summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/layout.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-16 19:23:18 +0000
commit43a123c1ae6613b3efeed291fa552ecd909d3acf (patch)
treefd92518b7024bc74031f78a1cf9e454b65e73665 /src/cmd/compile/internal/ssa/layout.go
parentInitial commit. (diff)
downloadgolang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.tar.xz
golang-1.20-43a123c1ae6613b3efeed291fa552ecd909d3acf.zip
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/compile/internal/ssa/layout.go')
-rw-r--r--src/cmd/compile/internal/ssa/layout.go185
1 files changed, 185 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/layout.go b/src/cmd/compile/internal/ssa/layout.go
new file mode 100644
index 0000000..e4a8c6f
--- /dev/null
+++ b/src/cmd/compile/internal/ssa/layout.go
@@ -0,0 +1,185 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// layout orders basic blocks in f with the goal of minimizing control flow instructions.
+// After this phase returns, the order of f.Blocks matters and is the order
+// in which those blocks will appear in the assembly output.
+func layout(f *Func) {
+ f.Blocks = layoutOrder(f)
+}
+
+// Register allocation may use a different order which has constraints
+// imposed by the linear-scan algorithm.
+func layoutRegallocOrder(f *Func) []*Block {
+ // remnant of an experiment; perhaps there will be another.
+ return layoutOrder(f)
+}
+
+func layoutOrder(f *Func) []*Block {
+ order := make([]*Block, 0, f.NumBlocks())
+ scheduled := f.Cache.allocBoolSlice(f.NumBlocks())
+ defer f.Cache.freeBoolSlice(scheduled)
+ idToBlock := f.Cache.allocBlockSlice(f.NumBlocks())
+ defer f.Cache.freeBlockSlice(idToBlock)
+ indegree := f.Cache.allocIntSlice(f.NumBlocks())
+ defer f.Cache.freeIntSlice(indegree)
+ posdegree := f.newSparseSet(f.NumBlocks()) // blocks with positive remaining degree
+ defer f.retSparseSet(posdegree)
+ // blocks with zero remaining degree. Use slice to simulate a LIFO queue to implement
+ // the depth-first topology sorting algorithm.
+ var zerodegree []ID
+ // LIFO queue. Track the successor blocks of the scheduled block so that when we
+ // encounter loops, we choose to schedule the successor block of the most recently
+ // scheduled block.
+ var succs []ID
+ exit := f.newSparseSet(f.NumBlocks()) // exit blocks
+ defer f.retSparseSet(exit)
+
+ // Populate idToBlock and find exit blocks.
+ for _, b := range f.Blocks {
+ idToBlock[b.ID] = b
+ if b.Kind == BlockExit {
+ exit.add(b.ID)
+ }
+ }
+
+ // Expand exit to include blocks post-dominated by exit blocks.
+ for {
+ changed := false
+ for _, id := range exit.contents() {
+ b := idToBlock[id]
+ NextPred:
+ for _, pe := range b.Preds {
+ p := pe.b
+ if exit.contains(p.ID) {
+ continue
+ }
+ for _, s := range p.Succs {
+ if !exit.contains(s.b.ID) {
+ continue NextPred
+ }
+ }
+ // All Succs are in exit; add p.
+ exit.add(p.ID)
+ changed = true
+ }
+ }
+ if !changed {
+ break
+ }
+ }
+
+ // Initialize indegree of each block
+ for _, b := range f.Blocks {
+ if exit.contains(b.ID) {
+ // exit blocks are always scheduled last
+ continue
+ }
+ indegree[b.ID] = len(b.Preds)
+ if len(b.Preds) == 0 {
+ // Push an element to the tail of the queue.
+ zerodegree = append(zerodegree, b.ID)
+ } else {
+ posdegree.add(b.ID)
+ }
+ }
+
+ bid := f.Entry.ID
+blockloop:
+ for {
+ // add block to schedule
+ b := idToBlock[bid]
+ order = append(order, b)
+ scheduled[bid] = true
+ if len(order) == len(f.Blocks) {
+ break
+ }
+
+ // Here, the order of traversing the b.Succs affects the direction in which the topological
+ // sort advances in depth. Take the following cfg as an example, regardless of other factors.
+ // b1
+ // 0/ \1
+ // b2 b3
+ // Traverse b.Succs in order, the right child node b3 will be scheduled immediately after
+ // b1, traverse b.Succs in reverse order, the left child node b2 will be scheduled
+ // immediately after b1. The test results show that reverse traversal performs a little
+ // better.
+ // Note: You need to consider both layout and register allocation when testing performance.
+ for i := len(b.Succs) - 1; i >= 0; i-- {
+ c := b.Succs[i].b
+ indegree[c.ID]--
+ if indegree[c.ID] == 0 {
+ posdegree.remove(c.ID)
+ zerodegree = append(zerodegree, c.ID)
+ } else {
+ succs = append(succs, c.ID)
+ }
+ }
+
+ // Pick the next block to schedule
+ // Pick among the successor blocks that have not been scheduled yet.
+
+ // Use likely direction if we have it.
+ var likely *Block
+ switch b.Likely {
+ case BranchLikely:
+ likely = b.Succs[0].b
+ case BranchUnlikely:
+ likely = b.Succs[1].b
+ }
+ if likely != nil && !scheduled[likely.ID] {
+ bid = likely.ID
+ continue
+ }
+
+ // Use degree for now.
+ bid = 0
+ // TODO: improve this part
+ // No successor of the previously scheduled block works.
+ // Pick a zero-degree block if we can.
+ for len(zerodegree) > 0 {
+ // Pop an element from the tail of the queue.
+ cid := zerodegree[len(zerodegree)-1]
+ zerodegree = zerodegree[:len(zerodegree)-1]
+ if !scheduled[cid] {
+ bid = cid
+ continue blockloop
+ }
+ }
+
+ // Still nothing, pick the unscheduled successor block encountered most recently.
+ for len(succs) > 0 {
+ // Pop an element from the tail of the queue.
+ cid := succs[len(succs)-1]
+ succs = succs[:len(succs)-1]
+ if !scheduled[cid] {
+ bid = cid
+ continue blockloop
+ }
+ }
+
+ // Still nothing, pick any non-exit block.
+ for posdegree.size() > 0 {
+ cid := posdegree.pop()
+ if !scheduled[cid] {
+ bid = cid
+ continue blockloop
+ }
+ }
+ // Pick any exit block.
+ // TODO: Order these to minimize jump distances?
+ for {
+ cid := exit.pop()
+ if !scheduled[cid] {
+ bid = cid
+ continue blockloop
+ }
+ }
+ }
+ f.laidout = true
+ return order
+ //f.Blocks = order
+}