diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-16 19:23:18 +0000 |
commit | 43a123c1ae6613b3efeed291fa552ecd909d3acf (patch) | |
tree | fd92518b7024bc74031f78a1cf9e454b65e73665 /src/crypto/internal/bigmod | |
parent | Initial commit. (diff) | |
download | golang-1.20-upstream.tar.xz golang-1.20-upstream.zip |
Adding upstream version 1.20.14.upstream/1.20.14upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/crypto/internal/bigmod')
-rw-r--r-- | src/crypto/internal/bigmod/_asm/go.mod | 12 | ||||
-rw-r--r-- | src/crypto/internal/bigmod/_asm/go.sum | 32 | ||||
-rw-r--r-- | src/crypto/internal/bigmod/_asm/nat_amd64_asm.go | 131 | ||||
-rw-r--r-- | src/crypto/internal/bigmod/nat.go | 703 | ||||
-rw-r--r-- | src/crypto/internal/bigmod/nat_amd64.go | 8 | ||||
-rw-r--r-- | src/crypto/internal/bigmod/nat_amd64.s | 68 | ||||
-rw-r--r-- | src/crypto/internal/bigmod/nat_noasm.go | 11 | ||||
-rw-r--r-- | src/crypto/internal/bigmod/nat_test.go | 412 |
8 files changed, 1377 insertions, 0 deletions
diff --git a/src/crypto/internal/bigmod/_asm/go.mod b/src/crypto/internal/bigmod/_asm/go.mod new file mode 100644 index 0000000..1ce2b5e --- /dev/null +++ b/src/crypto/internal/bigmod/_asm/go.mod @@ -0,0 +1,12 @@ +module asm + +go 1.19 + +require github.com/mmcloughlin/avo v0.4.0 + +require ( + golang.org/x/mod v0.4.2 // indirect + golang.org/x/sys v0.0.0-20211030160813-b3129d9d1021 // indirect + golang.org/x/tools v0.1.7 // indirect + golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 // indirect +) diff --git a/src/crypto/internal/bigmod/_asm/go.sum b/src/crypto/internal/bigmod/_asm/go.sum new file mode 100644 index 0000000..b4b5914 --- /dev/null +++ b/src/crypto/internal/bigmod/_asm/go.sum @@ -0,0 +1,32 @@ +github.com/mmcloughlin/avo v0.4.0 h1:jeHDRktVD+578ULxWpQHkilor6pkdLF7u7EiTzDbfcU= +github.com/mmcloughlin/avo v0.4.0/go.mod h1:RW9BfYA3TgO9uCdNrKU2h6J8cPD8ZLznvfgHAeszb1s= +github.com/yuin/goldmark v1.4.0/go.mod h1:mwnBkeHKe2W/ZEtQ+71ViKU8L12m81fl3OWwC1Zlc8k= +golang.org/x/arch v0.0.0-20210923205945-b76863e36670/go.mod h1:5om86z9Hs0C8fWVUuoMHwpExlXzs5Tkyp9hOrfG7pp8= +golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w= +golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI= +golang.org/x/mod v0.4.2 h1:Gz96sIWK3OalVv/I/qNygP42zyoKp3xptRVCWRFEBvo= +golang.org/x/mod v0.4.2/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA= +golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg= +golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s= +golang.org/x/net v0.0.0-20210805182204-aaa1db679c0d/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y= +golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= +golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= +golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= +golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= +golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= +golang.org/x/sys v0.0.0-20210423082822-04245dca01da/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= +golang.org/x/sys v0.0.0-20210809222454-d867a43fc93e/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg= +golang.org/x/sys v0.0.0-20211030160813-b3129d9d1021 h1:giLT+HuUP/gXYrG2Plg9WTjj4qhfgaW424ZIFog3rlk= +golang.org/x/sys v0.0.0-20211030160813-b3129d9d1021/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg= +golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo= +golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ= +golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ= +golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ= +golang.org/x/tools v0.0.0-20191119224855-298f0cb1881e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo= +golang.org/x/tools v0.1.7 h1:6j8CgantCy3yc8JGBqkDLMKWqZ0RDU2g1HVgacojGWQ= +golang.org/x/tools v0.1.7/go.mod h1:LGqMHiF4EqQNHR1JncWGqT5BVaXmza+X+BDGol+dOxo= +golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= +golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= +golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 h1:go1bK/D/BFZV2I8cIQd1NKEZ+0owSTG1fDTci4IqFcE= +golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= +rsc.io/pdf v0.1.1/go.mod h1:n8OzWcQ6Sp37PL01nO98y4iUCRdTGarVfzxY20ICaU4= diff --git a/src/crypto/internal/bigmod/_asm/nat_amd64_asm.go b/src/crypto/internal/bigmod/_asm/nat_amd64_asm.go new file mode 100644 index 0000000..5690f04 --- /dev/null +++ b/src/crypto/internal/bigmod/_asm/nat_amd64_asm.go @@ -0,0 +1,131 @@ +// Copyright 2022 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package main + +import ( + . "github.com/mmcloughlin/avo/build" + . "github.com/mmcloughlin/avo/operand" + . "github.com/mmcloughlin/avo/reg" +) + +//go:generate go run . -out ../nat_amd64.s -stubs ../nat_amd64.go -pkg bigmod + +func main() { + Package("crypto/internal/bigmod") + ConstraintExpr("amd64,gc,!purego") + + Implement("montgomeryLoop") + Pragma("noescape") + + size := Load(Param("d").Len(), GP64()) + d := Mem{Base: Load(Param("d").Base(), GP64())} + b := Mem{Base: Load(Param("b").Base(), GP64())} + m := Mem{Base: Load(Param("m").Base(), GP64())} + m0inv := Load(Param("m0inv"), GP64()) + + overflow := zero() + i := zero() + Label("outerLoop") + + ai := Load(Param("a").Base(), GP64()) + MOVQ(Mem{Base: ai}.Idx(i, 8), ai) + + z := uint128{GP64(), GP64()} + mul64(z, b, ai) + add64(z, d) + f := GP64() + MOVQ(m0inv, f) + IMULQ(z.lo, f) + _MASK(f) + addMul64(z, m, f) + carry := shiftBy63(z) + + j := zero() + INCQ(j) + JMP(LabelRef("innerLoopCondition")) + Label("innerLoop") + + // z = d[j] + a[i] * b[j] + f * m[j] + carry + z = uint128{GP64(), GP64()} + mul64(z, b.Idx(j, 8), ai) + addMul64(z, m.Idx(j, 8), f) + add64(z, d.Idx(j, 8)) + add64(z, carry) + // d[j-1] = z_lo & _MASK + storeMasked(z.lo, d.Idx(j, 8).Offset(-8)) + // carry = z_hi<<1 | z_lo>>_W + MOVQ(shiftBy63(z), carry) + + INCQ(j) + Label("innerLoopCondition") + CMPQ(size, j) + JGT(LabelRef("innerLoop")) + + ADDQ(carry, overflow) + storeMasked(overflow, d.Idx(size, 8).Offset(-8)) + SHRQ(Imm(63), overflow) + + INCQ(i) + CMPQ(size, i) + JGT(LabelRef("outerLoop")) + + Store(overflow, ReturnIndex(0)) + RET() + Generate() +} + +// zero zeroes a new register and returns it. +func zero() Register { + r := GP64() + XORQ(r, r) + return r +} + +// _MASK masks out the top bit of r. +func _MASK(r Register) { + BTRQ(Imm(63), r) +} + +type uint128 struct { + hi, lo GPVirtual +} + +// storeMasked stores _MASK(src) in dst. It doesn't modify src. +func storeMasked(src, dst Op) { + out := GP64() + MOVQ(src, out) + _MASK(out) + MOVQ(out, dst) +} + +// shiftBy63 returns z >> 63. It reuses z.lo. +func shiftBy63(z uint128) Register { + SHRQ(Imm(63), z.hi, z.lo) + result := z.lo + z.hi, z.lo = nil, nil + return result +} + +// add64 sets r to r + a. +func add64(r uint128, a Op) { + ADDQ(a, r.lo) + ADCQ(Imm(0), r.hi) +} + +// mul64 sets r to a * b. +func mul64(r uint128, a, b Op) { + MOVQ(a, RAX) + MULQ(b) // RDX, RAX = RAX * b + MOVQ(RAX, r.lo) + MOVQ(RDX, r.hi) +} + +// addMul64 sets r to r + a * b. +func addMul64(r uint128, a, b Op) { + MOVQ(a, RAX) + MULQ(b) // RDX, RAX = RAX * b + ADDQ(RAX, r.lo) + ADCQ(RDX, r.hi) +} diff --git a/src/crypto/internal/bigmod/nat.go b/src/crypto/internal/bigmod/nat.go new file mode 100644 index 0000000..804316f --- /dev/null +++ b/src/crypto/internal/bigmod/nat.go @@ -0,0 +1,703 @@ +// Copyright 2021 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package bigmod + +import ( + "errors" + "math/big" + "math/bits" +) + +const ( + // _W is the number of bits we use for our limbs. + _W = bits.UintSize - 1 + // _MASK selects _W bits from a full machine word. + _MASK = (1 << _W) - 1 +) + +// choice represents a constant-time boolean. The value of choice is always +// either 1 or 0. We use an int instead of bool in order to make decisions in +// constant time by turning it into a mask. +type choice uint + +func not(c choice) choice { return 1 ^ c } + +const yes = choice(1) +const no = choice(0) + +// ctSelect returns x if on == 1, and y if on == 0. The execution time of this +// function does not depend on its inputs. If on is any value besides 1 or 0, +// the result is undefined. +func ctSelect(on choice, x, y uint) uint { + // When on == 1, mask is 0b111..., otherwise mask is 0b000... + mask := -uint(on) + // When mask is all zeros, we just have y, otherwise, y cancels with itself. + return y ^ (mask & (y ^ x)) +} + +// ctEq returns 1 if x == y, and 0 otherwise. The execution time of this +// function does not depend on its inputs. +func ctEq(x, y uint) choice { + // If x != y, then either x - y or y - x will generate a carry. + _, c1 := bits.Sub(x, y, 0) + _, c2 := bits.Sub(y, x, 0) + return not(choice(c1 | c2)) +} + +// ctGeq returns 1 if x >= y, and 0 otherwise. The execution time of this +// function does not depend on its inputs. +func ctGeq(x, y uint) choice { + // If x < y, then x - y generates a carry. + _, carry := bits.Sub(x, y, 0) + return not(choice(carry)) +} + +// Nat represents an arbitrary natural number +// +// Each Nat has an announced length, which is the number of limbs it has stored. +// Operations on this number are allowed to leak this length, but will not leak +// any information about the values contained in those limbs. +type Nat struct { + // limbs is a little-endian representation in base 2^W with + // W = bits.UintSize - 1. The top bit is always unset between operations. + // + // The top bit is left unset to optimize Montgomery multiplication, in the + // inner loop of exponentiation. Using fully saturated limbs would leave us + // working with 129-bit numbers on 64-bit platforms, wasting a lot of space, + // and thus time. + limbs []uint +} + +// preallocTarget is the size in bits of the numbers used to implement the most +// common and most performant RSA key size. It's also enough to cover some of +// the operations of key sizes up to 4096. +const preallocTarget = 2048 +const preallocLimbs = (preallocTarget + _W - 1) / _W + +// NewNat returns a new nat with a size of zero, just like new(Nat), but with +// the preallocated capacity to hold a number of up to preallocTarget bits. +// NewNat inlines, so the allocation can live on the stack. +func NewNat() *Nat { + limbs := make([]uint, 0, preallocLimbs) + return &Nat{limbs} +} + +// expand expands x to n limbs, leaving its value unchanged. +func (x *Nat) expand(n int) *Nat { + if len(x.limbs) > n { + panic("bigmod: internal error: shrinking nat") + } + if cap(x.limbs) < n { + newLimbs := make([]uint, n) + copy(newLimbs, x.limbs) + x.limbs = newLimbs + return x + } + extraLimbs := x.limbs[len(x.limbs):n] + for i := range extraLimbs { + extraLimbs[i] = 0 + } + x.limbs = x.limbs[:n] + return x +} + +// reset returns a zero nat of n limbs, reusing x's storage if n <= cap(x.limbs). +func (x *Nat) reset(n int) *Nat { + if cap(x.limbs) < n { + x.limbs = make([]uint, n) + return x + } + for i := range x.limbs { + x.limbs[i] = 0 + } + x.limbs = x.limbs[:n] + return x +} + +// set assigns x = y, optionally resizing x to the appropriate size. +func (x *Nat) set(y *Nat) *Nat { + x.reset(len(y.limbs)) + copy(x.limbs, y.limbs) + return x +} + +// setBig assigns x = n, optionally resizing n to the appropriate size. +// +// The announced length of x is set based on the actual bit size of the input, +// ignoring leading zeroes. +func (x *Nat) setBig(n *big.Int) *Nat { + requiredLimbs := (n.BitLen() + _W - 1) / _W + x.reset(requiredLimbs) + + outI := 0 + shift := 0 + limbs := n.Bits() + for i := range limbs { + xi := uint(limbs[i]) + x.limbs[outI] |= (xi << shift) & _MASK + outI++ + if outI == requiredLimbs { + return x + } + x.limbs[outI] = xi >> (_W - shift) + shift++ // this assumes bits.UintSize - _W = 1 + if shift == _W { + shift = 0 + outI++ + } + } + return x +} + +// Bytes returns x as a zero-extended big-endian byte slice. The size of the +// slice will match the size of m. +// +// x must have the same size as m and it must be reduced modulo m. +func (x *Nat) Bytes(m *Modulus) []byte { + bytes := make([]byte, m.Size()) + shift := 0 + outI := len(bytes) - 1 + for _, limb := range x.limbs { + remainingBits := _W + for remainingBits >= 8 { + bytes[outI] |= byte(limb) << shift + consumed := 8 - shift + limb >>= consumed + remainingBits -= consumed + shift = 0 + outI-- + if outI < 0 { + return bytes + } + } + bytes[outI] = byte(limb) + shift = remainingBits + } + return bytes +} + +// SetBytes assigns x = b, where b is a slice of big-endian bytes. +// SetBytes returns an error if b >= m. +// +// The output will be resized to the size of m and overwritten. +func (x *Nat) SetBytes(b []byte, m *Modulus) (*Nat, error) { + if err := x.setBytes(b, m); err != nil { + return nil, err + } + if x.cmpGeq(m.nat) == yes { + return nil, errors.New("input overflows the modulus") + } + return x, nil +} + +// SetOverflowingBytes assigns x = b, where b is a slice of big-endian bytes. SetOverflowingBytes +// returns an error if b has a longer bit length than m, but reduces overflowing +// values up to 2^⌈log2(m)⌉ - 1. +// +// The output will be resized to the size of m and overwritten. +func (x *Nat) SetOverflowingBytes(b []byte, m *Modulus) (*Nat, error) { + if err := x.setBytes(b, m); err != nil { + return nil, err + } + leading := _W - bitLen(x.limbs[len(x.limbs)-1]) + if leading < m.leading { + return nil, errors.New("input overflows the modulus") + } + x.sub(x.cmpGeq(m.nat), m.nat) + return x, nil +} + +func (x *Nat) setBytes(b []byte, m *Modulus) error { + outI := 0 + shift := 0 + x.resetFor(m) + for i := len(b) - 1; i >= 0; i-- { + bi := b[i] + x.limbs[outI] |= uint(bi) << shift + shift += 8 + if shift >= _W { + shift -= _W + x.limbs[outI] &= _MASK + overflow := bi >> (8 - shift) + outI++ + if outI >= len(x.limbs) { + if overflow > 0 || i > 0 { + return errors.New("input overflows the modulus") + } + break + } + x.limbs[outI] = uint(overflow) + } + } + return nil +} + +// Equal returns 1 if x == y, and 0 otherwise. +// +// Both operands must have the same announced length. +func (x *Nat) Equal(y *Nat) choice { + // Eliminate bounds checks in the loop. + size := len(x.limbs) + xLimbs := x.limbs[:size] + yLimbs := y.limbs[:size] + + equal := yes + for i := 0; i < size; i++ { + equal &= ctEq(xLimbs[i], yLimbs[i]) + } + return equal +} + +// IsZero returns 1 if x == 0, and 0 otherwise. +func (x *Nat) IsZero() choice { + // Eliminate bounds checks in the loop. + size := len(x.limbs) + xLimbs := x.limbs[:size] + + zero := yes + for i := 0; i < size; i++ { + zero &= ctEq(xLimbs[i], 0) + } + return zero +} + +// cmpGeq returns 1 if x >= y, and 0 otherwise. +// +// Both operands must have the same announced length. +func (x *Nat) cmpGeq(y *Nat) choice { + // Eliminate bounds checks in the loop. + size := len(x.limbs) + xLimbs := x.limbs[:size] + yLimbs := y.limbs[:size] + + var c uint + for i := 0; i < size; i++ { + c = (xLimbs[i] - yLimbs[i] - c) >> _W + } + // If there was a carry, then subtracting y underflowed, so + // x is not greater than or equal to y. + return not(choice(c)) +} + +// assign sets x <- y if on == 1, and does nothing otherwise. +// +// Both operands must have the same announced length. +func (x *Nat) assign(on choice, y *Nat) *Nat { + // Eliminate bounds checks in the loop. + size := len(x.limbs) + xLimbs := x.limbs[:size] + yLimbs := y.limbs[:size] + + for i := 0; i < size; i++ { + xLimbs[i] = ctSelect(on, yLimbs[i], xLimbs[i]) + } + return x +} + +// add computes x += y if on == 1, and does nothing otherwise. It returns the +// carry of the addition regardless of on. +// +// Both operands must have the same announced length. +func (x *Nat) add(on choice, y *Nat) (c uint) { + // Eliminate bounds checks in the loop. + size := len(x.limbs) + xLimbs := x.limbs[:size] + yLimbs := y.limbs[:size] + + for i := 0; i < size; i++ { + res := xLimbs[i] + yLimbs[i] + c + xLimbs[i] = ctSelect(on, res&_MASK, xLimbs[i]) + c = res >> _W + } + return +} + +// sub computes x -= y if on == 1, and does nothing otherwise. It returns the +// borrow of the subtraction regardless of on. +// +// Both operands must have the same announced length. +func (x *Nat) sub(on choice, y *Nat) (c uint) { + // Eliminate bounds checks in the loop. + size := len(x.limbs) + xLimbs := x.limbs[:size] + yLimbs := y.limbs[:size] + + for i := 0; i < size; i++ { + res := xLimbs[i] - yLimbs[i] - c + xLimbs[i] = ctSelect(on, res&_MASK, xLimbs[i]) + c = res >> _W + } + return +} + +// Modulus is used for modular arithmetic, precomputing relevant constants. +// +// Moduli are assumed to be odd numbers. Moduli can also leak the exact +// number of bits needed to store their value, and are stored without padding. +// +// Their actual value is still kept secret. +type Modulus struct { + // The underlying natural number for this modulus. + // + // This will be stored without any padding, and shouldn't alias with any + // other natural number being used. + nat *Nat + leading int // number of leading zeros in the modulus + m0inv uint // -nat.limbs[0]⁻¹ mod _W + rr *Nat // R*R for montgomeryRepresentation +} + +// rr returns R*R with R = 2^(_W * n) and n = len(m.nat.limbs). +func rr(m *Modulus) *Nat { + rr := NewNat().ExpandFor(m) + // R*R is 2^(2 * _W * n). We can safely get 2^(_W * (n - 1)) by setting the + // most significant limb to 1. We then get to R*R by shifting left by _W + // n + 1 times. + n := len(rr.limbs) + rr.limbs[n-1] = 1 + for i := n - 1; i < 2*n; i++ { + rr.shiftIn(0, m) // x = x * 2^_W mod m + } + return rr +} + +// minusInverseModW computes -x⁻¹ mod _W with x odd. +// +// This operation is used to precompute a constant involved in Montgomery +// multiplication. +func minusInverseModW(x uint) uint { + // Every iteration of this loop doubles the least-significant bits of + // correct inverse in y. The first three bits are already correct (1⁻¹ = 1, + // 3⁻¹ = 3, 5⁻¹ = 5, and 7⁻¹ = 7 mod 8), so doubling five times is enough + // for 61 bits (and wastes only one iteration for 31 bits). + // + // See https://crypto.stackexchange.com/a/47496. + y := x + for i := 0; i < 5; i++ { + y = y * (2 - x*y) + } + return (1 << _W) - (y & _MASK) +} + +// NewModulusFromBig creates a new Modulus from a [big.Int]. +// +// The Int must be odd. The number of significant bits must be leakable. +func NewModulusFromBig(n *big.Int) *Modulus { + m := &Modulus{} + m.nat = NewNat().setBig(n) + m.leading = _W - bitLen(m.nat.limbs[len(m.nat.limbs)-1]) + m.m0inv = minusInverseModW(m.nat.limbs[0]) + m.rr = rr(m) + return m +} + +// bitLen is a version of bits.Len that only leaks the bit length of n, but not +// its value. bits.Len and bits.LeadingZeros use a lookup table for the +// low-order bits on some architectures. +func bitLen(n uint) int { + var len int + // We assume, here and elsewhere, that comparison to zero is constant time + // with respect to different non-zero values. + for n != 0 { + len++ + n >>= 1 + } + return len +} + +// Size returns the size of m in bytes. +func (m *Modulus) Size() int { + return (m.BitLen() + 7) / 8 +} + +// BitLen returns the size of m in bits. +func (m *Modulus) BitLen() int { + return len(m.nat.limbs)*_W - int(m.leading) +} + +// Nat returns m as a Nat. The return value must not be written to. +func (m *Modulus) Nat() *Nat { + return m.nat +} + +// shiftIn calculates x = x << _W + y mod m. +// +// This assumes that x is already reduced mod m, and that y < 2^_W. +func (x *Nat) shiftIn(y uint, m *Modulus) *Nat { + d := NewNat().resetFor(m) + + // Eliminate bounds checks in the loop. + size := len(m.nat.limbs) + xLimbs := x.limbs[:size] + dLimbs := d.limbs[:size] + mLimbs := m.nat.limbs[:size] + + // Each iteration of this loop computes x = 2x + b mod m, where b is a bit + // from y. Effectively, it left-shifts x and adds y one bit at a time, + // reducing it every time. + // + // To do the reduction, each iteration computes both 2x + b and 2x + b - m. + // The next iteration (and finally the return line) will use either result + // based on whether the subtraction underflowed. + needSubtraction := no + for i := _W - 1; i >= 0; i-- { + carry := (y >> i) & 1 + var borrow uint + for i := 0; i < size; i++ { + l := ctSelect(needSubtraction, dLimbs[i], xLimbs[i]) + + res := l<<1 + carry + xLimbs[i] = res & _MASK + carry = res >> _W + + res = xLimbs[i] - mLimbs[i] - borrow + dLimbs[i] = res & _MASK + borrow = res >> _W + } + // See Add for how carry (aka overflow), borrow (aka underflow), and + // needSubtraction relate. + needSubtraction = ctEq(carry, borrow) + } + return x.assign(needSubtraction, d) +} + +// Mod calculates out = x mod m. +// +// This works regardless how large the value of x is. +// +// The output will be resized to the size of m and overwritten. +func (out *Nat) Mod(x *Nat, m *Modulus) *Nat { + out.resetFor(m) + // Working our way from the most significant to the least significant limb, + // we can insert each limb at the least significant position, shifting all + // previous limbs left by _W. This way each limb will get shifted by the + // correct number of bits. We can insert at least N - 1 limbs without + // overflowing m. After that, we need to reduce every time we shift. + i := len(x.limbs) - 1 + // For the first N - 1 limbs we can skip the actual shifting and position + // them at the shifted position, which starts at min(N - 2, i). + start := len(m.nat.limbs) - 2 + if i < start { + start = i + } + for j := start; j >= 0; j-- { + out.limbs[j] = x.limbs[i] + i-- + } + // We shift in the remaining limbs, reducing modulo m each time. + for i >= 0 { + out.shiftIn(x.limbs[i], m) + i-- + } + return out +} + +// ExpandFor ensures out has the right size to work with operations modulo m. +// +// The announced size of out must be smaller than or equal to that of m. +func (out *Nat) ExpandFor(m *Modulus) *Nat { + return out.expand(len(m.nat.limbs)) +} + +// resetFor ensures out has the right size to work with operations modulo m. +// +// out is zeroed and may start at any size. +func (out *Nat) resetFor(m *Modulus) *Nat { + return out.reset(len(m.nat.limbs)) +} + +// Sub computes x = x - y mod m. +// +// The length of both operands must be the same as the modulus. Both operands +// must already be reduced modulo m. +func (x *Nat) Sub(y *Nat, m *Modulus) *Nat { + underflow := x.sub(yes, y) + // If the subtraction underflowed, add m. + x.add(choice(underflow), m.nat) + return x +} + +// Add computes x = x + y mod m. +// +// The length of both operands must be the same as the modulus. Both operands +// must already be reduced modulo m. +func (x *Nat) Add(y *Nat, m *Modulus) *Nat { + overflow := x.add(yes, y) + underflow := not(x.cmpGeq(m.nat)) // x < m + + // Three cases are possible: + // + // - overflow = 0, underflow = 0 + // + // In this case, addition fits in our limbs, but we can still subtract away + // m without an underflow, so we need to perform the subtraction to reduce + // our result. + // + // - overflow = 0, underflow = 1 + // + // The addition fits in our limbs, but we can't subtract m without + // underflowing. The result is already reduced. + // + // - overflow = 1, underflow = 1 + // + // The addition does not fit in our limbs, and the subtraction's borrow + // would cancel out with the addition's carry. We need to subtract m to + // reduce our result. + // + // The overflow = 1, underflow = 0 case is not possible, because y is at + // most m - 1, and if adding m - 1 overflows, then subtracting m must + // necessarily underflow. + needSubtraction := ctEq(overflow, uint(underflow)) + + x.sub(needSubtraction, m.nat) + return x +} + +// montgomeryRepresentation calculates x = x * R mod m, with R = 2^(_W * n) and +// n = len(m.nat.limbs). +// +// Faster Montgomery multiplication replaces standard modular multiplication for +// numbers in this representation. +// +// This assumes that x is already reduced mod m. +func (x *Nat) montgomeryRepresentation(m *Modulus) *Nat { + // A Montgomery multiplication (which computes a * b / R) by R * R works out + // to a multiplication by R, which takes the value out of the Montgomery domain. + return x.montgomeryMul(NewNat().set(x), m.rr, m) +} + +// montgomeryReduction calculates x = x / R mod m, with R = 2^(_W * n) and +// n = len(m.nat.limbs). +// +// This assumes that x is already reduced mod m. +func (x *Nat) montgomeryReduction(m *Modulus) *Nat { + // By Montgomery multiplying with 1 not in Montgomery representation, we + // convert out back from Montgomery representation, because it works out to + // dividing by R. + t0 := NewNat().set(x) + t1 := NewNat().ExpandFor(m) + t1.limbs[0] = 1 + return x.montgomeryMul(t0, t1, m) +} + +// montgomeryMul calculates d = a * b / R mod m, with R = 2^(_W * n) and +// n = len(m.nat.limbs), using the Montgomery Multiplication technique. +// +// All inputs should be the same length, not aliasing d, and already +// reduced modulo m. d will be resized to the size of m and overwritten. +func (d *Nat) montgomeryMul(a *Nat, b *Nat, m *Modulus) *Nat { + d.resetFor(m) + if len(a.limbs) != len(m.nat.limbs) || len(b.limbs) != len(m.nat.limbs) { + panic("bigmod: invalid montgomeryMul input") + } + + // See https://bearssl.org/bigint.html#montgomery-reduction-and-multiplication + // for a description of the algorithm implemented mostly in montgomeryLoop. + // See Add for how overflow, underflow, and needSubtraction relate. + overflow := montgomeryLoop(d.limbs, a.limbs, b.limbs, m.nat.limbs, m.m0inv) + underflow := not(d.cmpGeq(m.nat)) // d < m + needSubtraction := ctEq(overflow, uint(underflow)) + d.sub(needSubtraction, m.nat) + + return d +} + +func montgomeryLoopGeneric(d, a, b, m []uint, m0inv uint) (overflow uint) { + // Eliminate bounds checks in the loop. + size := len(d) + a = a[:size] + b = b[:size] + m = m[:size] + + for _, ai := range a { + // This is an unrolled iteration of the loop below with j = 0. + hi, lo := bits.Mul(ai, b[0]) + z_lo, c := bits.Add(d[0], lo, 0) + f := (z_lo * m0inv) & _MASK // (d[0] + a[i] * b[0]) * m0inv + z_hi, _ := bits.Add(0, hi, c) + hi, lo = bits.Mul(f, m[0]) + z_lo, c = bits.Add(z_lo, lo, 0) + z_hi, _ = bits.Add(z_hi, hi, c) + carry := z_hi<<1 | z_lo>>_W + + for j := 1; j < size; j++ { + // z = d[j] + a[i] * b[j] + f * m[j] + carry <= 2^(2W+1) - 2^(W+1) + 2^W + hi, lo := bits.Mul(ai, b[j]) + z_lo, c := bits.Add(d[j], lo, 0) + z_hi, _ := bits.Add(0, hi, c) + hi, lo = bits.Mul(f, m[j]) + z_lo, c = bits.Add(z_lo, lo, 0) + z_hi, _ = bits.Add(z_hi, hi, c) + z_lo, c = bits.Add(z_lo, carry, 0) + z_hi, _ = bits.Add(z_hi, 0, c) + d[j-1] = z_lo & _MASK + carry = z_hi<<1 | z_lo>>_W // carry <= 2^(W+1) - 2 + } + + z := overflow + carry // z <= 2^(W+1) - 1 + d[size-1] = z & _MASK + overflow = z >> _W // overflow <= 1 + } + return +} + +// Mul calculates x *= y mod m. +// +// x and y must already be reduced modulo m, they must share its announced +// length, and they may not alias. +func (x *Nat) Mul(y *Nat, m *Modulus) *Nat { + // A Montgomery multiplication by a value out of the Montgomery domain + // takes the result out of Montgomery representation. + xR := NewNat().set(x).montgomeryRepresentation(m) // xR = x * R mod m + return x.montgomeryMul(xR, y, m) // x = xR * y / R mod m +} + +// Exp calculates out = x^e mod m. +// +// The exponent e is represented in big-endian order. The output will be resized +// to the size of m and overwritten. x must already be reduced modulo m. +func (out *Nat) Exp(x *Nat, e []byte, m *Modulus) *Nat { + // We use a 4 bit window. For our RSA workload, 4 bit windows are faster + // than 2 bit windows, but use an extra 12 nats worth of scratch space. + // Using bit sizes that don't divide 8 are more complex to implement. + + table := [(1 << 4) - 1]*Nat{ // table[i] = x ^ (i+1) + // newNat calls are unrolled so they are allocated on the stack. + NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), + NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), + NewNat(), NewNat(), NewNat(), NewNat(), NewNat(), + } + table[0].set(x).montgomeryRepresentation(m) + for i := 1; i < len(table); i++ { + table[i].montgomeryMul(table[i-1], table[0], m) + } + + out.resetFor(m) + out.limbs[0] = 1 + out.montgomeryRepresentation(m) + t0 := NewNat().ExpandFor(m) + t1 := NewNat().ExpandFor(m) + for _, b := range e { + for _, j := range []int{4, 0} { + // Square four times. + t1.montgomeryMul(out, out, m) + out.montgomeryMul(t1, t1, m) + t1.montgomeryMul(out, out, m) + out.montgomeryMul(t1, t1, m) + + // Select x^k in constant time from the table. + k := uint((b >> j) & 0b1111) + for i := range table { + t0.assign(ctEq(k, uint(i+1)), table[i]) + } + + // Multiply by x^k, discarding the result if k = 0. + t1.montgomeryMul(out, t0, m) + out.assign(not(ctEq(k, 0)), t1) + } + } + + return out.montgomeryReduction(m) +} diff --git a/src/crypto/internal/bigmod/nat_amd64.go b/src/crypto/internal/bigmod/nat_amd64.go new file mode 100644 index 0000000..e947782 --- /dev/null +++ b/src/crypto/internal/bigmod/nat_amd64.go @@ -0,0 +1,8 @@ +// Code generated by command: go run nat_amd64_asm.go -out ../nat_amd64.s -stubs ../nat_amd64.go -pkg bigmod. DO NOT EDIT. + +//go:build amd64 && gc && !purego + +package bigmod + +//go:noescape +func montgomeryLoop(d []uint, a []uint, b []uint, m []uint, m0inv uint) uint diff --git a/src/crypto/internal/bigmod/nat_amd64.s b/src/crypto/internal/bigmod/nat_amd64.s new file mode 100644 index 0000000..12b7629 --- /dev/null +++ b/src/crypto/internal/bigmod/nat_amd64.s @@ -0,0 +1,68 @@ +// Code generated by command: go run nat_amd64_asm.go -out ../nat_amd64.s -stubs ../nat_amd64.go -pkg bigmod. DO NOT EDIT. + +//go:build amd64 && gc && !purego + +// func montgomeryLoop(d []uint, a []uint, b []uint, m []uint, m0inv uint) uint +TEXT ·montgomeryLoop(SB), $8-112 + MOVQ d_len+8(FP), CX + MOVQ d_base+0(FP), BX + MOVQ b_base+48(FP), SI + MOVQ m_base+72(FP), DI + MOVQ m0inv+96(FP), R8 + XORQ R9, R9 + XORQ R10, R10 + +outerLoop: + MOVQ a_base+24(FP), R11 + MOVQ (R11)(R10*8), R11 + MOVQ (SI), AX + MULQ R11 + MOVQ AX, R13 + MOVQ DX, R12 + ADDQ (BX), R13 + ADCQ $0x00, R12 + MOVQ R8, R14 + IMULQ R13, R14 + BTRQ $0x3f, R14 + MOVQ (DI), AX + MULQ R14 + ADDQ AX, R13 + ADCQ DX, R12 + SHRQ $0x3f, R12, R13 + XORQ R12, R12 + INCQ R12 + JMP innerLoopCondition + +innerLoop: + MOVQ (SI)(R12*8), AX + MULQ R11 + MOVQ AX, BP + MOVQ DX, R15 + MOVQ (DI)(R12*8), AX + MULQ R14 + ADDQ AX, BP + ADCQ DX, R15 + ADDQ (BX)(R12*8), BP + ADCQ $0x00, R15 + ADDQ R13, BP + ADCQ $0x00, R15 + MOVQ BP, AX + BTRQ $0x3f, AX + MOVQ AX, -8(BX)(R12*8) + SHRQ $0x3f, R15, BP + MOVQ BP, R13 + INCQ R12 + +innerLoopCondition: + CMPQ CX, R12 + JGT innerLoop + ADDQ R13, R9 + MOVQ R9, AX + BTRQ $0x3f, AX + MOVQ AX, -8(BX)(CX*8) + SHRQ $0x3f, R9 + INCQ R10 + CMPQ CX, R10 + JGT outerLoop + MOVQ R9, ret+104(FP) + RET diff --git a/src/crypto/internal/bigmod/nat_noasm.go b/src/crypto/internal/bigmod/nat_noasm.go new file mode 100644 index 0000000..870b445 --- /dev/null +++ b/src/crypto/internal/bigmod/nat_noasm.go @@ -0,0 +1,11 @@ +// Copyright 2022 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build !amd64 || !gc || purego + +package bigmod + +func montgomeryLoop(d, a, b, m []uint, m0inv uint) uint { + return montgomeryLoopGeneric(d, a, b, m, m0inv) +} diff --git a/src/crypto/internal/bigmod/nat_test.go b/src/crypto/internal/bigmod/nat_test.go new file mode 100644 index 0000000..6431d25 --- /dev/null +++ b/src/crypto/internal/bigmod/nat_test.go @@ -0,0 +1,412 @@ +// Copyright 2021 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package bigmod + +import ( + "math/big" + "math/bits" + "math/rand" + "reflect" + "testing" + "testing/quick" +) + +// Generate generates an even nat. It's used by testing/quick to produce random +// *nat values for quick.Check invocations. +func (*Nat) Generate(r *rand.Rand, size int) reflect.Value { + limbs := make([]uint, size) + for i := 0; i < size; i++ { + limbs[i] = uint(r.Uint64()) & ((1 << _W) - 2) + } + return reflect.ValueOf(&Nat{limbs}) +} + +func testModAddCommutative(a *Nat, b *Nat) bool { + m := maxModulus(uint(len(a.limbs))) + aPlusB := new(Nat).set(a) + aPlusB.Add(b, m) + bPlusA := new(Nat).set(b) + bPlusA.Add(a, m) + return aPlusB.Equal(bPlusA) == 1 +} + +func TestModAddCommutative(t *testing.T) { + err := quick.Check(testModAddCommutative, &quick.Config{}) + if err != nil { + t.Error(err) + } +} + +func testModSubThenAddIdentity(a *Nat, b *Nat) bool { + m := maxModulus(uint(len(a.limbs))) + original := new(Nat).set(a) + a.Sub(b, m) + a.Add(b, m) + return a.Equal(original) == 1 +} + +func TestModSubThenAddIdentity(t *testing.T) { + err := quick.Check(testModSubThenAddIdentity, &quick.Config{}) + if err != nil { + t.Error(err) + } +} + +func testMontgomeryRoundtrip(a *Nat) bool { + one := &Nat{make([]uint, len(a.limbs))} + one.limbs[0] = 1 + aPlusOne := new(big.Int).SetBytes(natBytes(a)) + aPlusOne.Add(aPlusOne, big.NewInt(1)) + m := NewModulusFromBig(aPlusOne) + monty := new(Nat).set(a) + monty.montgomeryRepresentation(m) + aAgain := new(Nat).set(monty) + aAgain.montgomeryMul(monty, one, m) + return a.Equal(aAgain) == 1 +} + +func TestMontgomeryRoundtrip(t *testing.T) { + err := quick.Check(testMontgomeryRoundtrip, &quick.Config{}) + if err != nil { + t.Error(err) + } +} + +func TestShiftIn(t *testing.T) { + if bits.UintSize != 64 { + t.Skip("examples are only valid in 64 bit") + } + examples := []struct { + m, x, expected []byte + y uint64 + }{{ + m: []byte{13}, + x: []byte{0}, + y: 0x7FFF_FFFF_FFFF_FFFF, + expected: []byte{7}, + }, { + m: []byte{13}, + x: []byte{7}, + y: 0x7FFF_FFFF_FFFF_FFFF, + expected: []byte{11}, + }, { + m: []byte{0x06, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0d}, + x: make([]byte, 9), + y: 0x7FFF_FFFF_FFFF_FFFF, + expected: []byte{0x00, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, + }, { + m: []byte{0x06, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0d}, + x: []byte{0x00, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, + y: 0, + expected: []byte{0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08}, + }} + + for i, tt := range examples { + m := modulusFromBytes(tt.m) + got := natFromBytes(tt.x).ExpandFor(m).shiftIn(uint(tt.y), m) + if got.Equal(natFromBytes(tt.expected).ExpandFor(m)) != 1 { + t.Errorf("%d: got %x, expected %x", i, got, tt.expected) + } + } +} + +func TestModulusAndNatSizes(t *testing.T) { + // These are 126 bit (2 * _W on 64-bit architectures) values, serialized as + // 128 bits worth of bytes. If leading zeroes are stripped, they fit in two + // limbs, if they are not, they fit in three. This can be a problem because + // modulus strips leading zeroes and nat does not. + m := modulusFromBytes([]byte{ + 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}) + xb := []byte{0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe} + natFromBytes(xb).ExpandFor(m) // must not panic for shrinking + NewNat().SetBytes(xb, m) +} + +func TestSetBytes(t *testing.T) { + tests := []struct { + m, b []byte + fail bool + }{{ + m: []byte{0xff, 0xff}, + b: []byte{0x00, 0x01}, + }, { + m: []byte{0xff, 0xff}, + b: []byte{0xff, 0xff}, + fail: true, + }, { + m: []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, + b: []byte{0x00, 0x01}, + }, { + m: []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, + b: []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, + }, { + m: []byte{0xff, 0xff}, + b: []byte{0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, + fail: true, + }, { + m: []byte{0xff, 0xff}, + b: []byte{0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, + fail: true, + }, { + m: []byte{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, + b: []byte{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, + }, { + m: []byte{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, + b: []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, + fail: true, + }, { + m: []byte{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, + b: []byte{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, + fail: true, + }, { + m: []byte{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, + b: []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, + fail: true, + }, { + m: []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfd}, + b: []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, + fail: true, + }} + + for i, tt := range tests { + m := modulusFromBytes(tt.m) + got, err := NewNat().SetBytes(tt.b, m) + if err != nil { + if !tt.fail { + t.Errorf("%d: unexpected error: %v", i, err) + } + continue + } + if err == nil && tt.fail { + t.Errorf("%d: unexpected success", i) + continue + } + if expected := natFromBytes(tt.b).ExpandFor(m); got.Equal(expected) != yes { + t.Errorf("%d: got %x, expected %x", i, got, expected) + } + } + + f := func(xBytes []byte) bool { + m := maxModulus(uint(len(xBytes)*8/_W + 1)) + got, err := NewNat().SetBytes(xBytes, m) + if err != nil { + return false + } + return got.Equal(natFromBytes(xBytes).ExpandFor(m)) == yes + } + + err := quick.Check(f, &quick.Config{}) + if err != nil { + t.Error(err) + } +} + +func TestExpand(t *testing.T) { + sliced := []uint{1, 2, 3, 4} + examples := []struct { + in []uint + n int + out []uint + }{{ + []uint{1, 2}, + 4, + []uint{1, 2, 0, 0}, + }, { + sliced[:2], + 4, + []uint{1, 2, 0, 0}, + }, { + []uint{1, 2}, + 2, + []uint{1, 2}, + }} + + for i, tt := range examples { + got := (&Nat{tt.in}).expand(tt.n) + if len(got.limbs) != len(tt.out) || got.Equal(&Nat{tt.out}) != 1 { + t.Errorf("%d: got %x, expected %x", i, got, tt.out) + } + } +} + +func TestMod(t *testing.T) { + m := modulusFromBytes([]byte{0x06, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0d}) + x := natFromBytes([]byte{0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}) + out := new(Nat) + out.Mod(x, m) + expected := natFromBytes([]byte{0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09}) + if out.Equal(expected) != 1 { + t.Errorf("%+v != %+v", out, expected) + } +} + +func TestModSub(t *testing.T) { + m := modulusFromBytes([]byte{13}) + x := &Nat{[]uint{6}} + y := &Nat{[]uint{7}} + x.Sub(y, m) + expected := &Nat{[]uint{12}} + if x.Equal(expected) != 1 { + t.Errorf("%+v != %+v", x, expected) + } + x.Sub(y, m) + expected = &Nat{[]uint{5}} + if x.Equal(expected) != 1 { + t.Errorf("%+v != %+v", x, expected) + } +} + +func TestModAdd(t *testing.T) { + m := modulusFromBytes([]byte{13}) + x := &Nat{[]uint{6}} + y := &Nat{[]uint{7}} + x.Add(y, m) + expected := &Nat{[]uint{0}} + if x.Equal(expected) != 1 { + t.Errorf("%+v != %+v", x, expected) + } + x.Add(y, m) + expected = &Nat{[]uint{7}} + if x.Equal(expected) != 1 { + t.Errorf("%+v != %+v", x, expected) + } +} + +func TestExp(t *testing.T) { + m := modulusFromBytes([]byte{13}) + x := &Nat{[]uint{3}} + out := &Nat{[]uint{0}} + out.Exp(x, []byte{12}, m) + expected := &Nat{[]uint{1}} + if out.Equal(expected) != 1 { + t.Errorf("%+v != %+v", out, expected) + } +} + +func natBytes(n *Nat) []byte { + return n.Bytes(maxModulus(uint(len(n.limbs)))) +} + +func natFromBytes(b []byte) *Nat { + bb := new(big.Int).SetBytes(b) + return NewNat().setBig(bb) +} + +func modulusFromBytes(b []byte) *Modulus { + bb := new(big.Int).SetBytes(b) + return NewModulusFromBig(bb) +} + +// maxModulus returns the biggest modulus that can fit in n limbs. +func maxModulus(n uint) *Modulus { + m := big.NewInt(1) + m.Lsh(m, n*_W) + m.Sub(m, big.NewInt(1)) + return NewModulusFromBig(m) +} + +func makeBenchmarkModulus() *Modulus { + return maxModulus(32) +} + +func makeBenchmarkValue() *Nat { + x := make([]uint, 32) + for i := 0; i < 32; i++ { + x[i] = _MASK - 1 + } + return &Nat{limbs: x} +} + +func makeBenchmarkExponent() []byte { + e := make([]byte, 256) + for i := 0; i < 32; i++ { + e[i] = 0xFF + } + return e +} + +func BenchmarkModAdd(b *testing.B) { + x := makeBenchmarkValue() + y := makeBenchmarkValue() + m := makeBenchmarkModulus() + + b.ResetTimer() + for i := 0; i < b.N; i++ { + x.Add(y, m) + } +} + +func BenchmarkModSub(b *testing.B) { + x := makeBenchmarkValue() + y := makeBenchmarkValue() + m := makeBenchmarkModulus() + + b.ResetTimer() + for i := 0; i < b.N; i++ { + x.Sub(y, m) + } +} + +func BenchmarkMontgomeryRepr(b *testing.B) { + x := makeBenchmarkValue() + m := makeBenchmarkModulus() + + b.ResetTimer() + for i := 0; i < b.N; i++ { + x.montgomeryRepresentation(m) + } +} + +func BenchmarkMontgomeryMul(b *testing.B) { + x := makeBenchmarkValue() + y := makeBenchmarkValue() + out := makeBenchmarkValue() + m := makeBenchmarkModulus() + + b.ResetTimer() + for i := 0; i < b.N; i++ { + out.montgomeryMul(x, y, m) + } +} + +func BenchmarkModMul(b *testing.B) { + x := makeBenchmarkValue() + y := makeBenchmarkValue() + m := makeBenchmarkModulus() + + b.ResetTimer() + for i := 0; i < b.N; i++ { + x.Mul(y, m) + } +} + +func BenchmarkExpBig(b *testing.B) { + out := new(big.Int) + exponentBytes := makeBenchmarkExponent() + x := new(big.Int).SetBytes(exponentBytes) + e := new(big.Int).SetBytes(exponentBytes) + n := new(big.Int).SetBytes(exponentBytes) + one := new(big.Int).SetUint64(1) + n.Add(n, one) + + b.ResetTimer() + for i := 0; i < b.N; i++ { + out.Exp(x, e, n) + } +} + +func BenchmarkExp(b *testing.B) { + x := makeBenchmarkValue() + e := makeBenchmarkExponent() + out := makeBenchmarkValue() + m := makeBenchmarkModulus() + + b.ResetTimer() + for i := 0; i < b.N; i++ { + out.Exp(x, e, m) + } +} |