from %v (%v) at %s\n", pos, note.where, note.why, base.FmtPos(note.where.Pos())) + } + if logopt.Enabled() { + var e_curfn *ir.Func // TODO(mdempsky): Fix. + explanation = append(explanation, logopt.NewLoggedOpt(note.where.Pos(), "escflow", "escape", ir.FuncName(e_curfn), + fmt.Sprintf(" from %v (%v)", note.where, note.why))) + } + } + return explanation +} + +func (b *batch) explainLoc(l *location) string { + if l == &b.heapLoc { + return "{heap}" + } + if l.n == nil { + // TODO(mdempsky): Omit entirely. + return "{temp}" + } + if l.n.Op() == ir.ONAME { + return fmt.Sprintf("%v", l.n) + } + return fmt.Sprintf("{storage for %v}", l.n) +} + +// outlives reports whether values stored in l may survive beyond +// other's lifetime if stack allocated. +func (b *batch) outlives(l, other *location) bool { + // The heap outlives everything. + if l.escapes { + return true + } + + // We don't know what callers do with returned values, so + // pessimistically we need to assume they flow to the heap and + // outlive everything too. + if l.isName(ir.PPARAMOUT) { + // Exception: Directly called closures can return + // locations allocated outside of them without forcing + // them to the heap. For example: + // + // var u int // okay to stack allocate + // *(func() *int { return &u }()) = 42 + if containsClosure(other.curfn, l.curfn) && l.curfn.ClosureCalled() { + return false + } + + return true + } + + // If l and other are within the same function, then l + // outlives other if it was declared outside other's loop + // scope. For example: + // + // var l *int + // for { + // l = new(int) + // } + if l.curfn == other.curfn && l.loopDepth < other.loopDepth { + return true + } + + // If other is declared within a child closure of where l is + // declared, then l outlives it. For example: + // + // var l *int + // func() { + // l = new(int) + // } + if containsClosure(l.curfn, other.curfn) { + return true + } + + return false +} + +// containsClosure reports whether c is a closure contained within f. +func containsClosure(f, c *ir.Func) bool { + // Common case. + if f == c { + return false + } + + // Closures within function Foo are named like "Foo.funcN..." + // TODO(mdempsky): Better way to recognize this. + fn := f.Sym().Name + cn := c.Sym().Name + return len(cn) > len(fn) && cn[:len(fn)] == fn && cn[len(fn)] == '.' +} |