summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/expand_calls.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/cmd/compile/internal/ssa/expand_calls.go
parentInitial commit. (diff)
downloadgolang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz
golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/compile/internal/ssa/expand_calls.go')
-rw-r--r--src/cmd/compile/internal/ssa/expand_calls.go1800
1 files changed, 1800 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/expand_calls.go b/src/cmd/compile/internal/ssa/expand_calls.go
new file mode 100644
index 0000000..a5daa14
--- /dev/null
+++ b/src/cmd/compile/internal/ssa/expand_calls.go
@@ -0,0 +1,1800 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+import (
+ "cmd/compile/internal/abi"
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/ir"
+ "cmd/compile/internal/types"
+ "cmd/internal/src"
+ "fmt"
+ "sort"
+)
+
+type selKey struct {
+ from *Value // what is selected from
+ offsetOrIndex int64 // whatever is appropriate for the selector
+ size int64
+ typ *types.Type
+}
+
+type Abi1RO uint8 // An offset within a parameter's slice of register indices, for abi1.
+
+func isBlockMultiValueExit(b *Block) bool {
+ return (b.Kind == BlockRet || b.Kind == BlockRetJmp) && b.Controls[0] != nil && b.Controls[0].Op == OpMakeResult
+}
+
+func badVal(s string, v *Value) error {
+ return fmt.Errorf("%s %s", s, v.LongString())
+}
+
+// removeTrivialWrapperTypes unwraps layers of
+// struct { singleField SomeType } and [1]SomeType
+// until a non-wrapper type is reached. This is useful
+// for working with assignments to/from interface data
+// fields (either second operand to OpIMake or OpIData)
+// where the wrapping or type conversion can be elided
+// because of type conversions/assertions in source code
+// that do not appear in SSA.
+func removeTrivialWrapperTypes(t *types.Type) *types.Type {
+ for {
+ if t.IsStruct() && t.NumFields() == 1 {
+ t = t.Field(0).Type
+ continue
+ }
+ if t.IsArray() && t.NumElem() == 1 {
+ t = t.Elem()
+ continue
+ }
+ break
+ }
+ return t
+}
+
+// A registerCursor tracks which register is used for an Arg or regValues, or a piece of such.
+type registerCursor struct {
+ // TODO(register args) convert this to a generalized target cursor.
+ storeDest *Value // if there are no register targets, then this is the base of the store.
+ regsLen int // the number of registers available for this Arg/result (which is all in registers or not at all)
+ nextSlice Abi1RO // the next register/register-slice offset
+ config *abi.ABIConfig
+ regValues *[]*Value // values assigned to registers accumulate here
+}
+
+func (rc *registerCursor) String() string {
+ dest := "<none>"
+ if rc.storeDest != nil {
+ dest = rc.storeDest.String()
+ }
+ regs := "<none>"
+ if rc.regValues != nil {
+ regs = ""
+ for i, x := range *rc.regValues {
+ if i > 0 {
+ regs = regs + "; "
+ }
+ regs = regs + x.LongString()
+ }
+ }
+ // not printing the config because that has not been useful
+ return fmt.Sprintf("RCSR{storeDest=%v, regsLen=%d, nextSlice=%d, regValues=[%s]}", dest, rc.regsLen, rc.nextSlice, regs)
+}
+
+// next effectively post-increments the register cursor; the receiver is advanced,
+// the old value is returned.
+func (c *registerCursor) next(t *types.Type) registerCursor {
+ rc := *c
+ if int(c.nextSlice) < c.regsLen {
+ w := c.config.NumParamRegs(t)
+ c.nextSlice += Abi1RO(w)
+ }
+ return rc
+}
+
+// plus returns a register cursor offset from the original, without modifying the original.
+func (c *registerCursor) plus(regWidth Abi1RO) registerCursor {
+ rc := *c
+ rc.nextSlice += regWidth
+ return rc
+}
+
+const (
+ // Register offsets for fields of built-in aggregate types; the ones not listed are zero.
+ RO_complex_imag = 1
+ RO_string_len = 1
+ RO_slice_len = 1
+ RO_slice_cap = 2
+ RO_iface_data = 1
+)
+
+func (x *expandState) regWidth(t *types.Type) Abi1RO {
+ return Abi1RO(x.abi1.NumParamRegs(t))
+}
+
+// regOffset returns the register offset of the i'th element of type t
+func (x *expandState) regOffset(t *types.Type, i int) Abi1RO {
+ // TODO maybe cache this in a map if profiling recommends.
+ if i == 0 {
+ return 0
+ }
+ if t.IsArray() {
+ return Abi1RO(i) * x.regWidth(t.Elem())
+ }
+ if t.IsStruct() {
+ k := Abi1RO(0)
+ for j := 0; j < i; j++ {
+ k += x.regWidth(t.FieldType(j))
+ }
+ return k
+ }
+ panic("Haven't implemented this case yet, do I need to?")
+}
+
+// at returns the register cursor for component i of t, where the first
+// component is numbered 0.
+func (c *registerCursor) at(t *types.Type, i int) registerCursor {
+ rc := *c
+ if i == 0 || c.regsLen == 0 {
+ return rc
+ }
+ if t.IsArray() {
+ w := c.config.NumParamRegs(t.Elem())
+ rc.nextSlice += Abi1RO(i * w)
+ return rc
+ }
+ if t.IsStruct() {
+ for j := 0; j < i; j++ {
+ rc.next(t.FieldType(j))
+ }
+ return rc
+ }
+ panic("Haven't implemented this case yet, do I need to?")
+}
+
+func (c *registerCursor) init(regs []abi.RegIndex, info *abi.ABIParamResultInfo, result *[]*Value, storeDest *Value) {
+ c.regsLen = len(regs)
+ c.nextSlice = 0
+ if len(regs) == 0 {
+ c.storeDest = storeDest // only save this if there are no registers, will explode if misused.
+ return
+ }
+ c.config = info.Config()
+ c.regValues = result
+}
+
+func (c *registerCursor) addArg(v *Value) {
+ *c.regValues = append(*c.regValues, v)
+}
+
+func (c *registerCursor) hasRegs() bool {
+ return c.regsLen > 0
+}
+
+type expandState struct {
+ f *Func
+ abi1 *abi.ABIConfig
+ debug int // odd values log lost statement markers, so likely settings are 1 (stmts), 2 (expansion), and 3 (both)
+ canSSAType func(*types.Type) bool
+ regSize int64
+ sp *Value
+ typs *Types
+ ptrSize int64
+ hiOffset int64
+ lowOffset int64
+ hiRo Abi1RO
+ loRo Abi1RO
+ namedSelects map[*Value][]namedVal
+ sdom SparseTree
+ commonSelectors map[selKey]*Value // used to de-dupe selectors
+ commonArgs map[selKey]*Value // used to de-dupe OpArg/OpArgIntReg/OpArgFloatReg
+ memForCall map[ID]*Value // For a call, need to know the unique selector that gets the mem.
+ transformedSelects map[ID]bool // OpSelectN after rewriting, either created or renumbered.
+ indentLevel int // Indentation for debugging recursion
+}
+
+// intPairTypes returns the pair of 32-bit int types needed to encode a 64-bit integer type on a target
+// that has no 64-bit integer registers.
+func (x *expandState) intPairTypes(et types.Kind) (tHi, tLo *types.Type) {
+ tHi = x.typs.UInt32
+ if et == types.TINT64 {
+ tHi = x.typs.Int32
+ }
+ tLo = x.typs.UInt32
+ return
+}
+
+// isAlreadyExpandedAggregateType returns whether a type is an SSA-able "aggregate" (multiple register) type
+// that was expanded in an earlier phase (currently, expand_calls is intended to run after decomposeBuiltin,
+// so this is all aggregate types -- small struct and array, complex, interface, string, slice, and 64-bit
+// integer on 32-bit).
+func (x *expandState) isAlreadyExpandedAggregateType(t *types.Type) bool {
+ if !x.canSSAType(t) {
+ return false
+ }
+ return t.IsStruct() || t.IsArray() || t.IsComplex() || t.IsInterface() || t.IsString() || t.IsSlice() ||
+ (t.Size() > x.regSize && (t.IsInteger() || (x.f.Config.SoftFloat && t.IsFloat())))
+}
+
+// offsetFrom creates an offset from a pointer, simplifying chained offsets and offsets from SP
+// TODO should also optimize offsets from SB?
+func (x *expandState) offsetFrom(b *Block, from *Value, offset int64, pt *types.Type) *Value {
+ ft := from.Type
+ if offset == 0 {
+ if ft == pt {
+ return from
+ }
+ // This captures common, (apparently) safe cases. The unsafe cases involve ft == uintptr
+ if (ft.IsPtr() || ft.IsUnsafePtr()) && pt.IsPtr() {
+ return from
+ }
+ }
+ // Simplify, canonicalize
+ for from.Op == OpOffPtr {
+ offset += from.AuxInt
+ from = from.Args[0]
+ }
+ if from == x.sp {
+ return x.f.ConstOffPtrSP(pt, offset, x.sp)
+ }
+ return b.NewValue1I(from.Pos.WithNotStmt(), OpOffPtr, pt, offset, from)
+}
+
+// splitSlots splits one "field" (specified by sfx, offset, and ty) out of the LocalSlots in ls and returns the new LocalSlots this generates.
+func (x *expandState) splitSlots(ls []*LocalSlot, sfx string, offset int64, ty *types.Type) []*LocalSlot {
+ var locs []*LocalSlot
+ for i := range ls {
+ locs = append(locs, x.f.SplitSlot(ls[i], sfx, offset, ty))
+ }
+ return locs
+}
+
+// prAssignForArg returns the ABIParamAssignment for v, assumed to be an OpArg.
+func (x *expandState) prAssignForArg(v *Value) *abi.ABIParamAssignment {
+ if v.Op != OpArg {
+ panic(badVal("Wanted OpArg, instead saw", v))
+ }
+ return ParamAssignmentForArgName(x.f, v.Aux.(*ir.Name))
+}
+
+// ParamAssignmentForArgName returns the ABIParamAssignment for f's arg with matching name.
+func ParamAssignmentForArgName(f *Func, name *ir.Name) *abi.ABIParamAssignment {
+ abiInfo := f.OwnAux.abiInfo
+ ip := abiInfo.InParams()
+ for i, a := range ip {
+ if a.Name == name {
+ return &ip[i]
+ }
+ }
+ panic(fmt.Errorf("Did not match param %v in prInfo %+v", name, abiInfo.InParams()))
+}
+
+// indent increments (or decrements) the indentation.
+func (x *expandState) indent(n int) {
+ x.indentLevel += n
+}
+
+// Printf does an indented fmt.Printf on te format and args.
+func (x *expandState) Printf(format string, a ...interface{}) (n int, err error) {
+ if x.indentLevel > 0 {
+ fmt.Printf("%[1]*s", x.indentLevel, "")
+ }
+ return fmt.Printf(format, a...)
+}
+
+// Calls that need lowering have some number of inputs, including a memory input,
+// and produce a tuple of (value1, value2, ..., mem) where valueK may or may not be SSA-able.
+
+// With the current ABI those inputs need to be converted into stores to memory,
+// rethreading the call's memory input to the first, and the new call now receiving the last.
+
+// With the current ABI, the outputs need to be converted to loads, which will all use the call's
+// memory output as their input.
+
+// rewriteSelect recursively walks from leaf selector to a root (OpSelectN, OpLoad, OpArg)
+// through a chain of Struct/Array/builtin Select operations. If the chain of selectors does not
+// end in an expected root, it does nothing (this can happen depending on compiler phase ordering).
+// The "leaf" provides the type, the root supplies the container, and the leaf-to-root path
+// accumulates the offset.
+// It emits the code necessary to implement the leaf select operation that leads to the root.
+//
+// TODO when registers really arrive, must also decompose anything split across two registers or registers and memory.
+func (x *expandState) rewriteSelect(leaf *Value, selector *Value, offset int64, regOffset Abi1RO) []*LocalSlot {
+ if x.debug > 1 {
+ x.indent(3)
+ defer x.indent(-3)
+ x.Printf("rewriteSelect(%s; %s; memOff=%d; regOff=%d)\n", leaf.LongString(), selector.LongString(), offset, regOffset)
+ }
+ var locs []*LocalSlot
+ leafType := leaf.Type
+ if len(selector.Args) > 0 {
+ w := selector.Args[0]
+ if w.Op == OpCopy {
+ for w.Op == OpCopy {
+ w = w.Args[0]
+ }
+ selector.SetArg(0, w)
+ }
+ }
+ switch selector.Op {
+ case OpArgIntReg, OpArgFloatReg:
+ if leafType == selector.Type { // OpIData leads us here, sometimes.
+ leaf.copyOf(selector)
+ } else {
+ x.f.Fatalf("Unexpected %s type, selector=%s, leaf=%s\n", selector.Op.String(), selector.LongString(), leaf.LongString())
+ }
+ if x.debug > 1 {
+ x.Printf("---%s, break\n", selector.Op.String())
+ }
+ case OpArg:
+ if !x.isAlreadyExpandedAggregateType(selector.Type) {
+ if leafType == selector.Type { // OpIData leads us here, sometimes.
+ x.newArgToMemOrRegs(selector, leaf, offset, regOffset, leafType, leaf.Pos)
+ } else {
+ x.f.Fatalf("Unexpected OpArg type, selector=%s, leaf=%s\n", selector.LongString(), leaf.LongString())
+ }
+ if x.debug > 1 {
+ x.Printf("---OpArg, break\n")
+ }
+ break
+ }
+ switch leaf.Op {
+ case OpIData, OpStructSelect, OpArraySelect:
+ leafType = removeTrivialWrapperTypes(leaf.Type)
+ }
+ x.newArgToMemOrRegs(selector, leaf, offset, regOffset, leafType, leaf.Pos)
+
+ for _, s := range x.namedSelects[selector] {
+ locs = append(locs, x.f.Names[s.locIndex])
+ }
+
+ case OpLoad: // We end up here because of IData of immediate structures.
+ // Failure case:
+ // (note the failure case is very rare; w/o this case, make.bash and run.bash both pass, as well as
+ // the hard cases of building {syscall,math,math/cmplx,math/bits,go/constant} on ppc64le and mips-softfloat).
+ //
+ // GOSSAFUNC='(*dumper).dump' go build -gcflags=-l -tags=math_big_pure_go cmd/compile/internal/gc
+ // cmd/compile/internal/gc/dump.go:136:14: internal compiler error: '(*dumper).dump': not lowered: v827, StructSelect PTR PTR
+ // b2: ← b1
+ // v20 (+142) = StaticLECall <interface {},mem> {AuxCall{reflect.Value.Interface([reflect.Value,0])[interface {},24]}} [40] v8 v1
+ // v21 (142) = SelectN <mem> [1] v20
+ // v22 (142) = SelectN <interface {}> [0] v20
+ // b15: ← b8
+ // v71 (+143) = IData <Nodes> v22 (v[Nodes])
+ // v73 (+146) = StaticLECall <[]*Node,mem> {AuxCall{"".Nodes.Slice([Nodes,0])[[]*Node,8]}} [32] v71 v21
+ //
+ // translates (w/o the "case OpLoad:" above) to:
+ //
+ // b2: ← b1
+ // v20 (+142) = StaticCall <mem> {AuxCall{reflect.Value.Interface([reflect.Value,0])[interface {},24]}} [40] v715
+ // v23 (142) = Load <*uintptr> v19 v20
+ // v823 (142) = IsNonNil <bool> v23
+ // v67 (+143) = Load <*[]*Node> v880 v20
+ // b15: ← b8
+ // v827 (146) = StructSelect <*[]*Node> [0] v67
+ // v846 (146) = Store <mem> {*[]*Node} v769 v827 v20
+ // v73 (+146) = StaticCall <mem> {AuxCall{"".Nodes.Slice([Nodes,0])[[]*Node,8]}} [32] v846
+ // i.e., the struct select is generated and remains in because it is not applied to an actual structure.
+ // The OpLoad was created to load the single field of the IData
+ // This case removes that StructSelect.
+ if leafType != selector.Type {
+ if x.f.Config.SoftFloat && selector.Type.IsFloat() {
+ if x.debug > 1 {
+ x.Printf("---OpLoad, break\n")
+ }
+ break // softfloat pass will take care of that
+ }
+ x.f.Fatalf("Unexpected Load as selector, leaf=%s, selector=%s\n", leaf.LongString(), selector.LongString())
+ }
+ leaf.copyOf(selector)
+ for _, s := range x.namedSelects[selector] {
+ locs = append(locs, x.f.Names[s.locIndex])
+ }
+
+ case OpSelectN:
+ // TODO(register args) result case
+ // if applied to Op-mumble-call, the Aux tells us which result, regOffset specifies offset within result. If a register, should rewrite to OpSelectN for new call.
+ // TODO these may be duplicated. Should memoize. Intermediate selectors will go dead, no worries there.
+ call := selector.Args[0]
+ call0 := call
+ aux := call.Aux.(*AuxCall)
+ which := selector.AuxInt
+ if x.transformedSelects[selector.ID] {
+ // This is a minor hack. Either this select has had its operand adjusted (mem) or
+ // it is some other intermediate node that was rewritten to reference a register (not a generic arg).
+ // This can occur with chains of selection/indexing from single field/element aggregates.
+ leaf.copyOf(selector)
+ break
+ }
+ if which == aux.NResults() { // mem is after the results.
+ // rewrite v as a Copy of call -- the replacement call will produce a mem.
+ if leaf != selector {
+ panic(fmt.Errorf("Unexpected selector of memory, selector=%s, call=%s, leaf=%s", selector.LongString(), call.LongString(), leaf.LongString()))
+ }
+ if aux.abiInfo == nil {
+ panic(badVal("aux.abiInfo nil for call", call))
+ }
+ if existing := x.memForCall[call.ID]; existing == nil {
+ selector.AuxInt = int64(aux.abiInfo.OutRegistersUsed())
+ x.memForCall[call.ID] = selector
+ x.transformedSelects[selector.ID] = true // operand adjusted
+ } else {
+ selector.copyOf(existing)
+ }
+
+ } else {
+ leafType := removeTrivialWrapperTypes(leaf.Type)
+ if x.canSSAType(leafType) {
+ pt := types.NewPtr(leafType)
+ // Any selection right out of the arg area/registers has to be same Block as call, use call as mem input.
+ // Create a "mem" for any loads that need to occur.
+ if mem := x.memForCall[call.ID]; mem != nil {
+ if mem.Block != call.Block {
+ panic(fmt.Errorf("selector and call need to be in same block, selector=%s; call=%s", selector.LongString(), call.LongString()))
+ }
+ call = mem
+ } else {
+ mem = call.Block.NewValue1I(call.Pos.WithNotStmt(), OpSelectN, types.TypeMem, int64(aux.abiInfo.OutRegistersUsed()), call)
+ x.transformedSelects[mem.ID] = true // select uses post-expansion indexing
+ x.memForCall[call.ID] = mem
+ call = mem
+ }
+ outParam := aux.abiInfo.OutParam(int(which))
+ if len(outParam.Registers) > 0 {
+ firstReg := uint32(0)
+ for i := 0; i < int(which); i++ {
+ firstReg += uint32(len(aux.abiInfo.OutParam(i).Registers))
+ }
+ reg := int64(regOffset + Abi1RO(firstReg))
+ if leaf.Block == call.Block {
+ leaf.reset(OpSelectN)
+ leaf.SetArgs1(call0)
+ leaf.Type = leafType
+ leaf.AuxInt = reg
+ x.transformedSelects[leaf.ID] = true // leaf, rewritten to use post-expansion indexing.
+ } else {
+ w := call.Block.NewValue1I(leaf.Pos, OpSelectN, leafType, reg, call0)
+ x.transformedSelects[w.ID] = true // select, using post-expansion indexing.
+ leaf.copyOf(w)
+ }
+ } else {
+ off := x.offsetFrom(x.f.Entry, x.sp, offset+aux.OffsetOfResult(which), pt)
+ if leaf.Block == call.Block {
+ leaf.reset(OpLoad)
+ leaf.SetArgs2(off, call)
+ leaf.Type = leafType
+ } else {
+ w := call.Block.NewValue2(leaf.Pos, OpLoad, leafType, off, call)
+ leaf.copyOf(w)
+ if x.debug > 1 {
+ x.Printf("---new %s\n", w.LongString())
+ }
+ }
+ }
+ for _, s := range x.namedSelects[selector] {
+ locs = append(locs, x.f.Names[s.locIndex])
+ }
+ } else {
+ x.f.Fatalf("Should not have non-SSA-able OpSelectN, selector=%s", selector.LongString())
+ }
+ }
+
+ case OpStructSelect:
+ w := selector.Args[0]
+ var ls []*LocalSlot
+ if w.Type.Kind() != types.TSTRUCT { // IData artifact
+ ls = x.rewriteSelect(leaf, w, offset, regOffset)
+ } else {
+ fldi := int(selector.AuxInt)
+ ls = x.rewriteSelect(leaf, w, offset+w.Type.FieldOff(fldi), regOffset+x.regOffset(w.Type, fldi))
+ if w.Op != OpIData {
+ for _, l := range ls {
+ locs = append(locs, x.f.SplitStruct(l, int(selector.AuxInt)))
+ }
+ }
+ }
+
+ case OpArraySelect:
+ w := selector.Args[0]
+ index := selector.AuxInt
+ x.rewriteSelect(leaf, w, offset+selector.Type.Size()*index, regOffset+x.regOffset(w.Type, int(index)))
+
+ case OpInt64Hi:
+ w := selector.Args[0]
+ ls := x.rewriteSelect(leaf, w, offset+x.hiOffset, regOffset+x.hiRo)
+ locs = x.splitSlots(ls, ".hi", x.hiOffset, leafType)
+
+ case OpInt64Lo:
+ w := selector.Args[0]
+ ls := x.rewriteSelect(leaf, w, offset+x.lowOffset, regOffset+x.loRo)
+ locs = x.splitSlots(ls, ".lo", x.lowOffset, leafType)
+
+ case OpStringPtr:
+ ls := x.rewriteSelect(leaf, selector.Args[0], offset, regOffset)
+ locs = x.splitSlots(ls, ".ptr", 0, x.typs.BytePtr)
+
+ case OpSlicePtr, OpSlicePtrUnchecked:
+ w := selector.Args[0]
+ ls := x.rewriteSelect(leaf, w, offset, regOffset)
+ locs = x.splitSlots(ls, ".ptr", 0, types.NewPtr(w.Type.Elem()))
+
+ case OpITab:
+ w := selector.Args[0]
+ ls := x.rewriteSelect(leaf, w, offset, regOffset)
+ sfx := ".itab"
+ if w.Type.IsEmptyInterface() {
+ sfx = ".type"
+ }
+ locs = x.splitSlots(ls, sfx, 0, x.typs.Uintptr)
+
+ case OpComplexReal:
+ ls := x.rewriteSelect(leaf, selector.Args[0], offset, regOffset)
+ locs = x.splitSlots(ls, ".real", 0, selector.Type)
+
+ case OpComplexImag:
+ ls := x.rewriteSelect(leaf, selector.Args[0], offset+selector.Type.Size(), regOffset+RO_complex_imag) // result is FloatNN, width of result is offset of imaginary part.
+ locs = x.splitSlots(ls, ".imag", selector.Type.Size(), selector.Type)
+
+ case OpStringLen, OpSliceLen:
+ ls := x.rewriteSelect(leaf, selector.Args[0], offset+x.ptrSize, regOffset+RO_slice_len)
+ locs = x.splitSlots(ls, ".len", x.ptrSize, leafType)
+
+ case OpIData:
+ ls := x.rewriteSelect(leaf, selector.Args[0], offset+x.ptrSize, regOffset+RO_iface_data)
+ locs = x.splitSlots(ls, ".data", x.ptrSize, leafType)
+
+ case OpSliceCap:
+ ls := x.rewriteSelect(leaf, selector.Args[0], offset+2*x.ptrSize, regOffset+RO_slice_cap)
+ locs = x.splitSlots(ls, ".cap", 2*x.ptrSize, leafType)
+
+ case OpCopy: // If it's an intermediate result, recurse
+ locs = x.rewriteSelect(leaf, selector.Args[0], offset, regOffset)
+ for _, s := range x.namedSelects[selector] {
+ // this copy may have had its own name, preserve that, too.
+ locs = append(locs, x.f.Names[s.locIndex])
+ }
+
+ default:
+ // Ignore dead ends. These can occur if this phase is run before decompose builtin (which is not intended, but allowed).
+ }
+
+ return locs
+}
+
+func (x *expandState) rewriteDereference(b *Block, base, a, mem *Value, offset, size int64, typ *types.Type, pos src.XPos) *Value {
+ source := a.Args[0]
+ dst := x.offsetFrom(b, base, offset, source.Type)
+ if a.Uses == 1 && a.Block == b {
+ a.reset(OpMove)
+ a.Pos = pos
+ a.Type = types.TypeMem
+ a.Aux = typ
+ a.AuxInt = size
+ a.SetArgs3(dst, source, mem)
+ mem = a
+ } else {
+ mem = b.NewValue3A(pos, OpMove, types.TypeMem, typ, dst, source, mem)
+ mem.AuxInt = size
+ }
+ return mem
+}
+
+var indexNames [1]string = [1]string{"[0]"}
+
+// pathTo returns the selection path to the leaf type at offset within container.
+// e.g. len(thing.field[0]) => ".field[0].len"
+// this is for purposes of generating names ultimately fed to a debugger.
+func (x *expandState) pathTo(container, leaf *types.Type, offset int64) string {
+ if container == leaf || offset == 0 && container.Size() == leaf.Size() {
+ return ""
+ }
+ path := ""
+outer:
+ for {
+ switch container.Kind() {
+ case types.TARRAY:
+ container = container.Elem()
+ if container.Size() == 0 {
+ return path
+ }
+ i := offset / container.Size()
+ offset = offset % container.Size()
+ // If a future compiler/ABI supports larger SSA/Arg-able arrays, expand indexNames.
+ path = path + indexNames[i]
+ continue
+ case types.TSTRUCT:
+ for i := 0; i < container.NumFields(); i++ {
+ fld := container.Field(i)
+ if fld.Offset+fld.Type.Size() > offset {
+ offset -= fld.Offset
+ path += "." + fld.Sym.Name
+ container = fld.Type
+ continue outer
+ }
+ }
+ return path
+ case types.TINT64, types.TUINT64:
+ if container.Size() == x.regSize {
+ return path
+ }
+ if offset == x.hiOffset {
+ return path + ".hi"
+ }
+ return path + ".lo"
+ case types.TINTER:
+ if offset != 0 {
+ return path + ".data"
+ }
+ if container.IsEmptyInterface() {
+ return path + ".type"
+ }
+ return path + ".itab"
+
+ case types.TSLICE:
+ if offset == 2*x.regSize {
+ return path + ".cap"
+ }
+ fallthrough
+ case types.TSTRING:
+ if offset == 0 {
+ return path + ".ptr"
+ }
+ return path + ".len"
+ case types.TCOMPLEX64, types.TCOMPLEX128:
+ if offset == 0 {
+ return path + ".real"
+ }
+ return path + ".imag"
+ }
+ return path
+ }
+}
+
+// decomposeArg is a helper for storeArgOrLoad.
+// It decomposes a Load or an Arg into smaller parts and returns the new mem.
+// If the type does not match one of the expected aggregate types, it returns nil instead.
+// Parameters:
+//
+// pos -- the location of any generated code.
+// b -- the block into which any generated code should normally be placed
+// source -- the value, possibly an aggregate, to be stored.
+// mem -- the mem flowing into this decomposition (loads depend on it, stores updated it)
+// t -- the type of the value to be stored
+// storeOffset -- if the value is stored in memory, it is stored at base (see storeRc) + storeOffset
+// loadRegOffset -- regarding source as a value in registers, the register offset in ABI1. Meaningful only if source is OpArg.
+// storeRc -- storeRC; if the value is stored in registers, this specifies the registers.
+// StoreRc also identifies whether the target is registers or memory, and has the base for the store operation.
+func (x *expandState) decomposeArg(pos src.XPos, b *Block, source, mem *Value, t *types.Type, storeOffset int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {
+
+ pa := x.prAssignForArg(source)
+ var locs []*LocalSlot
+ for _, s := range x.namedSelects[source] {
+ locs = append(locs, x.f.Names[s.locIndex])
+ }
+
+ if len(pa.Registers) > 0 {
+ // Handle the in-registers case directly
+ rts, offs := pa.RegisterTypesAndOffsets()
+ last := loadRegOffset + x.regWidth(t)
+ if offs[loadRegOffset] != 0 {
+ // Document the problem before panicking.
+ for i := 0; i < len(rts); i++ {
+ rt := rts[i]
+ off := offs[i]
+ fmt.Printf("rt=%s, off=%d, rt.Width=%d, rt.Align=%d\n", rt.String(), off, rt.Size(), uint8(rt.Alignment()))
+ }
+ panic(fmt.Errorf("offset %d of requested register %d should be zero, source=%s", offs[loadRegOffset], loadRegOffset, source.LongString()))
+ }
+
+ if x.debug > 1 {
+ x.Printf("decompose arg %s has %d locs\n", source.LongString(), len(locs))
+ }
+
+ for i := loadRegOffset; i < last; i++ {
+ rt := rts[i]
+ off := offs[i]
+ w := x.commonArgs[selKey{source, off, rt.Size(), rt}]
+ if w == nil {
+ w = x.newArgToMemOrRegs(source, w, off, i, rt, pos)
+ suffix := x.pathTo(source.Type, rt, off)
+ if suffix != "" {
+ x.splitSlotsIntoNames(locs, suffix, off, rt, w)
+ }
+ }
+ if t.IsPtrShaped() {
+ // Preserve the original store type. This ensures pointer type
+ // properties aren't discarded (e.g, notinheap).
+ if rt.Size() != t.Size() || len(pa.Registers) != 1 || i != loadRegOffset {
+ b.Func.Fatalf("incompatible store type %v and %v, i=%d", t, rt, i)
+ }
+ rt = t
+ }
+ mem = x.storeArgOrLoad(pos, b, w, mem, rt, storeOffset+off, i, storeRc.next(rt))
+ }
+ return mem
+ }
+
+ u := source.Type
+ switch u.Kind() {
+ case types.TARRAY:
+ elem := u.Elem()
+ elemRO := x.regWidth(elem)
+ for i := int64(0); i < u.NumElem(); i++ {
+ elemOff := i * elem.Size()
+ mem = storeOneArg(x, pos, b, locs, indexNames[i], source, mem, elem, elemOff, storeOffset+elemOff, loadRegOffset, storeRc.next(elem))
+ loadRegOffset += elemRO
+ pos = pos.WithNotStmt()
+ }
+ return mem
+ case types.TSTRUCT:
+ for i := 0; i < u.NumFields(); i++ {
+ fld := u.Field(i)
+ mem = storeOneArg(x, pos, b, locs, "."+fld.Sym.Name, source, mem, fld.Type, fld.Offset, storeOffset+fld.Offset, loadRegOffset, storeRc.next(fld.Type))
+ loadRegOffset += x.regWidth(fld.Type)
+ pos = pos.WithNotStmt()
+ }
+ return mem
+ case types.TINT64, types.TUINT64:
+ if t.Size() == x.regSize {
+ break
+ }
+ tHi, tLo := x.intPairTypes(t.Kind())
+ mem = storeOneArg(x, pos, b, locs, ".hi", source, mem, tHi, x.hiOffset, storeOffset+x.hiOffset, loadRegOffset+x.hiRo, storeRc.plus(x.hiRo))
+ pos = pos.WithNotStmt()
+ return storeOneArg(x, pos, b, locs, ".lo", source, mem, tLo, x.lowOffset, storeOffset+x.lowOffset, loadRegOffset+x.loRo, storeRc.plus(x.loRo))
+ case types.TINTER:
+ sfx := ".itab"
+ if u.IsEmptyInterface() {
+ sfx = ".type"
+ }
+ return storeTwoArg(x, pos, b, locs, sfx, ".idata", source, mem, x.typs.Uintptr, x.typs.BytePtr, 0, storeOffset, loadRegOffset, storeRc)
+ case types.TSTRING:
+ return storeTwoArg(x, pos, b, locs, ".ptr", ".len", source, mem, x.typs.BytePtr, x.typs.Int, 0, storeOffset, loadRegOffset, storeRc)
+ case types.TCOMPLEX64:
+ return storeTwoArg(x, pos, b, locs, ".real", ".imag", source, mem, x.typs.Float32, x.typs.Float32, 0, storeOffset, loadRegOffset, storeRc)
+ case types.TCOMPLEX128:
+ return storeTwoArg(x, pos, b, locs, ".real", ".imag", source, mem, x.typs.Float64, x.typs.Float64, 0, storeOffset, loadRegOffset, storeRc)
+ case types.TSLICE:
+ mem = storeOneArg(x, pos, b, locs, ".ptr", source, mem, x.typs.BytePtr, 0, storeOffset, loadRegOffset, storeRc.next(x.typs.BytePtr))
+ return storeTwoArg(x, pos, b, locs, ".len", ".cap", source, mem, x.typs.Int, x.typs.Int, x.ptrSize, storeOffset+x.ptrSize, loadRegOffset+RO_slice_len, storeRc)
+ }
+ return nil
+}
+
+func (x *expandState) splitSlotsIntoNames(locs []*LocalSlot, suffix string, off int64, rt *types.Type, w *Value) {
+ wlocs := x.splitSlots(locs, suffix, off, rt)
+ for _, l := range wlocs {
+ old, ok := x.f.NamedValues[*l]
+ x.f.NamedValues[*l] = append(old, w)
+ if !ok {
+ x.f.Names = append(x.f.Names, l)
+ }
+ }
+}
+
+// decomposeLoad is a helper for storeArgOrLoad.
+// It decomposes a Load into smaller parts and returns the new mem.
+// If the type does not match one of the expected aggregate types, it returns nil instead.
+// Parameters:
+//
+// pos -- the location of any generated code.
+// b -- the block into which any generated code should normally be placed
+// source -- the value, possibly an aggregate, to be stored.
+// mem -- the mem flowing into this decomposition (loads depend on it, stores updated it)
+// t -- the type of the value to be stored
+// storeOffset -- if the value is stored in memory, it is stored at base (see storeRc) + offset
+// loadRegOffset -- regarding source as a value in registers, the register offset in ABI1. Meaningful only if source is OpArg.
+// storeRc -- storeRC; if the value is stored in registers, this specifies the registers.
+// StoreRc also identifies whether the target is registers or memory, and has the base for the store operation.
+//
+// TODO -- this needs cleanup; it just works for SSA-able aggregates, and won't fully generalize to register-args aggregates.
+func (x *expandState) decomposeLoad(pos src.XPos, b *Block, source, mem *Value, t *types.Type, storeOffset int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {
+ u := source.Type
+ switch u.Kind() {
+ case types.TARRAY:
+ elem := u.Elem()
+ elemRO := x.regWidth(elem)
+ for i := int64(0); i < u.NumElem(); i++ {
+ elemOff := i * elem.Size()
+ mem = storeOneLoad(x, pos, b, source, mem, elem, elemOff, storeOffset+elemOff, loadRegOffset, storeRc.next(elem))
+ loadRegOffset += elemRO
+ pos = pos.WithNotStmt()
+ }
+ return mem
+ case types.TSTRUCT:
+ for i := 0; i < u.NumFields(); i++ {
+ fld := u.Field(i)
+ mem = storeOneLoad(x, pos, b, source, mem, fld.Type, fld.Offset, storeOffset+fld.Offset, loadRegOffset, storeRc.next(fld.Type))
+ loadRegOffset += x.regWidth(fld.Type)
+ pos = pos.WithNotStmt()
+ }
+ return mem
+ case types.TINT64, types.TUINT64:
+ if t.Size() == x.regSize {
+ break
+ }
+ tHi, tLo := x.intPairTypes(t.Kind())
+ mem = storeOneLoad(x, pos, b, source, mem, tHi, x.hiOffset, storeOffset+x.hiOffset, loadRegOffset+x.hiRo, storeRc.plus(x.hiRo))
+ pos = pos.WithNotStmt()
+ return storeOneLoad(x, pos, b, source, mem, tLo, x.lowOffset, storeOffset+x.lowOffset, loadRegOffset+x.loRo, storeRc.plus(x.loRo))
+ case types.TINTER:
+ return storeTwoLoad(x, pos, b, source, mem, x.typs.Uintptr, x.typs.BytePtr, 0, storeOffset, loadRegOffset, storeRc)
+ case types.TSTRING:
+ return storeTwoLoad(x, pos, b, source, mem, x.typs.BytePtr, x.typs.Int, 0, storeOffset, loadRegOffset, storeRc)
+ case types.TCOMPLEX64:
+ return storeTwoLoad(x, pos, b, source, mem, x.typs.Float32, x.typs.Float32, 0, storeOffset, loadRegOffset, storeRc)
+ case types.TCOMPLEX128:
+ return storeTwoLoad(x, pos, b, source, mem, x.typs.Float64, x.typs.Float64, 0, storeOffset, loadRegOffset, storeRc)
+ case types.TSLICE:
+ mem = storeOneLoad(x, pos, b, source, mem, x.typs.BytePtr, 0, storeOffset, loadRegOffset, storeRc.next(x.typs.BytePtr))
+ return storeTwoLoad(x, pos, b, source, mem, x.typs.Int, x.typs.Int, x.ptrSize, storeOffset+x.ptrSize, loadRegOffset+RO_slice_len, storeRc)
+ }
+ return nil
+}
+
+// storeOneArg creates a decomposed (one step) arg that is then stored.
+// pos and b locate the store instruction, source is the "base" of the value input,
+// mem is the input mem, t is the type in question, and offArg and offStore are the offsets from the respective bases.
+func storeOneArg(x *expandState, pos src.XPos, b *Block, locs []*LocalSlot, suffix string, source, mem *Value, t *types.Type, argOffset, storeOffset int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {
+ if x.debug > 1 {
+ x.indent(3)
+ defer x.indent(-3)
+ x.Printf("storeOneArg(%s; %s; %s; aO=%d; sO=%d; lrO=%d; %s)\n", source.LongString(), mem.String(), t.String(), argOffset, storeOffset, loadRegOffset, storeRc.String())
+ }
+
+ w := x.commonArgs[selKey{source, argOffset, t.Size(), t}]
+ if w == nil {
+ w = x.newArgToMemOrRegs(source, w, argOffset, loadRegOffset, t, pos)
+ x.splitSlotsIntoNames(locs, suffix, argOffset, t, w)
+ }
+ return x.storeArgOrLoad(pos, b, w, mem, t, storeOffset, loadRegOffset, storeRc)
+}
+
+// storeOneLoad creates a decomposed (one step) load that is then stored.
+func storeOneLoad(x *expandState, pos src.XPos, b *Block, source, mem *Value, t *types.Type, offArg, offStore int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {
+ from := x.offsetFrom(source.Block, source.Args[0], offArg, types.NewPtr(t))
+ w := b.NewValue2(source.Pos, OpLoad, t, from, mem)
+ return x.storeArgOrLoad(pos, b, w, mem, t, offStore, loadRegOffset, storeRc)
+}
+
+func storeTwoArg(x *expandState, pos src.XPos, b *Block, locs []*LocalSlot, suffix1 string, suffix2 string, source, mem *Value, t1, t2 *types.Type, offArg, offStore int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {
+ mem = storeOneArg(x, pos, b, locs, suffix1, source, mem, t1, offArg, offStore, loadRegOffset, storeRc.next(t1))
+ pos = pos.WithNotStmt()
+ t1Size := t1.Size()
+ return storeOneArg(x, pos, b, locs, suffix2, source, mem, t2, offArg+t1Size, offStore+t1Size, loadRegOffset+1, storeRc)
+}
+
+// storeTwoLoad creates a pair of decomposed (one step) loads that are then stored.
+// the elements of the pair must not require any additional alignment.
+func storeTwoLoad(x *expandState, pos src.XPos, b *Block, source, mem *Value, t1, t2 *types.Type, offArg, offStore int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {
+ mem = storeOneLoad(x, pos, b, source, mem, t1, offArg, offStore, loadRegOffset, storeRc.next(t1))
+ pos = pos.WithNotStmt()
+ t1Size := t1.Size()
+ return storeOneLoad(x, pos, b, source, mem, t2, offArg+t1Size, offStore+t1Size, loadRegOffset+1, storeRc)
+}
+
+// storeArgOrLoad converts stores of SSA-able potentially aggregatable arguments (passed to a call) into a series of primitive-typed
+// stores of non-aggregate types. It recursively walks up a chain of selectors until it reaches a Load or an Arg.
+// If it does not reach a Load or an Arg, nothing happens; this allows a little freedom in phase ordering.
+func (x *expandState) storeArgOrLoad(pos src.XPos, b *Block, source, mem *Value, t *types.Type, storeOffset int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {
+ if x.debug > 1 {
+ x.indent(3)
+ defer x.indent(-3)
+ x.Printf("storeArgOrLoad(%s; %s; %s; %d; %s)\n", source.LongString(), mem.String(), t.String(), storeOffset, storeRc.String())
+ }
+
+ // Start with Opcodes that can be disassembled
+ switch source.Op {
+ case OpCopy:
+ return x.storeArgOrLoad(pos, b, source.Args[0], mem, t, storeOffset, loadRegOffset, storeRc)
+
+ case OpLoad, OpDereference:
+ ret := x.decomposeLoad(pos, b, source, mem, t, storeOffset, loadRegOffset, storeRc)
+ if ret != nil {
+ return ret
+ }
+
+ case OpArg:
+ ret := x.decomposeArg(pos, b, source, mem, t, storeOffset, loadRegOffset, storeRc)
+ if ret != nil {
+ return ret
+ }
+
+ case OpArrayMake0, OpStructMake0:
+ // TODO(register args) is this correct for registers?
+ return mem
+
+ case OpStructMake1, OpStructMake2, OpStructMake3, OpStructMake4:
+ for i := 0; i < t.NumFields(); i++ {
+ fld := t.Field(i)
+ mem = x.storeArgOrLoad(pos, b, source.Args[i], mem, fld.Type, storeOffset+fld.Offset, 0, storeRc.next(fld.Type))
+ pos = pos.WithNotStmt()
+ }
+ return mem
+
+ case OpArrayMake1:
+ return x.storeArgOrLoad(pos, b, source.Args[0], mem, t.Elem(), storeOffset, 0, storeRc.at(t, 0))
+
+ case OpInt64Make:
+ tHi, tLo := x.intPairTypes(t.Kind())
+ mem = x.storeArgOrLoad(pos, b, source.Args[0], mem, tHi, storeOffset+x.hiOffset, 0, storeRc.next(tHi))
+ pos = pos.WithNotStmt()
+ return x.storeArgOrLoad(pos, b, source.Args[1], mem, tLo, storeOffset+x.lowOffset, 0, storeRc)
+
+ case OpComplexMake:
+ tPart := x.typs.Float32
+ wPart := t.Size() / 2
+ if wPart == 8 {
+ tPart = x.typs.Float64
+ }
+ mem = x.storeArgOrLoad(pos, b, source.Args[0], mem, tPart, storeOffset, 0, storeRc.next(tPart))
+ pos = pos.WithNotStmt()
+ return x.storeArgOrLoad(pos, b, source.Args[1], mem, tPart, storeOffset+wPart, 0, storeRc)
+
+ case OpIMake:
+ mem = x.storeArgOrLoad(pos, b, source.Args[0], mem, x.typs.Uintptr, storeOffset, 0, storeRc.next(x.typs.Uintptr))
+ pos = pos.WithNotStmt()
+ return x.storeArgOrLoad(pos, b, source.Args[1], mem, x.typs.BytePtr, storeOffset+x.ptrSize, 0, storeRc)
+
+ case OpStringMake:
+ mem = x.storeArgOrLoad(pos, b, source.Args[0], mem, x.typs.BytePtr, storeOffset, 0, storeRc.next(x.typs.BytePtr))
+ pos = pos.WithNotStmt()
+ return x.storeArgOrLoad(pos, b, source.Args[1], mem, x.typs.Int, storeOffset+x.ptrSize, 0, storeRc)
+
+ case OpSliceMake:
+ mem = x.storeArgOrLoad(pos, b, source.Args[0], mem, x.typs.BytePtr, storeOffset, 0, storeRc.next(x.typs.BytePtr))
+ pos = pos.WithNotStmt()
+ mem = x.storeArgOrLoad(pos, b, source.Args[1], mem, x.typs.Int, storeOffset+x.ptrSize, 0, storeRc.next(x.typs.Int))
+ return x.storeArgOrLoad(pos, b, source.Args[2], mem, x.typs.Int, storeOffset+2*x.ptrSize, 0, storeRc)
+ }
+
+ // For nodes that cannot be taken apart -- OpSelectN, other structure selectors.
+ switch t.Kind() {
+ case types.TARRAY:
+ elt := t.Elem()
+ if source.Type != t && t.NumElem() == 1 && elt.Size() == t.Size() && t.Size() == x.regSize {
+ t = removeTrivialWrapperTypes(t)
+ // it could be a leaf type, but the "leaf" could be complex64 (for example)
+ return x.storeArgOrLoad(pos, b, source, mem, t, storeOffset, loadRegOffset, storeRc)
+ }
+ eltRO := x.regWidth(elt)
+ source.Type = t
+ for i := int64(0); i < t.NumElem(); i++ {
+ sel := b.NewValue1I(pos, OpArraySelect, elt, i, source)
+ mem = x.storeArgOrLoad(pos, b, sel, mem, elt, storeOffset+i*elt.Size(), loadRegOffset, storeRc.at(t, 0))
+ loadRegOffset += eltRO
+ pos = pos.WithNotStmt()
+ }
+ return mem
+
+ case types.TSTRUCT:
+ if source.Type != t && t.NumFields() == 1 && t.Field(0).Type.Size() == t.Size() && t.Size() == x.regSize {
+ // This peculiar test deals with accesses to immediate interface data.
+ // It works okay because everything is the same size.
+ // Example code that triggers this can be found in go/constant/value.go, function ToComplex
+ // v119 (+881) = IData <intVal> v6
+ // v121 (+882) = StaticLECall <floatVal,mem> {AuxCall{"".itof([intVal,0])[floatVal,8]}} [16] v119 v1
+ // This corresponds to the generic rewrite rule "(StructSelect [0] (IData x)) => (IData x)"
+ // Guard against "struct{struct{*foo}}"
+ // Other rewriting phases create minor glitches when they transform IData, for instance the
+ // interface-typed Arg "x" of ToFloat in go/constant/value.go
+ // v6 (858) = Arg <Value> {x} (x[Value], x[Value])
+ // is rewritten by decomposeArgs into
+ // v141 (858) = Arg <uintptr> {x}
+ // v139 (858) = Arg <*uint8> {x} [8]
+ // because of a type case clause on line 862 of go/constant/value.go
+ // case intVal:
+ // return itof(x)
+ // v139 is later stored as an intVal == struct{val *big.Int} which naively requires the fields of
+ // of a *uint8, which does not succeed.
+ t = removeTrivialWrapperTypes(t)
+ // it could be a leaf type, but the "leaf" could be complex64 (for example)
+ return x.storeArgOrLoad(pos, b, source, mem, t, storeOffset, loadRegOffset, storeRc)
+ }
+
+ source.Type = t
+ for i := 0; i < t.NumFields(); i++ {
+ fld := t.Field(i)
+ sel := b.NewValue1I(pos, OpStructSelect, fld.Type, int64(i), source)
+ mem = x.storeArgOrLoad(pos, b, sel, mem, fld.Type, storeOffset+fld.Offset, loadRegOffset, storeRc.next(fld.Type))
+ loadRegOffset += x.regWidth(fld.Type)
+ pos = pos.WithNotStmt()
+ }
+ return mem
+
+ case types.TINT64, types.TUINT64:
+ if t.Size() == x.regSize {
+ break
+ }
+ tHi, tLo := x.intPairTypes(t.Kind())
+ sel := b.NewValue1(pos, OpInt64Hi, tHi, source)
+ mem = x.storeArgOrLoad(pos, b, sel, mem, tHi, storeOffset+x.hiOffset, loadRegOffset+x.hiRo, storeRc.plus(x.hiRo))
+ pos = pos.WithNotStmt()
+ sel = b.NewValue1(pos, OpInt64Lo, tLo, source)
+ return x.storeArgOrLoad(pos, b, sel, mem, tLo, storeOffset+x.lowOffset, loadRegOffset+x.loRo, storeRc.plus(x.hiRo))
+
+ case types.TINTER:
+ sel := b.NewValue1(pos, OpITab, x.typs.BytePtr, source)
+ mem = x.storeArgOrLoad(pos, b, sel, mem, x.typs.BytePtr, storeOffset, loadRegOffset, storeRc.next(x.typs.BytePtr))
+ pos = pos.WithNotStmt()
+ sel = b.NewValue1(pos, OpIData, x.typs.BytePtr, source)
+ return x.storeArgOrLoad(pos, b, sel, mem, x.typs.BytePtr, storeOffset+x.ptrSize, loadRegOffset+RO_iface_data, storeRc)
+
+ case types.TSTRING:
+ sel := b.NewValue1(pos, OpStringPtr, x.typs.BytePtr, source)
+ mem = x.storeArgOrLoad(pos, b, sel, mem, x.typs.BytePtr, storeOffset, loadRegOffset, storeRc.next(x.typs.BytePtr))
+ pos = pos.WithNotStmt()
+ sel = b.NewValue1(pos, OpStringLen, x.typs.Int, source)
+ return x.storeArgOrLoad(pos, b, sel, mem, x.typs.Int, storeOffset+x.ptrSize, loadRegOffset+RO_string_len, storeRc)
+
+ case types.TSLICE:
+ et := types.NewPtr(t.Elem())
+ sel := b.NewValue1(pos, OpSlicePtr, et, source)
+ mem = x.storeArgOrLoad(pos, b, sel, mem, et, storeOffset, loadRegOffset, storeRc.next(et))
+ pos = pos.WithNotStmt()
+ sel = b.NewValue1(pos, OpSliceLen, x.typs.Int, source)
+ mem = x.storeArgOrLoad(pos, b, sel, mem, x.typs.Int, storeOffset+x.ptrSize, loadRegOffset+RO_slice_len, storeRc.next(x.typs.Int))
+ sel = b.NewValue1(pos, OpSliceCap, x.typs.Int, source)
+ return x.storeArgOrLoad(pos, b, sel, mem, x.typs.Int, storeOffset+2*x.ptrSize, loadRegOffset+RO_slice_cap, storeRc)
+
+ case types.TCOMPLEX64:
+ sel := b.NewValue1(pos, OpComplexReal, x.typs.Float32, source)
+ mem = x.storeArgOrLoad(pos, b, sel, mem, x.typs.Float32, storeOffset, loadRegOffset, storeRc.next(x.typs.Float32))
+ pos = pos.WithNotStmt()
+ sel = b.NewValue1(pos, OpComplexImag, x.typs.Float32, source)
+ return x.storeArgOrLoad(pos, b, sel, mem, x.typs.Float32, storeOffset+4, loadRegOffset+RO_complex_imag, storeRc)
+
+ case types.TCOMPLEX128:
+ sel := b.NewValue1(pos, OpComplexReal, x.typs.Float64, source)
+ mem = x.storeArgOrLoad(pos, b, sel, mem, x.typs.Float64, storeOffset, loadRegOffset, storeRc.next(x.typs.Float64))
+ pos = pos.WithNotStmt()
+ sel = b.NewValue1(pos, OpComplexImag, x.typs.Float64, source)
+ return x.storeArgOrLoad(pos, b, sel, mem, x.typs.Float64, storeOffset+8, loadRegOffset+RO_complex_imag, storeRc)
+ }
+
+ s := mem
+ if source.Op == OpDereference {
+ source.Op = OpLoad // For purposes of parameter passing expansion, a Dereference is a Load.
+ }
+ if storeRc.hasRegs() {
+ storeRc.addArg(source)
+ } else {
+ dst := x.offsetFrom(b, storeRc.storeDest, storeOffset, types.NewPtr(t))
+ s = b.NewValue3A(pos, OpStore, types.TypeMem, t, dst, source, mem)
+ }
+ if x.debug > 1 {
+ x.Printf("-->storeArg returns %s, storeRc=%s\n", s.LongString(), storeRc.String())
+ }
+ return s
+}
+
+// rewriteArgs replaces all the call-parameter Args to a call with their register translation (if any).
+// Preceding parameters (code pointers, closure pointer) are preserved, and the memory input is modified
+// to account for any parameter stores required.
+// Any of the old Args that have their use count fall to zero are marked OpInvalid.
+func (x *expandState) rewriteArgs(v *Value, firstArg int) {
+ if x.debug > 1 {
+ x.indent(3)
+ defer x.indent(-3)
+ x.Printf("rewriteArgs(%s; %d)\n", v.LongString(), firstArg)
+ }
+ // Thread the stores on the memory arg
+ aux := v.Aux.(*AuxCall)
+ m0 := v.MemoryArg()
+ mem := m0
+ newArgs := []*Value{}
+ oldArgs := []*Value{}
+ sp := x.sp
+ if v.Op == OpTailLECall {
+ // For tail call, we unwind the frame before the call so we'll use the caller's
+ // SP.
+ sp = x.f.Entry.NewValue0(src.NoXPos, OpGetCallerSP, x.typs.Uintptr)
+ }
+ for i, a := range v.Args[firstArg : len(v.Args)-1] { // skip leading non-parameter SSA Args and trailing mem SSA Arg.
+ oldArgs = append(oldArgs, a)
+ auxI := int64(i)
+ aRegs := aux.RegsOfArg(auxI)
+ aType := aux.TypeOfArg(auxI)
+ if len(aRegs) == 0 && a.Op == OpDereference {
+ aOffset := aux.OffsetOfArg(auxI)
+ if a.MemoryArg() != m0 {
+ x.f.Fatalf("Op...LECall and OpDereference have mismatched mem, %s and %s", v.LongString(), a.LongString())
+ }
+ if v.Op == OpTailLECall {
+ // It's common for a tail call passing the same arguments (e.g. method wrapper),
+ // so this would be a self copy. Detect this and optimize it out.
+ a0 := a.Args[0]
+ if a0.Op == OpLocalAddr {
+ n := a0.Aux.(*ir.Name)
+ if n.Class == ir.PPARAM && n.FrameOffset()+x.f.Config.ctxt.Arch.FixedFrameSize == aOffset {
+ continue
+ }
+ }
+ }
+ if x.debug > 1 {
+ x.Printf("...storeArg %s, %v, %d\n", a.LongString(), aType, aOffset)
+ }
+ // "Dereference" of addressed (probably not-SSA-eligible) value becomes Move
+ // TODO(register args) this will be more complicated with registers in the picture.
+ mem = x.rewriteDereference(v.Block, sp, a, mem, aOffset, aux.SizeOfArg(auxI), aType, a.Pos)
+ } else {
+ var rc registerCursor
+ var result *[]*Value
+ var aOffset int64
+ if len(aRegs) > 0 {
+ result = &newArgs
+ } else {
+ aOffset = aux.OffsetOfArg(auxI)
+ }
+ if v.Op == OpTailLECall && a.Op == OpArg && a.AuxInt == 0 {
+ // It's common for a tail call passing the same arguments (e.g. method wrapper),
+ // so this would be a self copy. Detect this and optimize it out.
+ n := a.Aux.(*ir.Name)
+ if n.Class == ir.PPARAM && n.FrameOffset()+x.f.Config.ctxt.Arch.FixedFrameSize == aOffset {
+ continue
+ }
+ }
+ if x.debug > 1 {
+ x.Printf("...storeArg %s, %v, %d\n", a.LongString(), aType, aOffset)
+ }
+ rc.init(aRegs, aux.abiInfo, result, sp)
+ mem = x.storeArgOrLoad(a.Pos, v.Block, a, mem, aType, aOffset, 0, rc)
+ }
+ }
+ var preArgStore [2]*Value
+ preArgs := append(preArgStore[:0], v.Args[0:firstArg]...)
+ v.resetArgs()
+ v.AddArgs(preArgs...)
+ v.AddArgs(newArgs...)
+ v.AddArg(mem)
+ for _, a := range oldArgs {
+ if a.Uses == 0 {
+ x.invalidateRecursively(a)
+ }
+ }
+
+ return
+}
+
+func (x *expandState) invalidateRecursively(a *Value) {
+ var s string
+ if x.debug > 0 {
+ plus := " "
+ if a.Pos.IsStmt() == src.PosIsStmt {
+ plus = " +"
+ }
+ s = a.String() + plus + a.Pos.LineNumber() + " " + a.LongString()
+ if x.debug > 1 {
+ x.Printf("...marking %v unused\n", s)
+ }
+ }
+ lost := a.invalidateRecursively()
+ if x.debug&1 != 0 && lost { // For odd values of x.debug, do this.
+ x.Printf("Lost statement marker in %s on former %s\n", base.Ctxt.Pkgpath+"."+x.f.Name, s)
+ }
+}
+
+// expandCalls converts LE (Late Expansion) calls that act like they receive value args into a lower-level form
+// that is more oriented to a platform's ABI. The SelectN operations that extract results are rewritten into
+// more appropriate forms, and any StructMake or ArrayMake inputs are decomposed until non-struct values are
+// reached. On the callee side, OpArg nodes are not decomposed until this phase is run.
+// TODO results should not be lowered until this phase.
+func expandCalls(f *Func) {
+ // Calls that need lowering have some number of inputs, including a memory input,
+ // and produce a tuple of (value1, value2, ..., mem) where valueK may or may not be SSA-able.
+
+ // With the current ABI those inputs need to be converted into stores to memory,
+ // rethreading the call's memory input to the first, and the new call now receiving the last.
+
+ // With the current ABI, the outputs need to be converted to loads, which will all use the call's
+ // memory output as their input.
+ sp, _ := f.spSb()
+ x := &expandState{
+ f: f,
+ abi1: f.ABI1,
+ debug: f.pass.debug,
+ canSSAType: f.fe.CanSSA,
+ regSize: f.Config.RegSize,
+ sp: sp,
+ typs: &f.Config.Types,
+ ptrSize: f.Config.PtrSize,
+ namedSelects: make(map[*Value][]namedVal),
+ sdom: f.Sdom(),
+ commonArgs: make(map[selKey]*Value),
+ memForCall: make(map[ID]*Value),
+ transformedSelects: make(map[ID]bool),
+ }
+
+ // For 32-bit, need to deal with decomposition of 64-bit integers, which depends on endianness.
+ if f.Config.BigEndian {
+ x.lowOffset, x.hiOffset = 4, 0
+ x.loRo, x.hiRo = 1, 0
+ } else {
+ x.lowOffset, x.hiOffset = 0, 4
+ x.loRo, x.hiRo = 0, 1
+ }
+
+ if x.debug > 1 {
+ x.Printf("\nexpandsCalls(%s)\n", f.Name)
+ }
+
+ for i, name := range f.Names {
+ t := name.Type
+ if x.isAlreadyExpandedAggregateType(t) {
+ for j, v := range f.NamedValues[*name] {
+ if v.Op == OpSelectN || v.Op == OpArg && x.isAlreadyExpandedAggregateType(v.Type) {
+ ns := x.namedSelects[v]
+ x.namedSelects[v] = append(ns, namedVal{locIndex: i, valIndex: j})
+ }
+ }
+ }
+ }
+
+ // TODO if too slow, whole program iteration can be replaced w/ slices of appropriate values, accumulated in first loop here.
+
+ // Step 0: rewrite the calls to convert args to calls into stores/register movement.
+ for _, b := range f.Blocks {
+ for _, v := range b.Values {
+ firstArg := 0
+ switch v.Op {
+ case OpStaticLECall, OpTailLECall:
+ case OpInterLECall:
+ firstArg = 1
+ case OpClosureLECall:
+ firstArg = 2
+ default:
+ continue
+ }
+ x.rewriteArgs(v, firstArg)
+ }
+ if isBlockMultiValueExit(b) {
+ x.indent(3)
+ // Very similar to code in rewriteArgs, but results instead of args.
+ v := b.Controls[0]
+ m0 := v.MemoryArg()
+ mem := m0
+ aux := f.OwnAux
+ allResults := []*Value{}
+ if x.debug > 1 {
+ x.Printf("multiValueExit rewriting %s\n", v.LongString())
+ }
+ var oldArgs []*Value
+ for j, a := range v.Args[:len(v.Args)-1] {
+ oldArgs = append(oldArgs, a)
+ i := int64(j)
+ auxType := aux.TypeOfResult(i)
+ auxBase := b.NewValue2A(v.Pos, OpLocalAddr, types.NewPtr(auxType), aux.NameOfResult(i), x.sp, mem)
+ auxOffset := int64(0)
+ auxSize := aux.SizeOfResult(i)
+ aRegs := aux.RegsOfResult(int64(j))
+ if len(aRegs) == 0 && a.Op == OpDereference {
+ // Avoid a self-move, and if one is detected try to remove the already-inserted VarDef for the assignment that won't happen.
+ if dAddr, dMem := a.Args[0], a.Args[1]; dAddr.Op == OpLocalAddr && dAddr.Args[0].Op == OpSP &&
+ dAddr.Args[1] == dMem && dAddr.Aux == aux.NameOfResult(i) {
+ if dMem.Op == OpVarDef && dMem.Aux == dAddr.Aux {
+ dMem.copyOf(dMem.MemoryArg()) // elide the VarDef
+ }
+ continue
+ }
+ mem = x.rewriteDereference(v.Block, auxBase, a, mem, auxOffset, auxSize, auxType, a.Pos)
+ } else {
+ if a.Op == OpLoad && a.Args[0].Op == OpLocalAddr {
+ addr := a.Args[0] // This is a self-move. // TODO(register args) do what here for registers?
+ if addr.MemoryArg() == a.MemoryArg() && addr.Aux == aux.NameOfResult(i) {
+ continue
+ }
+ }
+ var rc registerCursor
+ var result *[]*Value
+ if len(aRegs) > 0 {
+ result = &allResults
+ }
+ rc.init(aRegs, aux.abiInfo, result, auxBase)
+ mem = x.storeArgOrLoad(v.Pos, b, a, mem, aux.TypeOfResult(i), auxOffset, 0, rc)
+ }
+ }
+ v.resetArgs()
+ v.AddArgs(allResults...)
+ v.AddArg(mem)
+ v.Type = types.NewResults(append(abi.RegisterTypes(aux.abiInfo.OutParams()), types.TypeMem))
+ b.SetControl(v)
+ for _, a := range oldArgs {
+ if a.Uses == 0 {
+ if x.debug > 1 {
+ x.Printf("...marking %v unused\n", a.LongString())
+ }
+ x.invalidateRecursively(a)
+ }
+ }
+ if x.debug > 1 {
+ x.Printf("...multiValueExit new result %s\n", v.LongString())
+ }
+ x.indent(-3)
+ }
+ }
+
+ // Step 1: any stores of aggregates remaining are believed to be sourced from call results or args.
+ // Decompose those stores into a series of smaller stores, adding selection ops as necessary.
+ for _, b := range f.Blocks {
+ for _, v := range b.Values {
+ if v.Op == OpStore {
+ t := v.Aux.(*types.Type)
+ source := v.Args[1]
+ tSrc := source.Type
+ iAEATt := x.isAlreadyExpandedAggregateType(t)
+
+ if !iAEATt {
+ // guarding against store immediate struct into interface data field -- store type is *uint8
+ // TODO can this happen recursively?
+ iAEATt = x.isAlreadyExpandedAggregateType(tSrc)
+ if iAEATt {
+ t = tSrc
+ }
+ }
+ dst, mem := v.Args[0], v.Args[2]
+ mem = x.storeArgOrLoad(v.Pos, b, source, mem, t, 0, 0, registerCursor{storeDest: dst})
+ v.copyOf(mem)
+ }
+ }
+ }
+
+ val2Preds := make(map[*Value]int32) // Used to accumulate dependency graph of selection operations for topological ordering.
+
+ // Step 2: transform or accumulate selection operations for rewrite in topological order.
+ //
+ // Aggregate types that have already (in earlier phases) been transformed must be lowered comprehensively to finish
+ // the transformation (user-defined structs and arrays, slices, strings, interfaces, complex, 64-bit on 32-bit architectures),
+ //
+ // Any select-for-addressing applied to call results can be transformed directly.
+ for _, b := range f.Blocks {
+ for _, v := range b.Values {
+ // Accumulate chains of selectors for processing in topological order
+ switch v.Op {
+ case OpStructSelect, OpArraySelect,
+ OpIData, OpITab,
+ OpStringPtr, OpStringLen,
+ OpSlicePtr, OpSliceLen, OpSliceCap, OpSlicePtrUnchecked,
+ OpComplexReal, OpComplexImag,
+ OpInt64Hi, OpInt64Lo:
+ w := v.Args[0]
+ switch w.Op {
+ case OpStructSelect, OpArraySelect, OpSelectN, OpArg:
+ val2Preds[w] += 1
+ if x.debug > 1 {
+ x.Printf("v2p[%s] = %d\n", w.LongString(), val2Preds[w])
+ }
+ }
+ fallthrough
+
+ case OpSelectN:
+ if _, ok := val2Preds[v]; !ok {
+ val2Preds[v] = 0
+ if x.debug > 1 {
+ x.Printf("v2p[%s] = %d\n", v.LongString(), val2Preds[v])
+ }
+ }
+
+ case OpArg:
+ if !x.isAlreadyExpandedAggregateType(v.Type) {
+ continue
+ }
+ if _, ok := val2Preds[v]; !ok {
+ val2Preds[v] = 0
+ if x.debug > 1 {
+ x.Printf("v2p[%s] = %d\n", v.LongString(), val2Preds[v])
+ }
+ }
+
+ case OpSelectNAddr:
+ // Do these directly, there are no chains of selectors.
+ call := v.Args[0]
+ which := v.AuxInt
+ aux := call.Aux.(*AuxCall)
+ pt := v.Type
+ off := x.offsetFrom(x.f.Entry, x.sp, aux.OffsetOfResult(which), pt)
+ v.copyOf(off)
+ }
+ }
+ }
+
+ // Step 3: Compute topological order of selectors,
+ // then process it in reverse to eliminate duplicates,
+ // then forwards to rewrite selectors.
+ //
+ // All chains of selectors end up in same block as the call.
+
+ // Compilation must be deterministic, so sort after extracting first zeroes from map.
+ // Sorting allows dominators-last order within each batch,
+ // so that the backwards scan for duplicates will most often find copies from dominating blocks (it is best-effort).
+ var toProcess []*Value
+ less := func(i, j int) bool {
+ vi, vj := toProcess[i], toProcess[j]
+ bi, bj := vi.Block, vj.Block
+ if bi == bj {
+ return vi.ID < vj.ID
+ }
+ return x.sdom.domorder(bi) > x.sdom.domorder(bj) // reverse the order to put dominators last.
+ }
+
+ // Accumulate order in allOrdered
+ var allOrdered []*Value
+ for v, n := range val2Preds {
+ if n == 0 {
+ allOrdered = append(allOrdered, v)
+ }
+ }
+ last := 0 // allOrdered[0:last] has been top-sorted and processed
+ for len(val2Preds) > 0 {
+ toProcess = allOrdered[last:]
+ last = len(allOrdered)
+ sort.SliceStable(toProcess, less)
+ for _, v := range toProcess {
+ delete(val2Preds, v)
+ if v.Op == OpArg {
+ continue // no Args[0], hence done.
+ }
+ w := v.Args[0]
+ n, ok := val2Preds[w]
+ if !ok {
+ continue
+ }
+ if n == 1 {
+ allOrdered = append(allOrdered, w)
+ delete(val2Preds, w)
+ continue
+ }
+ val2Preds[w] = n - 1
+ }
+ }
+
+ x.commonSelectors = make(map[selKey]*Value)
+ // Rewrite duplicate selectors as copies where possible.
+ for i := len(allOrdered) - 1; i >= 0; i-- {
+ v := allOrdered[i]
+ if v.Op == OpArg {
+ continue
+ }
+ w := v.Args[0]
+ if w.Op == OpCopy {
+ for w.Op == OpCopy {
+ w = w.Args[0]
+ }
+ v.SetArg(0, w)
+ }
+ typ := v.Type
+ if typ.IsMemory() {
+ continue // handled elsewhere, not an indexable result
+ }
+ size := typ.Size()
+ offset := int64(0)
+ switch v.Op {
+ case OpStructSelect:
+ if w.Type.Kind() == types.TSTRUCT {
+ offset = w.Type.FieldOff(int(v.AuxInt))
+ } else { // Immediate interface data artifact, offset is zero.
+ f.Fatalf("Expand calls interface data problem, func %s, v=%s, w=%s\n", f.Name, v.LongString(), w.LongString())
+ }
+ case OpArraySelect:
+ offset = size * v.AuxInt
+ case OpSelectN:
+ offset = v.AuxInt // offset is just a key, really.
+ case OpInt64Hi:
+ offset = x.hiOffset
+ case OpInt64Lo:
+ offset = x.lowOffset
+ case OpStringLen, OpSliceLen, OpIData:
+ offset = x.ptrSize
+ case OpSliceCap:
+ offset = 2 * x.ptrSize
+ case OpComplexImag:
+ offset = size
+ }
+ sk := selKey{from: w, size: size, offsetOrIndex: offset, typ: typ}
+ dupe := x.commonSelectors[sk]
+ if dupe == nil {
+ x.commonSelectors[sk] = v
+ } else if x.sdom.IsAncestorEq(dupe.Block, v.Block) {
+ if x.debug > 1 {
+ x.Printf("Duplicate, make %s copy of %s\n", v, dupe)
+ }
+ v.copyOf(dupe)
+ } else {
+ // Because values are processed in dominator order, the old common[s] will never dominate after a miss is seen.
+ // Installing the new value might match some future values.
+ x.commonSelectors[sk] = v
+ }
+ }
+
+ // Indices of entries in f.Names that need to be deleted.
+ var toDelete []namedVal
+
+ // Rewrite selectors.
+ for i, v := range allOrdered {
+ if x.debug > 1 {
+ b := v.Block
+ x.Printf("allOrdered[%d] = b%d, %s, uses=%d\n", i, b.ID, v.LongString(), v.Uses)
+ }
+ if v.Uses == 0 {
+ x.invalidateRecursively(v)
+ continue
+ }
+ if v.Op == OpCopy {
+ continue
+ }
+ locs := x.rewriteSelect(v, v, 0, 0)
+ // Install new names.
+ if v.Type.IsMemory() {
+ continue
+ }
+ // Leaf types may have debug locations
+ if !x.isAlreadyExpandedAggregateType(v.Type) {
+ for _, l := range locs {
+ if _, ok := f.NamedValues[*l]; !ok {
+ f.Names = append(f.Names, l)
+ }
+ f.NamedValues[*l] = append(f.NamedValues[*l], v)
+ }
+ continue
+ }
+ if ns, ok := x.namedSelects[v]; ok {
+ // Not-leaf types that had debug locations need to lose them.
+
+ toDelete = append(toDelete, ns...)
+ }
+ }
+
+ deleteNamedVals(f, toDelete)
+
+ // Step 4: rewrite the calls themselves, correcting the type.
+ for _, b := range f.Blocks {
+ for _, v := range b.Values {
+ switch v.Op {
+ case OpArg:
+ x.rewriteArgToMemOrRegs(v)
+ case OpStaticLECall:
+ v.Op = OpStaticCall
+ rts := abi.RegisterTypes(v.Aux.(*AuxCall).abiInfo.OutParams())
+ v.Type = types.NewResults(append(rts, types.TypeMem))
+ case OpTailLECall:
+ v.Op = OpTailCall
+ rts := abi.RegisterTypes(v.Aux.(*AuxCall).abiInfo.OutParams())
+ v.Type = types.NewResults(append(rts, types.TypeMem))
+ case OpClosureLECall:
+ v.Op = OpClosureCall
+ rts := abi.RegisterTypes(v.Aux.(*AuxCall).abiInfo.OutParams())
+ v.Type = types.NewResults(append(rts, types.TypeMem))
+ case OpInterLECall:
+ v.Op = OpInterCall
+ rts := abi.RegisterTypes(v.Aux.(*AuxCall).abiInfo.OutParams())
+ v.Type = types.NewResults(append(rts, types.TypeMem))
+ }
+ }
+ }
+
+ // Step 5: dedup OpArgXXXReg values. Mostly it is already dedup'd by commonArgs,
+ // but there are cases that we have same OpArgXXXReg values with different types.
+ // E.g. string is sometimes decomposed as { *int8, int }, sometimes as { unsafe.Pointer, uintptr }.
+ // (Can we avoid that?)
+ var IArg, FArg [32]*Value
+ for _, v := range f.Entry.Values {
+ switch v.Op {
+ case OpArgIntReg:
+ i := v.AuxInt
+ if w := IArg[i]; w != nil {
+ if w.Type.Size() != v.Type.Size() {
+ f.Fatalf("incompatible OpArgIntReg [%d]: %s and %s", i, v.LongString(), w.LongString())
+ }
+ if w.Type.IsUnsafePtr() && !v.Type.IsUnsafePtr() {
+ // Update unsafe.Pointer type if we know the actual pointer type.
+ w.Type = v.Type
+ }
+ // TODO: don't dedup pointer and scalar? Rewrite to OpConvert? Can it happen?
+ v.copyOf(w)
+ } else {
+ IArg[i] = v
+ }
+ case OpArgFloatReg:
+ i := v.AuxInt
+ if w := FArg[i]; w != nil {
+ if w.Type.Size() != v.Type.Size() {
+ f.Fatalf("incompatible OpArgFloatReg [%d]: %v and %v", i, v, w)
+ }
+ v.copyOf(w)
+ } else {
+ FArg[i] = v
+ }
+ }
+ }
+
+ // Step 6: elide any copies introduced.
+ // Update named values.
+ for _, name := range f.Names {
+ values := f.NamedValues[*name]
+ for i, v := range values {
+ if v.Op == OpCopy {
+ a := v.Args[0]
+ for a.Op == OpCopy {
+ a = a.Args[0]
+ }
+ values[i] = a
+ }
+ }
+ }
+ for _, b := range f.Blocks {
+ for _, v := range b.Values {
+ for i, a := range v.Args {
+ if a.Op != OpCopy {
+ continue
+ }
+ aa := copySource(a)
+ v.SetArg(i, aa)
+ for a.Uses == 0 {
+ b := a.Args[0]
+ x.invalidateRecursively(a)
+ a = b
+ }
+ }
+ }
+ }
+
+ // Rewriting can attach lines to values that are unlikely to survive code generation, so move them to a use.
+ for _, b := range f.Blocks {
+ for _, v := range b.Values {
+ for _, a := range v.Args {
+ if a.Pos.IsStmt() != src.PosIsStmt {
+ continue
+ }
+ if a.Type.IsMemory() {
+ continue
+ }
+ if a.Pos.Line() != v.Pos.Line() {
+ continue
+ }
+ if !a.Pos.SameFile(v.Pos) {
+ continue
+ }
+ switch a.Op {
+ case OpArgIntReg, OpArgFloatReg, OpSelectN:
+ v.Pos = v.Pos.WithIsStmt()
+ a.Pos = a.Pos.WithDefaultStmt()
+ }
+ }
+ }
+ }
+}
+
+// rewriteArgToMemOrRegs converts OpArg v in-place into the register version of v,
+// if that is appropriate.
+func (x *expandState) rewriteArgToMemOrRegs(v *Value) *Value {
+ if x.debug > 1 {
+ x.indent(3)
+ defer x.indent(-3)
+ x.Printf("rewriteArgToMemOrRegs(%s)\n", v.LongString())
+ }
+ pa := x.prAssignForArg(v)
+ switch len(pa.Registers) {
+ case 0:
+ frameOff := v.Aux.(*ir.Name).FrameOffset()
+ if pa.Offset() != int32(frameOff+x.f.ABISelf.LocalsOffset()) {
+ panic(fmt.Errorf("Parameter assignment %d and OpArg.Aux frameOffset %d disagree, op=%s",
+ pa.Offset(), frameOff, v.LongString()))
+ }
+ case 1:
+ t := v.Type
+ key := selKey{v, 0, t.Size(), t}
+ w := x.commonArgs[key]
+ if w != nil && w.Uses != 0 { // do not reuse dead value
+ v.copyOf(w)
+ break
+ }
+ r := pa.Registers[0]
+ var i int64
+ v.Op, i = ArgOpAndRegisterFor(r, x.f.ABISelf)
+ v.Aux = &AuxNameOffset{v.Aux.(*ir.Name), 0}
+ v.AuxInt = i
+ x.commonArgs[key] = v
+
+ default:
+ panic(badVal("Saw unexpanded OpArg", v))
+ }
+ if x.debug > 1 {
+ x.Printf("-->%s\n", v.LongString())
+ }
+ return v
+}
+
+// newArgToMemOrRegs either rewrites toReplace into an OpArg referencing memory or into an OpArgXXXReg to a register,
+// or rewrites it into a copy of the appropriate OpArgXXX. The actual OpArgXXX is determined by combining baseArg (an OpArg)
+// with offset, regOffset, and t to determine which portion of it to reference (either all or a part, in memory or in registers).
+func (x *expandState) newArgToMemOrRegs(baseArg, toReplace *Value, offset int64, regOffset Abi1RO, t *types.Type, pos src.XPos) *Value {
+ if x.debug > 1 {
+ x.indent(3)
+ defer x.indent(-3)
+ x.Printf("newArgToMemOrRegs(base=%s; toReplace=%s; t=%s; memOff=%d; regOff=%d)\n", baseArg.String(), toReplace.LongString(), t.String(), offset, regOffset)
+ }
+ key := selKey{baseArg, offset, t.Size(), t}
+ w := x.commonArgs[key]
+ if w != nil && w.Uses != 0 { // do not reuse dead value
+ if toReplace != nil {
+ toReplace.copyOf(w)
+ if x.debug > 1 {
+ x.Printf("...replace %s\n", toReplace.LongString())
+ }
+ }
+ if x.debug > 1 {
+ x.Printf("-->%s\n", w.LongString())
+ }
+ return w
+ }
+
+ pa := x.prAssignForArg(baseArg)
+ if len(pa.Registers) == 0 { // Arg is on stack
+ frameOff := baseArg.Aux.(*ir.Name).FrameOffset()
+ if pa.Offset() != int32(frameOff+x.f.ABISelf.LocalsOffset()) {
+ panic(fmt.Errorf("Parameter assignment %d and OpArg.Aux frameOffset %d disagree, op=%s",
+ pa.Offset(), frameOff, baseArg.LongString()))
+ }
+ aux := baseArg.Aux
+ auxInt := baseArg.AuxInt + offset
+ if toReplace != nil && toReplace.Block == baseArg.Block {
+ toReplace.reset(OpArg)
+ toReplace.Aux = aux
+ toReplace.AuxInt = auxInt
+ toReplace.Type = t
+ w = toReplace
+ } else {
+ w = baseArg.Block.NewValue0IA(baseArg.Pos, OpArg, t, auxInt, aux)
+ }
+ x.commonArgs[key] = w
+ if toReplace != nil {
+ toReplace.copyOf(w)
+ }
+ if x.debug > 1 {
+ x.Printf("-->%s\n", w.LongString())
+ }
+ return w
+ }
+ // Arg is in registers
+ r := pa.Registers[regOffset]
+ op, auxInt := ArgOpAndRegisterFor(r, x.f.ABISelf)
+ if op == OpArgIntReg && t.IsFloat() || op == OpArgFloatReg && t.IsInteger() {
+ fmt.Printf("pa=%v\nx.f.OwnAux.abiInfo=%s\n",
+ pa.ToString(x.f.ABISelf, true),
+ x.f.OwnAux.abiInfo.String())
+ panic(fmt.Errorf("Op/Type mismatch, op=%s, type=%s", op.String(), t.String()))
+ }
+ if baseArg.AuxInt != 0 {
+ base.Fatalf("BaseArg %s bound to registers has non-zero AuxInt", baseArg.LongString())
+ }
+ aux := &AuxNameOffset{baseArg.Aux.(*ir.Name), offset}
+ if toReplace != nil && toReplace.Block == baseArg.Block {
+ toReplace.reset(op)
+ toReplace.Aux = aux
+ toReplace.AuxInt = auxInt
+ toReplace.Type = t
+ w = toReplace
+ } else {
+ w = baseArg.Block.NewValue0IA(baseArg.Pos, op, t, auxInt, aux)
+ }
+ x.commonArgs[key] = w
+ if toReplace != nil {
+ toReplace.copyOf(w)
+ }
+ if x.debug > 1 {
+ x.Printf("-->%s\n", w.LongString())
+ }
+ return w
+
+}
+
+// ArgOpAndRegisterFor converts an abi register index into an ssa Op and corresponding
+// arg register index.
+func ArgOpAndRegisterFor(r abi.RegIndex, abiConfig *abi.ABIConfig) (Op, int64) {
+ i := abiConfig.FloatIndexFor(r)
+ if i >= 0 { // float PR
+ return OpArgFloatReg, i
+ }
+ return OpArgIntReg, int64(r)
+}