summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/noder/transform.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/cmd/compile/internal/noder/transform.go
parentInitial commit. (diff)
downloadgolang-1.20-upstream.tar.xz
golang-1.20-upstream.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/compile/internal/noder/transform.go')
-rw-r--r--src/cmd/compile/internal/noder/transform.go1085
1 files changed, 1085 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/noder/transform.go b/src/cmd/compile/internal/noder/transform.go
new file mode 100644
index 0000000..15adb89
--- /dev/null
+++ b/src/cmd/compile/internal/noder/transform.go
@@ -0,0 +1,1085 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file contains transformation functions on nodes, which are the
+// transformations that the typecheck package does that are distinct from the
+// typechecking functionality. These transform functions are pared-down copies of
+// the original typechecking functions, with all code removed that is related to:
+//
+// - Detecting compile-time errors (already done by types2)
+// - Setting the actual type of existing nodes (already done based on
+// type info from types2)
+// - Dealing with untyped constants (which types2 has already resolved)
+//
+// Each of the transformation functions requires that node passed in has its type
+// and typecheck flag set. If the transformation function replaces or adds new
+// nodes, it will set the type and typecheck flag for those new nodes.
+
+package noder
+
+import (
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/ir"
+ "cmd/compile/internal/typecheck"
+ "cmd/compile/internal/types"
+ "fmt"
+ "go/constant"
+)
+
+// Transformation functions for expressions
+
+// transformAdd transforms an addition operation (currently just addition of
+// strings). Corresponds to the "binary operators" case in typecheck.typecheck1.
+func transformAdd(n *ir.BinaryExpr) ir.Node {
+ assert(n.Type() != nil && n.Typecheck() == 1)
+ l := n.X
+ if l.Type().IsString() {
+ var add *ir.AddStringExpr
+ if l.Op() == ir.OADDSTR {
+ add = l.(*ir.AddStringExpr)
+ add.SetPos(n.Pos())
+ } else {
+ add = ir.NewAddStringExpr(n.Pos(), []ir.Node{l})
+ }
+ r := n.Y
+ if r.Op() == ir.OADDSTR {
+ r := r.(*ir.AddStringExpr)
+ add.List.Append(r.List.Take()...)
+ } else {
+ add.List.Append(r)
+ }
+ typed(l.Type(), add)
+ return add
+ }
+ return n
+}
+
+// Corresponds to typecheck.stringtoruneslit.
+func stringtoruneslit(n *ir.ConvExpr) ir.Node {
+ if n.X.Op() != ir.OLITERAL || n.X.Val().Kind() != constant.String {
+ base.Fatalf("stringtoarraylit %v", n)
+ }
+
+ var list []ir.Node
+ i := 0
+ eltType := n.Type().Elem()
+ for _, r := range ir.StringVal(n.X) {
+ elt := ir.NewKeyExpr(base.Pos, ir.NewInt(int64(i)), ir.NewInt(int64(r)))
+ // Change from untyped int to the actual element type determined
+ // by types2. No need to change elt.Key, since the array indexes
+ // are just used for setting up the element ordering.
+ elt.Value.SetType(eltType)
+ list = append(list, elt)
+ i++
+ }
+
+ nn := ir.NewCompLitExpr(base.Pos, ir.OCOMPLIT, n.Type(), list)
+ typed(n.Type(), nn)
+ // Need to transform the OCOMPLIT.
+ return transformCompLit(nn)
+}
+
+// transformConv transforms an OCONV node as needed, based on the types involved,
+// etc. Corresponds to typecheck.tcConv.
+func transformConv(n *ir.ConvExpr) ir.Node {
+ t := n.X.Type()
+ op, why := typecheck.Convertop(n.X.Op() == ir.OLITERAL, t, n.Type())
+ if op == ir.OXXX {
+ // types2 currently ignores pragmas, so a 'notinheap' mismatch is the
+ // one type-related error that it does not catch. This error will be
+ // caught here by Convertop (see two checks near beginning of
+ // Convertop) and reported at the end of noding.
+ base.ErrorfAt(n.Pos(), "cannot convert %L to type %v%s", n.X, n.Type(), why)
+ return n
+ }
+ n.SetOp(op)
+ switch n.Op() {
+ case ir.OCONVNOP:
+ if t.Kind() == n.Type().Kind() {
+ switch t.Kind() {
+ case types.TFLOAT32, types.TFLOAT64, types.TCOMPLEX64, types.TCOMPLEX128:
+ // Floating point casts imply rounding and
+ // so the conversion must be kept.
+ n.SetOp(ir.OCONV)
+ }
+ }
+
+ // Do not convert to []byte literal. See CL 125796.
+ // Generated code and compiler memory footprint is better without it.
+ case ir.OSTR2BYTES:
+ // ok
+
+ case ir.OSTR2RUNES:
+ if n.X.Op() == ir.OLITERAL {
+ return stringtoruneslit(n)
+ }
+
+ case ir.OBYTES2STR:
+ assert(t.IsSlice())
+ assert(t.Elem().Kind() == types.TUINT8)
+ if t.Elem() != types.ByteType && t.Elem() != types.Types[types.TUINT8] {
+ // If t is a slice of a user-defined byte type B (not uint8
+ // or byte), then add an extra CONVNOP from []B to []byte, so
+ // that the call to slicebytetostring() added in walk will
+ // typecheck correctly.
+ n.X = ir.NewConvExpr(n.X.Pos(), ir.OCONVNOP, types.NewSlice(types.ByteType), n.X)
+ n.X.SetTypecheck(1)
+ }
+
+ case ir.ORUNES2STR:
+ assert(t.IsSlice())
+ assert(t.Elem().Kind() == types.TINT32)
+ if t.Elem() != types.RuneType && t.Elem() != types.Types[types.TINT32] {
+ // If t is a slice of a user-defined rune type B (not uint32
+ // or rune), then add an extra CONVNOP from []B to []rune, so
+ // that the call to slicerunetostring() added in walk will
+ // typecheck correctly.
+ n.X = ir.NewConvExpr(n.X.Pos(), ir.OCONVNOP, types.NewSlice(types.RuneType), n.X)
+ n.X.SetTypecheck(1)
+ }
+
+ }
+ return n
+}
+
+// transformConvCall transforms a conversion call. Corresponds to the OTYPE part of
+// typecheck.tcCall.
+func transformConvCall(n *ir.CallExpr) ir.Node {
+ assert(n.Type() != nil && n.Typecheck() == 1)
+ arg := n.Args[0]
+ n1 := ir.NewConvExpr(n.Pos(), ir.OCONV, nil, arg)
+ typed(n.X.Type(), n1)
+ return transformConv(n1)
+}
+
+// transformCall transforms a normal function/method call. Corresponds to last half
+// (non-conversion, non-builtin part) of typecheck.tcCall. This code should work even
+// in the case of OCALL/OFUNCINST.
+func transformCall(n *ir.CallExpr) {
+ // Set base.Pos, since transformArgs below may need it, but transformCall
+ // is called in some passes that don't set base.Pos.
+ ir.SetPos(n)
+ // n.Type() can be nil for calls with no return value
+ assert(n.Typecheck() == 1)
+ typecheck.RewriteNonNameCall(n)
+ transformArgs(n)
+ l := n.X
+ t := l.Type()
+
+ switch l.Op() {
+ case ir.ODOTINTER:
+ n.SetOp(ir.OCALLINTER)
+
+ case ir.ODOTMETH:
+ l := l.(*ir.SelectorExpr)
+ n.SetOp(ir.OCALLMETH)
+
+ tp := t.Recv().Type
+
+ if l.X == nil || !types.Identical(l.X.Type(), tp) {
+ base.Fatalf("method receiver")
+ }
+
+ default:
+ n.SetOp(ir.OCALLFUNC)
+ }
+
+ typecheckaste(ir.OCALL, n.X, n.IsDDD, t.Params(), n.Args)
+ if l.Op() == ir.ODOTMETH && len(deref(n.X.Type().Recv().Type).RParams()) == 0 {
+ typecheck.FixMethodCall(n)
+ }
+ if t.NumResults() == 1 {
+ if n.Op() == ir.OCALLFUNC && n.X.Op() == ir.ONAME {
+ if sym := n.X.(*ir.Name).Sym(); types.IsRuntimePkg(sym.Pkg) && sym.Name == "getg" {
+ // Emit code for runtime.getg() directly instead of calling function.
+ // Most such rewrites (for example the similar one for math.Sqrt) should be done in walk,
+ // so that the ordering pass can make sure to preserve the semantics of the original code
+ // (in particular, the exact time of the function call) by introducing temporaries.
+ // In this case, we know getg() always returns the same result within a given function
+ // and we want to avoid the temporaries, so we do the rewrite earlier than is typical.
+ n.SetOp(ir.OGETG)
+ }
+ }
+ return
+ }
+}
+
+// transformEarlyCall transforms the arguments of a call with an OFUNCINST node.
+func transformEarlyCall(n *ir.CallExpr) {
+ transformArgs(n)
+ typecheckaste(ir.OCALL, n.X, n.IsDDD, n.X.Type().Params(), n.Args)
+}
+
+// transformCompare transforms a compare operation (currently just equals/not
+// equals). Corresponds to the "comparison operators" case in
+// typecheck.typecheck1, including tcArith.
+func transformCompare(n *ir.BinaryExpr) {
+ assert(n.Type() != nil && n.Typecheck() == 1)
+ if (n.Op() == ir.OEQ || n.Op() == ir.ONE) && !types.Identical(n.X.Type(), n.Y.Type()) {
+ // Comparison is okay as long as one side is assignable to the
+ // other. The only allowed case where the conversion is not CONVNOP is
+ // "concrete == interface". In that case, check comparability of
+ // the concrete type. The conversion allocates, so only do it if
+ // the concrete type is huge.
+ l, r := n.X, n.Y
+ lt, rt := l.Type(), r.Type()
+ converted := false
+ if rt.Kind() != types.TBLANK {
+ aop, _ := typecheck.Assignop(lt, rt)
+ if aop != ir.OXXX {
+ types.CalcSize(lt)
+ if lt.HasShape() || rt.IsInterface() == lt.IsInterface() || lt.Size() >= 1<<16 {
+ l = ir.NewConvExpr(base.Pos, aop, rt, l)
+ l.SetTypecheck(1)
+ }
+
+ converted = true
+ }
+ }
+
+ if !converted && lt.Kind() != types.TBLANK {
+ aop, _ := typecheck.Assignop(rt, lt)
+ if aop != ir.OXXX {
+ types.CalcSize(rt)
+ if rt.HasShape() || rt.IsInterface() == lt.IsInterface() || rt.Size() >= 1<<16 {
+ r = ir.NewConvExpr(base.Pos, aop, lt, r)
+ r.SetTypecheck(1)
+ }
+ }
+ }
+ n.X, n.Y = l, r
+ }
+}
+
+// Corresponds to typecheck.implicitstar.
+func implicitstar(n ir.Node) ir.Node {
+ // insert implicit * if needed for fixed array
+ t := n.Type()
+ if !t.IsPtr() {
+ return n
+ }
+ t = t.Elem()
+ if !t.IsArray() {
+ return n
+ }
+ star := ir.NewStarExpr(base.Pos, n)
+ star.SetImplicit(true)
+ return typed(t, star)
+}
+
+// transformIndex transforms an index operation. Corresponds to typecheck.tcIndex.
+func transformIndex(n *ir.IndexExpr) {
+ assert(n.Type() != nil && n.Typecheck() == 1)
+ n.X = implicitstar(n.X)
+ l := n.X
+ t := l.Type()
+ if t.Kind() == types.TMAP {
+ n.Index = assignconvfn(n.Index, t.Key())
+ n.SetOp(ir.OINDEXMAP)
+ // Set type to just the map value, not (value, bool). This is
+ // different from types2, but fits the later stages of the
+ // compiler better.
+ n.SetType(t.Elem())
+ n.Assigned = false
+ }
+}
+
+// transformSlice transforms a slice operation. Corresponds to typecheck.tcSlice.
+func transformSlice(n *ir.SliceExpr) {
+ assert(n.Type() != nil && n.Typecheck() == 1)
+ l := n.X
+ if l.Type().IsArray() {
+ addr := typecheck.NodAddr(n.X)
+ addr.SetImplicit(true)
+ typed(types.NewPtr(n.X.Type()), addr)
+ n.X = addr
+ l = addr
+ }
+ t := l.Type()
+ if t.IsString() {
+ n.SetOp(ir.OSLICESTR)
+ } else if t.IsPtr() && t.Elem().IsArray() {
+ if n.Op().IsSlice3() {
+ n.SetOp(ir.OSLICE3ARR)
+ } else {
+ n.SetOp(ir.OSLICEARR)
+ }
+ }
+}
+
+// Transformation functions for statements
+
+// Corresponds to typecheck.checkassign.
+func transformCheckAssign(stmt ir.Node, n ir.Node) {
+ if n.Op() == ir.OINDEXMAP {
+ n := n.(*ir.IndexExpr)
+ n.Assigned = true
+ return
+ }
+}
+
+// Corresponds to typecheck.assign.
+func transformAssign(stmt ir.Node, lhs, rhs []ir.Node) {
+ checkLHS := func(i int, typ *types.Type) {
+ transformCheckAssign(stmt, lhs[i])
+ }
+
+ cr := len(rhs)
+ if len(rhs) == 1 {
+ if rtyp := rhs[0].Type(); rtyp != nil && rtyp.IsFuncArgStruct() {
+ cr = rtyp.NumFields()
+ }
+ }
+
+ // x, ok = y
+assignOK:
+ for len(lhs) == 2 && cr == 1 {
+ stmt := stmt.(*ir.AssignListStmt)
+ r := rhs[0]
+
+ switch r.Op() {
+ case ir.OINDEXMAP:
+ stmt.SetOp(ir.OAS2MAPR)
+ case ir.ORECV:
+ stmt.SetOp(ir.OAS2RECV)
+ case ir.ODOTTYPE:
+ r := r.(*ir.TypeAssertExpr)
+ stmt.SetOp(ir.OAS2DOTTYPE)
+ r.SetOp(ir.ODOTTYPE2)
+ case ir.ODYNAMICDOTTYPE:
+ r := r.(*ir.DynamicTypeAssertExpr)
+ stmt.SetOp(ir.OAS2DOTTYPE)
+ r.SetOp(ir.ODYNAMICDOTTYPE2)
+ default:
+ break assignOK
+ }
+ checkLHS(0, r.Type())
+ checkLHS(1, types.UntypedBool)
+ t := lhs[0].Type()
+ if t != nil && rhs[0].Type().HasShape() && t.IsInterface() && !types.IdenticalStrict(t, rhs[0].Type()) {
+ // This is a multi-value assignment (map, channel, or dot-type)
+ // where the main result is converted to an interface during the
+ // assignment. Normally, the needed CONVIFACE is not created
+ // until (*orderState).as2ok(), because the AS2* ops and their
+ // sub-ops are so tightly intertwined. But we need to create the
+ // CONVIFACE now to enable dictionary lookups. So, assign the
+ // results first to temps, so that we can manifest the CONVIFACE
+ // in assigning the first temp to lhs[0]. If we added the
+ // CONVIFACE into rhs[0] directly, we would break a lot of later
+ // code that depends on the tight coupling between the AS2* ops
+ // and their sub-ops. (Issue #50642).
+ v := typecheck.Temp(rhs[0].Type())
+ ok := typecheck.Temp(types.Types[types.TBOOL])
+ as := ir.NewAssignListStmt(base.Pos, stmt.Op(), []ir.Node{v, ok}, []ir.Node{r})
+ as.Def = true
+ as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, v))
+ as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, ok))
+ as.SetTypecheck(1)
+ // Change stmt to be a normal assignment of the temps to the final
+ // left-hand-sides. We re-create the original multi-value assignment
+ // so that it assigns to the temps and add it as an init of stmt.
+ //
+ // TODO: fix the order of evaluation, so that the lval of lhs[0]
+ // is evaluated before rhs[0] (similar to problem in #50672).
+ stmt.SetOp(ir.OAS2)
+ stmt.PtrInit().Append(as)
+ // assignconvfn inserts the CONVIFACE.
+ stmt.Rhs = []ir.Node{assignconvfn(v, t), ok}
+ }
+ return
+ }
+
+ if len(lhs) != cr {
+ for i := range lhs {
+ checkLHS(i, nil)
+ }
+ return
+ }
+
+ // x,y,z = f()
+ if cr > len(rhs) {
+ stmt := stmt.(*ir.AssignListStmt)
+ stmt.SetOp(ir.OAS2FUNC)
+ r := rhs[0].(*ir.CallExpr)
+ rtyp := r.Type()
+
+ mismatched := false
+ failed := false
+ for i := range lhs {
+ result := rtyp.Field(i).Type
+ checkLHS(i, result)
+
+ if lhs[i].Type() == nil || result == nil {
+ failed = true
+ } else if lhs[i] != ir.BlankNode && !types.Identical(lhs[i].Type(), result) {
+ mismatched = true
+ }
+ }
+ if mismatched && !failed {
+ typecheck.RewriteMultiValueCall(stmt, r)
+ }
+ return
+ }
+
+ for i, r := range rhs {
+ checkLHS(i, r.Type())
+ if lhs[i].Type() != nil {
+ rhs[i] = assignconvfn(r, lhs[i].Type())
+ }
+ }
+}
+
+// Corresponds to typecheck.typecheckargs. Really just deals with multi-value calls.
+func transformArgs(n ir.InitNode) {
+ var list []ir.Node
+ switch n := n.(type) {
+ default:
+ base.Fatalf("transformArgs %+v", n.Op())
+ case *ir.CallExpr:
+ list = n.Args
+ if n.IsDDD {
+ return
+ }
+ case *ir.ReturnStmt:
+ list = n.Results
+ }
+ if len(list) != 1 {
+ return
+ }
+
+ t := list[0].Type()
+ if t == nil || !t.IsFuncArgStruct() {
+ return
+ }
+
+ // Save n as n.Orig for fmt.go.
+ if ir.Orig(n) == n {
+ n.(ir.OrigNode).SetOrig(ir.SepCopy(n))
+ }
+
+ // Rewrite f(g()) into t1, t2, ... = g(); f(t1, t2, ...).
+ typecheck.RewriteMultiValueCall(n, list[0])
+}
+
+// assignconvfn converts node n for assignment to type t. Corresponds to
+// typecheck.assignconvfn.
+func assignconvfn(n ir.Node, t *types.Type) ir.Node {
+ if t.Kind() == types.TBLANK {
+ return n
+ }
+
+ if n.Op() == ir.OPAREN {
+ n = n.(*ir.ParenExpr).X
+ }
+
+ if types.IdenticalStrict(n.Type(), t) {
+ return n
+ }
+
+ op, why := Assignop(n.Type(), t)
+ if op == ir.OXXX {
+ base.Fatalf("found illegal assignment %+v -> %+v; %s", n.Type(), t, why)
+ }
+
+ r := ir.NewConvExpr(base.Pos, op, t, n)
+ r.SetTypecheck(1)
+ r.SetImplicit(true)
+ return r
+}
+
+func Assignop(src, dst *types.Type) (ir.Op, string) {
+ if src == dst {
+ return ir.OCONVNOP, ""
+ }
+ if src == nil || dst == nil || src.Kind() == types.TFORW || dst.Kind() == types.TFORW || src.Underlying() == nil || dst.Underlying() == nil {
+ return ir.OXXX, ""
+ }
+
+ // 1. src type is identical to dst (taking shapes into account)
+ if types.Identical(src, dst) {
+ // We already know from assignconvfn above that IdenticalStrict(src,
+ // dst) is false, so the types are not exactly the same and one of
+ // src or dst is a shape. If dst is an interface (which means src is
+ // an interface too), we need a real OCONVIFACE op; otherwise we need a
+ // OCONVNOP. See issue #48453.
+ if dst.IsInterface() {
+ return ir.OCONVIFACE, ""
+ } else {
+ return ir.OCONVNOP, ""
+ }
+ }
+ return typecheck.Assignop1(src, dst)
+}
+
+// Corresponds to typecheck.typecheckaste, but we add an extra flag convifaceOnly
+// only. If convifaceOnly is true, we only do interface conversion. We use this to do
+// early insertion of CONVIFACE nodes during noder2, when the function or args may
+// have typeparams.
+func typecheckaste(op ir.Op, call ir.Node, isddd bool, tstruct *types.Type, nl ir.Nodes) {
+ var t *types.Type
+ var i int
+
+ lno := base.Pos
+ defer func() { base.Pos = lno }()
+
+ var n ir.Node
+ if len(nl) == 1 {
+ n = nl[0]
+ }
+
+ i = 0
+ for _, tl := range tstruct.Fields().Slice() {
+ t = tl.Type
+ if tl.IsDDD() {
+ if isddd {
+ n = nl[i]
+ ir.SetPos(n)
+ if n.Type() != nil {
+ nl[i] = assignconvfn(n, t)
+ }
+ return
+ }
+
+ // TODO(mdempsky): Make into ... call with implicit slice.
+ for ; i < len(nl); i++ {
+ n = nl[i]
+ ir.SetPos(n)
+ if n.Type() != nil {
+ nl[i] = assignconvfn(n, t.Elem())
+ }
+ }
+ return
+ }
+
+ n = nl[i]
+ ir.SetPos(n)
+ if n.Type() != nil {
+ nl[i] = assignconvfn(n, t)
+ }
+ i++
+ }
+}
+
+// transformSend transforms a send statement, converting the value to appropriate
+// type for the channel, as needed. Corresponds of typecheck.tcSend.
+func transformSend(n *ir.SendStmt) {
+ n.Value = assignconvfn(n.Value, n.Chan.Type().Elem())
+}
+
+// transformReturn transforms a return node, by doing the needed assignments and
+// any necessary conversions. Corresponds to typecheck.tcReturn()
+func transformReturn(rs *ir.ReturnStmt) {
+ transformArgs(rs)
+ nl := rs.Results
+ if ir.HasNamedResults(ir.CurFunc) && len(nl) == 0 {
+ return
+ }
+
+ typecheckaste(ir.ORETURN, nil, false, ir.CurFunc.Type().Results(), nl)
+}
+
+// transformSelect transforms a select node, creating an assignment list as needed
+// for each case. Corresponds to typecheck.tcSelect().
+func transformSelect(sel *ir.SelectStmt) {
+ for _, ncase := range sel.Cases {
+ if ncase.Comm != nil {
+ n := ncase.Comm
+ oselrecv2 := func(dst, recv ir.Node, def bool) {
+ selrecv := ir.NewAssignListStmt(n.Pos(), ir.OSELRECV2, []ir.Node{dst, ir.BlankNode}, []ir.Node{recv})
+ if dst.Op() == ir.ONAME && dst.(*ir.Name).Defn == n {
+ // Must fix Defn for dst, since we are
+ // completely changing the node.
+ dst.(*ir.Name).Defn = selrecv
+ }
+ selrecv.Def = def
+ selrecv.SetTypecheck(1)
+ selrecv.SetInit(n.Init())
+ ncase.Comm = selrecv
+ }
+ switch n.Op() {
+ case ir.OAS:
+ // convert x = <-c into x, _ = <-c
+ // remove implicit conversions; the eventual assignment
+ // will reintroduce them.
+ n := n.(*ir.AssignStmt)
+ if r := n.Y; r.Op() == ir.OCONVNOP || r.Op() == ir.OCONVIFACE {
+ r := r.(*ir.ConvExpr)
+ if r.Implicit() {
+ n.Y = r.X
+ }
+ }
+ oselrecv2(n.X, n.Y, n.Def)
+
+ case ir.OAS2RECV:
+ n := n.(*ir.AssignListStmt)
+ n.SetOp(ir.OSELRECV2)
+
+ case ir.ORECV:
+ // convert <-c into _, _ = <-c
+ n := n.(*ir.UnaryExpr)
+ oselrecv2(ir.BlankNode, n, false)
+
+ case ir.OSEND:
+ break
+ }
+ }
+ }
+}
+
+// transformAsOp transforms an AssignOp statement. Corresponds to OASOP case in
+// typecheck1.
+func transformAsOp(n *ir.AssignOpStmt) {
+ transformCheckAssign(n, n.X)
+}
+
+// transformDot transforms an OXDOT (or ODOT) or ODOT, ODOTPTR, ODOTMETH,
+// ODOTINTER, or OMETHVALUE, as appropriate. It adds in extra nodes as needed to
+// access embedded fields. Corresponds to typecheck.tcDot.
+func transformDot(n *ir.SelectorExpr, isCall bool) ir.Node {
+ assert(n.Type() != nil && n.Typecheck() == 1)
+ if n.Op() == ir.OXDOT {
+ n = typecheck.AddImplicitDots(n)
+ n.SetOp(ir.ODOT)
+
+ // Set the Selection field and typecheck flag for any new ODOT nodes
+ // added by AddImplicitDots(), and also transform to ODOTPTR if
+ // needed. Equivalent to 'n.X = typecheck(n.X, ctxExpr|ctxType)' in
+ // tcDot.
+ for n1 := n; n1.X.Op() == ir.ODOT; {
+ n1 = n1.X.(*ir.SelectorExpr)
+ if !n1.Implicit() {
+ break
+ }
+ t1 := n1.X.Type()
+ if t1.IsPtr() && !t1.Elem().IsInterface() {
+ t1 = t1.Elem()
+ n1.SetOp(ir.ODOTPTR)
+ }
+ typecheck.Lookdot(n1, t1, 0)
+ n1.SetTypecheck(1)
+ }
+ }
+
+ t := n.X.Type()
+
+ if n.X.Op() == ir.OTYPE {
+ return transformMethodExpr(n)
+ }
+
+ if t.IsPtr() && !t.Elem().IsInterface() {
+ t = t.Elem()
+ n.SetOp(ir.ODOTPTR)
+ }
+
+ f := typecheck.Lookdot(n, t, 0)
+ assert(f != nil)
+
+ if (n.Op() == ir.ODOTINTER || n.Op() == ir.ODOTMETH) && !isCall {
+ n.SetOp(ir.OMETHVALUE)
+ // This converts a method type to a function type. See issue 47775.
+ n.SetType(typecheck.NewMethodType(n.Type(), nil))
+ }
+ return n
+}
+
+// Corresponds to typecheck.typecheckMethodExpr.
+func transformMethodExpr(n *ir.SelectorExpr) (res ir.Node) {
+ t := n.X.Type()
+
+ // Compute the method set for t.
+ var ms *types.Fields
+ if t.IsInterface() {
+ ms = t.AllMethods()
+ } else {
+ mt := types.ReceiverBaseType(t)
+ typecheck.CalcMethods(mt)
+ ms = mt.AllMethods()
+
+ // The method expression T.m requires a wrapper when T
+ // is different from m's declared receiver type. We
+ // normally generate these wrappers while writing out
+ // runtime type descriptors, which is always done for
+ // types declared at package scope. However, we need
+ // to make sure to generate wrappers for anonymous
+ // receiver types too.
+ if mt.Sym() == nil {
+ typecheck.NeedRuntimeType(t)
+ }
+ }
+
+ s := n.Sel
+ m := typecheck.Lookdot1(n, s, t, ms, 0)
+ if !t.HasShape() {
+ // It's OK to not find the method if t is instantiated by shape types,
+ // because we will use the methods on the generic type anyway.
+ assert(m != nil)
+ }
+
+ n.SetOp(ir.OMETHEXPR)
+ n.Selection = m
+ n.SetType(typecheck.NewMethodType(m.Type, n.X.Type()))
+ return n
+}
+
+// Corresponds to typecheck.tcAppend.
+func transformAppend(n *ir.CallExpr) ir.Node {
+ transformArgs(n)
+ args := n.Args
+ t := args[0].Type()
+ assert(t.IsSlice())
+
+ if n.IsDDD {
+ // assignconvfn is of args[1] not required here, as the
+ // types of args[0] and args[1] don't need to match
+ // (They will both have an underlying type which are
+ // slices of identical base types, or be []byte and string.)
+ // See issue 53888.
+ return n
+ }
+
+ as := args[1:]
+ for i, n := range as {
+ assert(n.Type() != nil)
+ as[i] = assignconvfn(n, t.Elem())
+ }
+ return n
+}
+
+// Corresponds to typecheck.tcComplex.
+func transformComplex(n *ir.BinaryExpr) ir.Node {
+ l := n.X
+ r := n.Y
+
+ assert(types.Identical(l.Type(), r.Type()))
+
+ var t *types.Type
+ switch l.Type().Kind() {
+ case types.TFLOAT32:
+ t = types.Types[types.TCOMPLEX64]
+ case types.TFLOAT64:
+ t = types.Types[types.TCOMPLEX128]
+ default:
+ panic(fmt.Sprintf("transformComplex: unexpected type %v", l.Type()))
+ }
+
+ // Must set the type here for generics, because this can't be determined
+ // by substitution of the generic types.
+ typed(t, n)
+ return n
+}
+
+// Corresponds to typecheck.tcDelete.
+func transformDelete(n *ir.CallExpr) ir.Node {
+ transformArgs(n)
+ args := n.Args
+ assert(len(args) == 2)
+
+ l := args[0]
+ r := args[1]
+
+ args[1] = assignconvfn(r, l.Type().Key())
+ return n
+}
+
+// Corresponds to typecheck.tcMake.
+func transformMake(n *ir.CallExpr) ir.Node {
+ args := n.Args
+
+ n.Args = nil
+ l := args[0]
+ t := l.Type()
+ assert(t != nil)
+
+ i := 1
+ var nn ir.Node
+ switch t.Kind() {
+ case types.TSLICE:
+ l = args[i]
+ i++
+ var r ir.Node
+ if i < len(args) {
+ r = args[i]
+ i++
+ }
+ nn = ir.NewMakeExpr(n.Pos(), ir.OMAKESLICE, l, r)
+
+ case types.TMAP:
+ if i < len(args) {
+ l = args[i]
+ i++
+ } else {
+ l = ir.NewInt(0)
+ }
+ nn = ir.NewMakeExpr(n.Pos(), ir.OMAKEMAP, l, nil)
+ nn.SetEsc(n.Esc())
+
+ case types.TCHAN:
+ l = nil
+ if i < len(args) {
+ l = args[i]
+ i++
+ } else {
+ l = ir.NewInt(0)
+ }
+ nn = ir.NewMakeExpr(n.Pos(), ir.OMAKECHAN, l, nil)
+ default:
+ panic(fmt.Sprintf("transformMake: unexpected type %v", t))
+ }
+
+ assert(i == len(args))
+ typed(n.Type(), nn)
+ return nn
+}
+
+// Corresponds to typecheck.tcPanic.
+func transformPanic(n *ir.UnaryExpr) ir.Node {
+ n.X = assignconvfn(n.X, types.Types[types.TINTER])
+ return n
+}
+
+// Corresponds to typecheck.tcPrint.
+func transformPrint(n *ir.CallExpr) ir.Node {
+ transformArgs(n)
+ return n
+}
+
+// Corresponds to typecheck.tcRealImag.
+func transformRealImag(n *ir.UnaryExpr) ir.Node {
+ l := n.X
+ var t *types.Type
+
+ // Determine result type.
+ switch l.Type().Kind() {
+ case types.TCOMPLEX64:
+ t = types.Types[types.TFLOAT32]
+ case types.TCOMPLEX128:
+ t = types.Types[types.TFLOAT64]
+ default:
+ panic(fmt.Sprintf("transformRealImag: unexpected type %v", l.Type()))
+ }
+
+ // Must set the type here for generics, because this can't be determined
+ // by substitution of the generic types.
+ typed(t, n)
+ return n
+}
+
+// Corresponds to typecheck.tcLenCap.
+func transformLenCap(n *ir.UnaryExpr) ir.Node {
+ n.X = implicitstar(n.X)
+ return n
+}
+
+// Corresponds to Builtin part of tcCall.
+func transformBuiltin(n *ir.CallExpr) ir.Node {
+ // n.Type() can be nil for builtins with no return value
+ assert(n.Typecheck() == 1)
+ fun := n.X.(*ir.Name)
+ op := fun.BuiltinOp
+
+ switch op {
+ case ir.OAPPEND, ir.ODELETE, ir.OMAKE, ir.OPRINT, ir.OPRINTN, ir.ORECOVER:
+ n.SetOp(op)
+ n.X = nil
+ switch op {
+ case ir.OAPPEND:
+ return transformAppend(n)
+ case ir.ODELETE:
+ return transformDelete(n)
+ case ir.OMAKE:
+ return transformMake(n)
+ case ir.OPRINT, ir.OPRINTN:
+ return transformPrint(n)
+ case ir.ORECOVER:
+ // nothing more to do
+ return n
+ }
+
+ case ir.OCAP, ir.OCLOSE, ir.OIMAG, ir.OLEN, ir.OPANIC, ir.OREAL:
+ transformArgs(n)
+ fallthrough
+
+ case ir.ONEW, ir.OALIGNOF, ir.OOFFSETOF, ir.OSIZEOF, ir.OUNSAFESLICEDATA, ir.OUNSAFESTRINGDATA:
+ u := ir.NewUnaryExpr(n.Pos(), op, n.Args[0])
+ u1 := typed(n.Type(), ir.InitExpr(n.Init(), u)) // typecheckargs can add to old.Init
+ switch op {
+ case ir.OCAP, ir.OLEN:
+ return transformLenCap(u1.(*ir.UnaryExpr))
+ case ir.OREAL, ir.OIMAG:
+ return transformRealImag(u1.(*ir.UnaryExpr))
+ case ir.OPANIC:
+ return transformPanic(u1.(*ir.UnaryExpr))
+ case ir.OALIGNOF, ir.OOFFSETOF, ir.OSIZEOF:
+ // This corresponds to the EvalConst() call near end of typecheck().
+ return typecheck.EvalConst(u1)
+ case ir.OCLOSE, ir.ONEW, ir.OUNSAFESTRINGDATA, ir.OUNSAFESLICEDATA:
+ // nothing more to do
+ return u1
+ }
+
+ case ir.OCOMPLEX, ir.OCOPY, ir.OUNSAFEADD, ir.OUNSAFESLICE, ir.OUNSAFESTRING:
+ transformArgs(n)
+ b := ir.NewBinaryExpr(n.Pos(), op, n.Args[0], n.Args[1])
+ n1 := typed(n.Type(), ir.InitExpr(n.Init(), b))
+ if op != ir.OCOMPLEX {
+ // nothing more to do
+ return n1
+ }
+ return transformComplex(n1.(*ir.BinaryExpr))
+
+ default:
+ panic(fmt.Sprintf("transformBuiltin: unexpected op %v", op))
+ }
+
+ return n
+}
+
+func hasKeys(l ir.Nodes) bool {
+ for _, n := range l {
+ if n.Op() == ir.OKEY || n.Op() == ir.OSTRUCTKEY {
+ return true
+ }
+ }
+ return false
+}
+
+// transformArrayLit runs assignconvfn on each array element and returns the
+// length of the slice/array that is needed to hold all the array keys/indexes
+// (one more than the highest index). Corresponds to typecheck.typecheckarraylit.
+func transformArrayLit(elemType *types.Type, bound int64, elts []ir.Node) int64 {
+ var key, length int64
+ for i, elt := range elts {
+ ir.SetPos(elt)
+ r := elts[i]
+ var kv *ir.KeyExpr
+ if elt.Op() == ir.OKEY {
+ elt := elt.(*ir.KeyExpr)
+ key = typecheck.IndexConst(elt.Key)
+ assert(key >= 0)
+ kv = elt
+ r = elt.Value
+ }
+
+ r = assignconvfn(r, elemType)
+ if kv != nil {
+ kv.Value = r
+ } else {
+ elts[i] = r
+ }
+
+ key++
+ if key > length {
+ length = key
+ }
+ }
+
+ return length
+}
+
+// transformCompLit transforms n to an OARRAYLIT, OSLICELIT, OMAPLIT, or
+// OSTRUCTLIT node, with any needed conversions. Corresponds to
+// typecheck.tcCompLit (and includes parts corresponding to tcStructLitKey).
+func transformCompLit(n *ir.CompLitExpr) (res ir.Node) {
+ assert(n.Type() != nil && n.Typecheck() == 1)
+ lno := base.Pos
+ defer func() {
+ base.Pos = lno
+ }()
+
+ // Save original node (including n.Right)
+ n.SetOrig(ir.Copy(n))
+
+ ir.SetPos(n)
+
+ t := n.Type()
+
+ switch t.Kind() {
+ default:
+ base.Fatalf("transformCompLit %v", t.Kind())
+
+ case types.TARRAY:
+ transformArrayLit(t.Elem(), t.NumElem(), n.List)
+ n.SetOp(ir.OARRAYLIT)
+
+ case types.TSLICE:
+ length := transformArrayLit(t.Elem(), -1, n.List)
+ n.SetOp(ir.OSLICELIT)
+ n.Len = length
+
+ case types.TMAP:
+ for _, l := range n.List {
+ ir.SetPos(l)
+ assert(l.Op() == ir.OKEY)
+ l := l.(*ir.KeyExpr)
+
+ r := l.Key
+ l.Key = assignconvfn(r, t.Key())
+
+ r = l.Value
+ l.Value = assignconvfn(r, t.Elem())
+ }
+
+ n.SetOp(ir.OMAPLIT)
+
+ case types.TSTRUCT:
+ // Need valid field offsets for Xoffset below.
+ types.CalcSize(t)
+
+ if len(n.List) != 0 && !hasKeys(n.List) {
+ // simple list of values
+ ls := n.List
+ for i, n1 := range ls {
+ ir.SetPos(n1)
+
+ f := t.Field(i)
+ n1 = assignconvfn(n1, f.Type)
+ ls[i] = ir.NewStructKeyExpr(base.Pos, f, n1)
+ }
+ assert(len(ls) >= t.NumFields())
+ } else {
+ // keyed list
+ ls := n.List
+ for i, l := range ls {
+ ir.SetPos(l)
+
+ kv := l.(*ir.KeyExpr)
+ key := kv.Key
+
+ s := key.Sym()
+ if types.IsExported(s.Name) && s.Pkg != types.LocalPkg {
+ // Exported field names should always have
+ // local pkg. We only need to do this
+ // adjustment for generic functions that are
+ // being transformed after being imported
+ // from another package.
+ s = typecheck.Lookup(s.Name)
+ }
+
+ // An OXDOT uses the Sym field to hold
+ // the field to the right of the dot,
+ // so s will be non-nil, but an OXDOT
+ // is never a valid struct literal key.
+ assert(!(s == nil || key.Op() == ir.OXDOT || s.IsBlank()))
+
+ f := typecheck.Lookdot1(nil, s, t, t.Fields(), 0)
+ l := ir.NewStructKeyExpr(l.Pos(), f, kv.Value)
+ ls[i] = l
+
+ l.Value = assignconvfn(l.Value, f.Type)
+ }
+ }
+
+ n.SetOp(ir.OSTRUCTLIT)
+ }
+
+ return n
+}
+
+// transformAddr corresponds to typecheck.tcAddr.
+func transformAddr(n *ir.AddrExpr) {
+ switch n.X.Op() {
+ case ir.OARRAYLIT, ir.OMAPLIT, ir.OSLICELIT, ir.OSTRUCTLIT:
+ n.SetOp(ir.OPTRLIT)
+ }
+}